RIO-TYPE INEQUALITY FOR THE EXPECTATION OF PRODUCTS OF RANDOM VARIABLES

B. L. S. PRAKASA RAO

Received 26 July 2004

We develop an inequality for the expectation of a product of n random variables generalizing the recent work of Dedecker and Doukhan (2003) and the earlier results of Rio (1993).

1. Introduction

Let (Ω, \mathscr{F}, P) be a probability space and let (X, Y) be a bivariate random vector defined on it. Suppose that $E\left(X^{2}\right)<\infty$ and $E\left(Y^{2}\right)<\infty$. Hoeffding proved that

$$
\begin{equation*}
\operatorname{Cov}(X, Y)=\int_{\mathbb{R}^{2}}[P(X \leq x, Y \leq y)-P(X \leq x) P(Y \leq y)] d x d y \tag{1.1}
\end{equation*}
$$

In [5], Lehmann gave a simple proof of this identity and used it in his study of some concepts of dependence. This identity was generalized to functions $h(X)$ and $g(Y)$ with $E\left[h^{2}(X)\right]<\infty$ and $E\left[g^{2}(Y)\right]<\infty$ and with finite derivatives $h^{\prime}(\cdot)$ and $g^{\prime}(\cdot)$ by Newman [6]. Multidimensional versions of these results were proved by Block and Fang [1], Yu [13], and more recently by Prakasa Rao [7]. Related covariance identities for exponential and other distributions are given by Prakasa Rao in [9, 10].

Suppose that \mathcal{M} is a sub- σ-algebra of \mathscr{F} and Y is measurable with respect to \mathcal{M}. Let $\sigma(X)$ be the sub- σ-algebra generated by the random variable X. Define

$$
\begin{equation*}
\alpha(\mathcal{M}, X)=\sup \{|P(A \cap B)-P(A) P(B)|, A \in \mathcal{M}, B \in \sigma(X)\} \tag{1.2}
\end{equation*}
$$

Define

$$
\begin{align*}
Q_{X}(u) & =\inf \{x: P(|X|>x) \leq u\}, \\
G_{X}(s) & =\inf \left\{z: \int_{0}^{z} Q_{X}(t) d t \geq s\right\}, \tag{1.3}\\
H_{X, Y}(s) & =\inf \left\{t: E\left(|X| I_{[|Y|>t]}\right) \leq s\right\} .
\end{align*}
$$

Rio [11] proved that

$$
\begin{equation*}
|\operatorname{Cov}(X, Y)| \leq 2 \int_{0}^{\alpha(\mu, X) / 2} Q_{Y}(u) Q_{X}(u) d u \tag{1.4}
\end{equation*}
$$

Related results are given in [12, page 9]. These results were generalized by Bradley [2] for a strong-mixing process and by Prakasa Rao [8] for r th-order joint cumulant under r th-order strong mixing. In a recent work, Dedecker and Doukhan [3] proved that

$$
\begin{equation*}
|E(X Y)| \leq \int_{0}^{\|E(X \mid \cdot \mu)\|_{1}} H_{X, Y}(t) d t \leq \int_{0}^{\|E(X \mid, \mathcal{M})\|_{1}} Q_{Y} o G_{X}(t) d t \tag{1.5}
\end{equation*}
$$

and obtained an improved version of the above inequality. If $X_{i}, 1 \leq i \leq n$, are positivevalued random variables, it is easy to see that

$$
\begin{equation*}
E\left(X_{1} X_{2} \cdots X_{n}\right) \leq \int_{0}^{1} Q_{X_{1}}(u) Q_{X_{2}}(u) \cdots Q_{X_{n}}(u) d u \tag{1.6}
\end{equation*}
$$

For a proof, see [12, Lemma 2.1, page 35].
We now obtain an improved version of the above inequality following the techniques of Dedecker and Doukhan [3] and Block and Fang [1].

2. Main result

Let $\left\{X_{i}, 1 \leq i \leq n\right\}$ be a sequence of nonnegative random variables defined on a probability space (Ω, \mathscr{F}, P). Then the random variable X_{i} can be represented in the form

$$
\begin{equation*}
X_{i}=\int_{0}^{\infty} I_{\left(x_{i}, \infty\right)}\left(X_{i}\right) d x_{i}, \tag{2.1}
\end{equation*}
$$

where

$$
I_{\left(x_{i}, \infty\right)}\left(X_{i}\right)= \begin{cases}1 & \text { if } X_{i}>x_{i} \tag{2.2}\\ 0 & \text { if } X_{i} \leq x_{i}\end{cases}
$$

Hence

$$
\begin{align*}
E\left(X_{1} X_{2} \cdots X_{n}\right) & =E\left[X_{1} \Pi_{i=2}^{n} \int_{0}^{\infty} I_{\left(x_{i}, \infty\right)}\left(X_{i}\right) d x_{i}\right] \\
& =\int_{\mathbb{R}_{+}^{n-1}} E\left[X_{1} \Pi_{i=2}^{n} I_{\left(x_{i}, \infty\right)}\left(X_{i}\right)\right] d x_{2} \cdots d x_{n} \tag{2.3}\\
& =\int_{\mathbb{R}_{+}^{n-1}} E\left[X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right] d x_{2} \cdots d x_{n}
\end{align*}
$$

by the Fubini's theorem, where $\mathbb{R}_{+}^{n-1}=\left\{\left(x_{2}, \ldots, x_{n}\right): x_{i} \geq 0,2 \leq i \leq n\right\}$. Observe that

$$
\begin{equation*}
E\left(X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right) \leq \min \left(E\left[X_{1}\right], E\left(X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)\right) \tag{2.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left.\left.E\left(X_{1} X_{2} \cdots X_{n}\right) \leq \int_{\mathbb{R}_{+}^{n-1}}\left\{\int_{0}^{E X_{1}} \chi_{\left(E\left[X_{1}\left[X_{i}, x_{i}, 2 \leq i s n\right]\right]\right.}\left(X_{2}, \ldots, X_{n}\right)\right]>u\right)(u) d u\right\} d x_{2} \cdots d x_{n} \tag{2.5}
\end{equation*}
$$

Here $\chi_{A}(\cdot)$ denotes the indicator function of the set A. Let

$$
\begin{equation*}
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)=E\left[X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right] . \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{align*}
E\left(X_{1} X_{2} \cdots X_{n}\right) & \leq \int_{\mathbb{R}_{+}^{n-1}}\left\{\int_{0}^{E X_{1}} \chi_{\left[g x_{1}\left(x_{2}, \ldots, x_{n}\right)>u\right]}(u) d u\right\} d x_{2} \cdots d x_{n} \\
& =\int_{0}^{E\left(X_{1}\right)}\left\{\int_{\left[\left(x_{2}, \ldots, x_{n}\right): g x_{1}\left(x_{2}, \ldots, x_{n}\right)>u\right]} 1 d x_{2} \cdots d x_{n}\right\} d u . \tag{2.7}
\end{align*}
$$

Let

$$
\begin{equation*}
H_{X_{1}, X_{2}, \ldots, X_{n}}(u)=\lambda\left[\left(x_{2}, \ldots, x_{n}\right): g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u\right], \tag{2.8}
\end{equation*}
$$

where λ is the Lebesgue measure on the space \mathbb{R}_{+}^{n-1}. Hence

$$
\begin{equation*}
E\left(X_{1} X_{2} \cdots X_{n}\right) \leq \int_{0}^{E\left(X_{1}\right)} H_{X_{1}, X_{2}, \ldots, X_{n}}(u) d u . \tag{2.9}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\left.g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)=E\left[X_{1} I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right] \leq \int_{0}^{E\left[\left[I_{\left[X_{i}>\right.} x_{i}, 2 \leq i \leq n\right]\right]}\left(X_{2}, \ldots, X_{n}\right)\right] Q_{X_{1}}(u) d u \tag{2.10}
\end{equation*}
$$

from the Fréchet's inequality [4]. Here $Q_{X_{1}}(\cdot)$ is the generalized inverse of the function $T_{X_{1}}(x)=P\left(X_{1}>x\right)$ as defined earlier. Let

$$
\begin{equation*}
M_{X_{1}}(y)=\int_{0}^{y} Q_{X_{1}}(t) d t \tag{2.11}
\end{equation*}
$$

Observe that $M_{X_{1}}(\cdot)$ is nondecreasing in y. Let $G_{X_{1}}(u)=\inf \left\{z: M_{X_{1}}(z) \geq u\right\}$ as defined earlier. Let

$$
\begin{equation*}
T_{X_{2}, \ldots, X_{n}}\left(x_{2}, \ldots, x_{n}\right)=P\left(X_{i}>x_{i}, 2 \leq i \leq n\right) . \tag{2.12}
\end{equation*}
$$

Note that

$$
\begin{align*}
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right) & \leq M_{X_{1}}\left(E\left(I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)\right), \\
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u & \Longrightarrow M_{X_{1}}\left(E\left(I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)\right)>u \\
& \Longrightarrow E\left(I_{\left[X_{i}>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right)>G_{X_{1}}(u) \tag{2.13}\\
& \Longrightarrow P\left[X_{i}>x_{i}, 2 \leq i \leq n\right]>G_{X_{1}}(u) .
\end{align*}
$$

Hence the set

$$
\begin{equation*}
\left[\left(x_{2}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n-1}: g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)>u\right] \tag{2.14}
\end{equation*}
$$

is contained in the set

$$
\begin{equation*}
\left[\left(x_{2}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n-1}: P\left(X_{i}>x_{i}, 2 \leq i \leq n\right)>G_{X_{1}}(u)\right] . \tag{2.15}
\end{equation*}
$$

In particular, it follows that the Lebesgue measure of the former set is less than or equal to that of the latter. Let

$$
\begin{equation*}
Q_{X_{2}, \ldots, X_{n}}^{*}\left(G_{X_{1}}(u)\right) \tag{2.16}
\end{equation*}
$$

denote the Lebesgue measure of the set (2.15).
Then

$$
\begin{equation*}
H_{X_{1}, X_{2}, \ldots, X_{n}}(u) \leq Q_{X_{2}, \ldots, X_{n}}^{*}\left(G_{X_{1}}(u)\right) \tag{2.17}
\end{equation*}
$$

for all $0 \leq u \leq 1$. Hence

$$
\begin{equation*}
E\left(X_{1} X_{2} \cdots X_{n}\right) \leq \int_{0}^{E\left(X_{1}\right)} Q_{X_{2}, \ldots, X_{n}}^{*}\left(G_{X_{1}}(u)\right) d u . \tag{2.18}
\end{equation*}
$$

We have proved the following inequality.
Theorem 2.1. Let $X_{i}, 1 \leq i \leq n$, be nonnegative random variables defined on a probability space (Ω, \mathscr{F}, P). Then

$$
\begin{equation*}
E\left(X_{1} X_{2} \cdots X_{n}\right) \leq \int_{0}^{E\left(X_{1}\right)} H_{X_{1}, X_{2}, \ldots, X_{n}}(u) d u \leq \int_{0}^{E\left(X_{1}\right)} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}}(u) d u \tag{2.19}
\end{equation*}
$$

where the functions H, Q^{*}, and G are as defined earlier.

3. Applications

We now suppose that the random variables $\left\{X_{i}, 1 \leq i \leq n\right\}$ are arbitrary but with

$$
\begin{equation*}
E\left|X_{1} X_{2} \cdots X_{n}\right|<\infty . \tag{3.1}
\end{equation*}
$$

Define

$$
\begin{gather*}
g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right)=E\left(\left|X_{1}\right| I_{\left[\left|X_{i}\right|>x_{i}, 2 \leq i \leq n\right]}\left(X_{2}, \ldots, X_{n}\right)\right), \\
H_{X_{1}, X_{2}, \ldots, X_{n}}(u)=\lambda\left[\left(x_{2}, \ldots, x_{n}\right): g_{X_{1}}\left(x_{2}, \ldots, x_{n}\right) \leq u\right], \tag{3.2}\\
T_{X_{2}, \ldots, X_{n}}\left(x_{2}, \ldots, x_{n}\right)=P\left(\left|X_{i}\right|>x_{i}, 2 \leq i \leq n\right),
\end{gather*}
$$

and define $M_{X_{1}}(\cdot), Q_{X_{1}}(\cdot), Q_{X_{2}, \ldots, X_{n}}^{*}$, and $G_{X_{1}}$ accordingly. The following theorem follows by arguments analogous to those given in Section 2.

Theorem 3.1. Let $X_{i}, 1 \leq i \leq n$, be arbitrary random variables defined on a probability space (Ω, \mathscr{F}, P). Then

$$
\begin{equation*}
E\left(\left|X_{1} X_{2} \cdots X_{n}\right|\right) \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} H_{X_{1}, X_{2}, \ldots, X_{n}}(u) d u \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}}(u) d u \tag{3.3}
\end{equation*}
$$

where the functions H, Q^{*}, and G are as defined above.
In particular, for $n=2$, we have

$$
\begin{equation*}
E\left(\left|X_{1} X_{2}\right|\right) \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} H_{X_{1}, X_{2}}(u) d u \leq \int_{0}^{E\left(\left|X_{1}\right|\right)} Q_{X_{2}} o G_{X_{1}}(u) d u \tag{3.4}
\end{equation*}
$$

since $Q_{X}^{*}=Q_{X}$ for any univariate random variable X. Furthermore,

$$
\begin{equation*}
G_{X_{1}-E\left(X_{1}\right)}(u) \geq G_{X_{1}}\left(\frac{u}{2}\right), \quad 0 \leq u \leq 1 \tag{3.5}
\end{equation*}
$$

(cf. [3]). Hence

$$
\begin{equation*}
E\left[\left|X_{1} X_{2}\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(E\left(\left|X_{1}\right|\right) / 2\right)} Q_{X_{2}}(u) Q_{X_{1}}(u) d u . \tag{3.6}
\end{equation*}
$$

Therefore, for any two functions $f_{i}(\cdot), i=1,2$, with $f_{i}(0)=0$ such that $E\left|f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|<$ ∞, we obtain that

$$
\begin{equation*}
E\left[\left|f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|\right] \leq \int_{0}^{G_{f_{1}\left(X_{1}\right)}^{-1}\left(E\left(\left|f_{1}\left(X_{1}\right)\right|\right) / 2\right)} Q_{f_{2}\left(X_{2}\right)}(u) Q_{f_{1}\left(X_{1}\right)}(u) d u . \tag{3.7}
\end{equation*}
$$

Applying Theorem 3.1 for the random variables $X_{1}-E\left(X_{1}\right), X_{2}, \ldots, X_{n}$, we get that

$$
\begin{equation*}
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2} \cdots X_{n}\right|\right] \leq \int_{0}^{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}-E\left(X_{1}\right)}(u) d u . \tag{3.8}
\end{equation*}
$$

But

$$
\begin{equation*}
G_{X_{1}-E\left(X_{1}\right)}(u) \geq G_{X_{1}}\left(\frac{u}{2}\right), \quad u \geq 0 \tag{3.9}
\end{equation*}
$$

(cf. [3]). Hence

$$
\begin{equation*}
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2} \cdots X_{n}\right|\right] \leq \int_{0}^{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right) / 2} Q_{X_{2}, \ldots, X_{n}}^{*} o G_{X_{1}}(u) d u . \tag{3.10}
\end{equation*}
$$

Observing that $G_{X_{1}}(\cdot)$ is the inverse of the function $M_{X_{1}}(y)=\int_{0}^{y} Q_{X_{1}}(t) d t$, it follows that

$$
\begin{equation*}
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2} \cdots X_{n}\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right) / 2\right)} Q_{X_{2}, \ldots, X_{n}}^{*}(u) Q_{X_{1}}(u) d u . \tag{3.11}
\end{equation*}
$$

Hence we have the following result.

Theorem 3.2. Let $X_{i}, 1 \leq i \leq n$, be arbitrary random variables defined on a probability space (Ω, \mathscr{F}, P) with $E\left|X_{1}\right|<\infty$ and $E\left|X_{1} X_{2} \cdots X_{n}\right|<\infty$. Then (3.11) holds.

Observe that $Q_{X}^{*}=Q_{X}$ for any univariate random variable X. Let $n=2$ in Theorem 3.2. Then $Q_{X_{2}}^{*}=Q_{X_{2}}$ and the above result reduces to

$$
\begin{equation*}
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right) X_{2}\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right) / 2\right)} Q_{X_{2}}(u) Q_{X_{1}}(u) d u . \tag{3.12}
\end{equation*}
$$

As a further consequence, we get that

$$
\begin{equation*}
E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right|\right] \leq \int_{0}^{G_{X_{1}}^{-1}\left(E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right) / 2\right)} Q_{X_{2}-E\left(X_{2}\right)}(u) Q_{X_{1}}(u) d u \tag{3.13}
\end{equation*}
$$

Since

$$
\begin{equation*}
Q_{X_{2}-E\left(X_{2}\right)} \leq Q_{X_{2}}+E\left|X_{2}\right|, \tag{3.14}
\end{equation*}
$$

we obtain that

$$
\begin{align*}
& E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right|\right] \\
& \quad \leq \int_{0}^{G_{X_{1}}^{-1}\left(E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right) / 2\right)} Q_{X_{2}}(u) Q_{X_{1}}(u) d u+E\left|X_{2}\right| \int_{0}^{G_{X_{1}}^{-1}\left(E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right) / 2\right)} Q_{X_{1}}(u) d u . \tag{3.15}
\end{align*}
$$

Let

$$
\begin{equation*}
\alpha\left(X_{1}, X_{2}\right)=\max \left\{G_{X_{1}}^{-1}\left(\frac{E\left(\left|X_{1}-E\left(X_{1}\right)\right|\right)}{2}\right), G_{X_{2}}^{-1}\left(\frac{E\left(\left|X_{2}-E\left(X_{2}\right)\right|\right)}{2}\right)\right\} . \tag{3.16}
\end{equation*}
$$

Then it follows that

$$
\begin{align*}
& E\left[\left|\left(X_{1}-E\left(X_{1}\right)\right)\left(X_{2}-E\left(X_{2}\right)\right)\right|\right] \\
& \leq \int_{0}^{\alpha\left(X_{1}, X_{2}\right)} Q_{X_{1}}(u) Q_{X_{2}}(u) d u+\frac{1}{2}\left(E\left|X_{1}\right| \int_{0}^{\alpha\left(X_{1}, X_{2}\right)} Q_{X_{1}}(u) d u+E\left|X_{2}\right| \int_{0}^{\alpha\left(X_{1}, X_{2}\right)} Q_{X_{2}}(u) d u\right) . \tag{3.17}
\end{align*}
$$

This inequality is different from the inequality in [12, page 9].
Let f_{1} and f_{2} be differentiable functions on \mathbb{R}_{+}with $f_{i}(0)=0$. Let $X_{i}, i=1,2$, be nonnegative random variables. Suppose that $E\left[f_{i}^{2}\left(X_{i}\right)\right]<\infty, i=1,2$. It is easy to see that

$$
\begin{equation*}
f_{i}\left(X_{i}\right)=\int_{0}^{\infty} f_{i}^{\prime}\left(X_{i}\right) I_{\left(x_{i}, \infty\right)}\left(X_{i}\right) d x_{i} \tag{3.18}
\end{equation*}
$$

Then

$$
\begin{align*}
E\left(f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right) & =E\left[f_{1}\left(X_{1}\right) \int_{0}^{\infty} f_{2}^{\prime}\left(X_{2}\right) I_{\left(x_{2}, \infty\right)}\left(X_{2}\right) d x_{2}\right] \tag{3.19}\\
& =\int_{\mathbb{R}_{+}} E\left[f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right) I_{\left(x_{2}, \infty\right)}\left(X_{2}\right)\right] d x_{2}
\end{align*}
$$

by the Fubini's theorem. Observe that

$$
\begin{align*}
& E\left(\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]}\left(X_{2}\right)\right) \\
& \quad \leq \min \left(E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right], E\left(\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]}\left(X_{2}\right)\right)\right) \tag{3.20}
\end{align*}
$$

and hence

$$
\begin{align*}
& \left|E\left(f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right)\right| \\
& \quad \leq \int_{\mathbb{R}+}\left\{\int_{0}^{E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right]} \chi_{\left(E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]}\left(X_{2}\right)\right]>u\right)}(u) d u\right\} d x_{2} . \tag{3.21}
\end{align*}
$$

Here $\chi_{A}(\cdot)$ denotes the indicator function of the set A. Let

$$
\begin{equation*}
g_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}\left(x_{2}\right)=E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right| I_{\left[X_{2}>x_{2}\right]},\left(X_{2}\right)\right] . \tag{3.22}
\end{equation*}
$$

Then

$$
\begin{align*}
\left|E\left(f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right)\right| & \leq \int_{\mathbb{R}_{+}}\left\{\int_{0}^{E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right]} \chi_{\left(\left[f_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}\left(x_{2}\right)\right]>u\right)}(u) d u\right\} d x_{2} \\
& \leq \int_{0}^{E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right]}\left\{\int_{\left[x_{2}: g_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(x_{2}\right)}\left(x_{2}\right)>u\right]} 1 d x_{2}\right\} d u . \tag{3.23}
\end{align*}
$$

Let

$$
\begin{equation*}
H_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}(u)=\inf \left\{x_{2}: g_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}\left(x_{2}\right) \leq u\right\} . \tag{3.24}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
\left|E\left(f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right)\right| \leq \int_{0}^{E\left[\left|f_{1}\left(X_{1}\right) f_{2}^{\prime}\left(X_{2}\right)\right|\right]} H_{f_{1}\left(X_{1}\right), f_{2}^{\prime}\left(X_{2}\right)}(u) d u . \tag{3.25}
\end{equation*}
$$

An analogous inequality holds by interchanging $f_{1}\left(X_{1}\right)$ and $f_{2}\left(X_{2}\right)$:

$$
\begin{equation*}
\left|E\left(f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right)\right| \leq \int_{0}^{E\left[\left|f_{1}^{\prime}\left(X_{1}\right) f_{2}\left(X_{2}\right)\right|\right]} H_{f_{1}^{\prime}\left(X_{1}\right), f_{2}\left(X_{2}\right)}(u) d u . \tag{3.26}
\end{equation*}
$$

References

[1] H. W. Block and Z. B. Fang, A multivariate extension of Hoeffding's lemma, Ann. Probab. 16 (1988), no. 4, 1803-1820.
[2] R. C. Bradley, A covariance inequality under a two-part dependence assumption, Statist. Probab. Lett. 30 (1996), no. 4, 287-293.
[3] J. Dedecker and P. Doukhan, A new covariance inequality and applications, Stochastic Process. Appl. 106 (2003), no. 1, 63-80.
[4] M. Fréchet, Sur la distance de deux lois de probabilité, C. R. Acad. Sci. Paris 244 (1957), 689-692 (French).
[5] E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.
[6] C. M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math. Phys. 74 (1980), no. 2, 119-128.

14 Rio-type inequality

[7] B. L. S. Prakasa Rao, Hoeffding identity, multivariance and multicorrelation, Statistics 32 (1998), no. 1, 13-29.
[8] , Bounds for rth order joint cumulant under rth order strong mixing, Statist. Probab. Lett. 43 (1999), no. 4, 427-431.
[9] \qquad , Covariance identities for exponential and related distributions, Statist. Probab. Lett. 42 (1999), no. 3, 305-311.
[10] \qquad , Some covariance identities, inequalities and their applications: a review, Proc. Indian Nat. Sci. Acad. Part A 66 (2000), no. 5, 537-543.
[11] E. Rio, Covariance inequalities for strongly mixing processes, Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), no. 4, 587-597.
[12] , Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants, Springer, Paris, 2000.
[13] H. Yu, A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences, Probab. Theory Related Fields 95 (1993), no. 3, 357-370.

[^0]
[^0]: B. L. S. Prakasa Rao: Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, New Delhi 110 016, India

 E-mail address: blsp@isid.ac.in

