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We develop an inequality for the expectation of a product of n random variables gener-
alizing the recent work of Dedecker and Doukhan (2003) and the earlier results of Rio
(1993).

1. Introduction

Let (Q, %, P) be a probability space and let (X,Y) be a bivariate random vector defined
on it. Suppose that E(X?) < o0 and E(Y?) < co. Hoeffding proved that

Cov(X,Y) = J

o [P(X <x, Y <y)-P(X <x)P(Y < y)|dxdy. (1.1)

In [5], Lehmann gave a simple proof of this identity and used it in his study of some
concepts of dependence. This identity was generalized to functions 4(X) and g(Y) with
E[h*(X)] < o0 and E[g*(Y)] < o and with finite derivatives 4’ (-) and g¢’(-) by Newman
[6]. Multidimensional versions of these results were proved by Block and Fang [1], Yu
[13], and more recently by Prakasa Rao [7]. Related covariance identities for exponential
and other distributions are given by Prakasa Rao in [9, 10].

Suppose that (L is a sub-o-algebra of & and Y is measurable with respect to JL. Let
0(X) be the sub-o-algebra generated by the random variable X. Define

a(,X) = sup { | P(A 1 B) — P(A)P(B) |, A € M, B € o(X)}. (1.2)
Define
Qx(u) =inf {x:P(|X|>x) <u},

Gy (s) = inf{z: JOZ Qu(t)dt = s}, (1.3)
Hxy(s) = inf{t: E(IX I}y ) <s}.
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Rio [11] proved that

a(dL,X)/2
| Cov(X,Y)| < ZL Qy(u)Qx(u)du. (1.4)

Related results are given in [12, page 9]. These results were generalized by Bradley [2]
for a strong-mixing process and by Prakasa Rao [8] for rth-order joint cumulant under
rth-order strong mixing. In a recent work, Dedecker and Doukhan [3] proved that

IEX A1 IEX A1
|E(XY)| < J Hy.y (0)dt < J QyoGyx (1)dt (1.5)
0 0

and obtained an improved version of the above inequality. If Xj, 1 < i < n, are positive-
valued random variables, it is easy to see that

1
E(XiX,---X,) < jo Qx, (4)Qx, (1) - - Qx, (). (1.6)

For a proof, see [12, Lemma 2.1, page 35].
We now obtain an improved version of the above inequality following the techniques
of Dedecker and Doukhan [3] and Block and Fang [1].

2. Main result

Let {X;, 1 <i < n} be a sequence of nonnegative random variables defined on a proba-
bility space (Q, %, P). Then the random variable X; can be represented in the form

X,’ZJ I(xi,m)(Xi)dxi, (21)
0
where
1 iin>X,‘,
Tty 00) (X)) = 2.2
e )( 1) {O iinsxi. ( )
Hence

E(X,X;- - Xy) = E[Xl ie2 Jo I(X[;oo)(Xi)dxi]
= J[RH E[ X111 I (x,00) (X3) |dxy « - - dxy (2.3)
- ,[[RVPI E[XII[X,‘>X[,ZSiSn] (XZ)- .. an)]de e dxn

by the Fubini’s theorem, where R"~! = {(x,,...,%,) : x; > 0,2 < i < n}. Observe that

E(XiIxox, 2i<n) (X25-., X)) < min (E[X1 ], E(XiI[x5x, 2<i<n) (X250 Xn))) - (2.4)
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and hence
EX,
E(XIXZ " 'Xn) = J{R"’l { 0 XEXiIx;5x; 2i<m (X2seees Xn)]>u)(u)d”}dx2 - dxy. (2-5)

Here y4(-) denotes the indicator function of the set A. Let

gx, (%2505 %) = E[X1I[x;5x, 2<i<n] (X250, Xin) ]. (2.6)
Then
EX,
E(Xi Xy Xy) < JRn,l { 0 Xlgx, (xz,.--,xn)>u](”)du}dx2' <= dxy
E(X) (2.7)
:J J ldx; - - - dx, rdu.
0 [(X2500%n )18, (X20000rXn ) >1]
Let
Hx, x,,..x, (1) = A[(x2,. . %n) 1 gx, (X205, %0) > u], (2.8)
where 1 is the Lebesgue measure on the space R”"!. Hence
E(X1)
E(X1X2 .. 'Xn) < JO HXI,XZ ,,,,, Xn(u)du. (29)
Observe that
E[I[pri,zsisn](xz ----- Xn)]
gx, (%2,..5%0) = E[XiI[x;55, 2<i=n] (X25..» Xn) | < L Qx, (w)du
(2.10)

from the Fréchet’s inequality [4]. Here Qx, (+) is the generalized inverse of the function
Tx, (x) = P(X; >x) as defined earlier. Let

y
My, (y) = L Qu, (1)dt. (2.11)

Observe that My, (-) is nondecreasing in y. Let Gx, (1) = inf{z : Mx, (z) = u} as defined
earlier. Let

TX2 X, (xz,...,xn) = P(X,' > X, 2 < i< I’l) (2.12)

Note that
gx, (x2,..0,%0) < My, (E(Iix;ox;, 2<i<n) (X25-5X0)) )
gx, (x2,..05%0) >u = Mx, (E(Iix;5x;, 2<i<n] (X25..,X0))) > u
= E(I[X,->x,-,2§isn] (X2)~ .. )Xn) ) > GX1 (u)

= P[X; >x;, 2 <i<n]>Gy (u).

(2.13)
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Hence the set
[(x2,..05%0) € RT i gy, (x2,..05%0) > 1] (2.14)
is contained in the set
[(x2,...,%,) € RTL:P(X; > x5, 2 < i< n) >Gy, (u)]. (2.15)

In particular, it follows that the Lebesgue measure of the former set is less than or equal
to that of the latter. Let

Q%,,.x, (Gx, (u)) (2.16)
denote the Lebesgue measure of the set (2.15).
Then
Hx, x,,..x,(u) < Qx,.. x,(Gx, () (2.17)
forall 0 < u < 1. Hence
E(Xy)
E(X\Xs - X,) < JO Qb x (G, () du (2.18)

We have proved the following inequality.

THEOREM 2.1. Let X;, 1 < i < n, be nonnegative random variables defined on a probability
space (Q, F,P). Then

E(X]) E(Xl)
E(XIXZ---Xn)sJO Hy x,.. Xn(u)dusjo Q% 0Gx, (u)du, (2.19)

where the functions H,Q™*, and G are as defined earlier.

3. Applications
We now suppose that the random variables {Xj, 1 < i < n} are arbitrary but with
E|Xi Xy X, | < oo, (3.1)
Define

gx, (%2, ,%0) = E(| X0 [ I[1x015x, 22i<n) (X255 X))
Hx, x,..x, () = A[(x2,...,%n) : gx, (X2,...,%0) < 1], (3.2)
TXz,...,Xn (xz,...,x,,) = P( |X1| > Xi, 2<i< 1’1),

.....

by arguments analogous to those given in Section 2.
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TaeoreM 3.1. Let Xj, 1 < i < n, be arbitrary random variables defined on a probability
space (O, F,P). Then

E(IX:]) E(1X:1)
E(|X1X2---X,,|)5JO HXI,XZ,“,,Xn(u)dusL Q% x oGy, (du,  (3.3)

where the functions H,Q*, and G are as defined above.
In particular, for n = 2, we have
E(1X11)

E(1Xy1)
E(|X:1X,]) < JO Hy, x,(u)du < L Qx,0Gx, (u)du (3.4)

since Q¥ = Qx for any univariate random variable X. Furthermore,

GleE(Xl)(u) > GXI (g), O<u=<l (35)
(cf. [3]). Hence
Gy, (E(1X11)/2)
B[] < |, Qu, (1) Qx, (w)d. (3.6)

Therefore, for any two functions f;(-), i=1,2, with £;(0) =0 such that E| fi (X)) L(X3)| <
o0, we obtain that

Grluey (E(AKDD/2)
J Qpx) (W) Qf xy) (W) du. (3.7)

E[|A(X)A(X)]] < .

Applying Theorem 3.1 for the random variables X; — E(X,),X>,...,X,, we get that

JE( X1 —E(X1)])

E[| (X1 —E(X1))Xy---X,|] < . Qx,.. x,0Gx, —Ex,) (w)du. (3.8)

But

u
GleE(Xl)(u) = GXl (5), u=0 (39)

(cf. [3]). Hence

E(1X:1 —E(X1)1)/2
J Qx,....x,0Gx, (u)du. (3.10)

E[| (X1 —E(X1))Xy--- X, |] < .

Observing that Gx, (+) is the inverse of the function Mx, (y) = foy Qx, (t)dt, it follows that

Qx,,..x, (W) Qx, (u)du. (3.11)

.....

Gy, (E(IX1=E(X1)1)/2)
E[| (X1 —E(X1))Xy- - X, |] < Jo

Hence we have the following result.
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THEOREM 3.2. Let Xj, 1 < i < n, be arbitrary random variables defined on a probability
space (O, F,P) with E|X;| < 00 and E| X, X, - - - X,,| < co. Then (3.11) holds.

Observe that Qx = Qx for any univariate random variable X. Let n = 2 in Theorem 3.2.
Then Qf, = Qyx, and the above result reduces to

E[| (X, -E(X)))Xz|] <

G (E(IX1~E(X))1)/2)
J Q. (4)Qx, (u)du. (3.12)

As a further consequence, we get that

Gy (B(1X1~E(X1)1)/2)
E[| (X1 —E(X1)) (X2 —E(X2))|] < J Qx,-Ex) (W) Qx, (w)du. (3.13)

0

Since
Qx,-Ex) < Qx, +E| X2 |, (3.14)

we obtain that

E[| (X1 —E(X)))(X; - E(X3))|]

J‘lel (B(1X, ~E(X1)1)/2) —E(X1)1)/2)

Gy (E(IX,
Qu () Qx, (W + E| X | jo Qu, (u)du
(3.15)

<

0

Let
OC(XhXZ) —max{G;(ll (M)’Gg(w)} (3.16)

Then it follows that
E[|(X: —E(X)))(X; - E(X3))|]

a(X1,Xz) a(X1,Xz) a(X1,Xz)
SJO Qx, () Qx, (w)du + <E|X1|J Qx, (1) du+E|X2|J sz(u)du>.
(3.17)

This inequality is different from the inequality in [12, page 9].
Let f; and f, be differentiable functions on R, with f;(0) = 0. Let Xj, i = 1,2, be non-
negative random variables. Suppose that E[ f#(X;)] < o0, i = 1,2. It is easy to see that

J fiX X;)dxi. (3.18)
Then
B(ACG) £06)) = B[ A06) [ 00 i ()

(3.19)
= [ BLAGO) () T ()



B.L.S. Prakasa Rao 13

by the Fubini’s theorem. Observe that

E(] A(X1) f5 (X2) [ Tx,5x,) (X2))
< min (E[| i (X1) f; () | LE(| A X)) £ (X2) [ T1x,5x,) (X2)))

and hence
|E(fi(X1) £2(X2)) |
E[lA(X1) f; (X2)1]
< Jm { L X(E[m(x1)f;<x2)|1[xz>m<xz>1>u)(u)du}dxz-

Here ya(-) denotes the indicator function of the set A. Let

ghxn s o) (%2) = E[| A(X0) £ (X2) [ T1x,5x,0, (X2) |-
Then

E[lA(X0) f; (X2)]]
BReAC) =, |

E[lfi(X1) f; (X2)1]
< J J 1dx, rdu.
0 (285 0.1 00y (¥2) >1)

0 Xy, <X1>Jz'<x2>(x2)]>“)(u)d”}dxz

Let

Hy,x),f 00 () = inf {x2: g5 0x0)), 11 00) (%2) < uf.

Then it follows that

|E(fi(X1) £(X2)) | <

B 06) £ (%))
J Hiiox), 5 0x) (w)du.

An analogous inequality holds by interchanging f;(X;) and f£,(X):

JE[f]'(Xl)fz(Xz)]

|E(fi(X1) £(X2)) | < Hp(x,),500) (4)du.
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