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We give a refinement of the Poincaré inequality for Kolmogorov operators on Rd. This
refinement yields some regularity result of the corresponding semigroups.

1. Introduction

Let {Pt} be the semigroup on Bb(Rd) associated with the Kolmogorov operator

L0 = 1
2
∆+F(x) ·D. (1.1)

Here we denote by Bb(Rd) the Banach space of all Borel and bounded functions, endowed
with the supremum norm. We assume a suitable dissipative assumption on the function
F = (F1, . . . ,Fd) such that there exists a unique invariant probability measure ν on Rd

associated with {Pt}. Let H1(ν) and H2(ν) be the Sobolev spaces with the norms

‖ϕ‖H1(ν) =
[∫

Rd

[|ϕ|2 + |Dϕ|2]dν
]1/2

, (1.2)

‖ϕ‖H2(ν) =
[∫

Rd

[
|ϕ|2 + |Dϕ|2 +∣∣D2ϕ

∣∣2]dν
]1/2

, (1.3)

respectively. It is well known that the Poincaré inequality with respect to ν is the following:

∫
Rd
(ϕ−ϕ)2dν≤ 1

2α

∫
Rd
|Dϕ|2dν, ϕ∈H1(ν), (1.4)

where α > 0 is a constant determined by F, and ϕ = ∫Rd ϕdν. The Poincaré inequality
(1.4) is so important that it implies existence of a spectral gap or, equivalently, exponential
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convergence of equilibrium of the semigroup {Pt} such that

∫
Rd

∣∣Ptϕ−ϕ
∣∣2dν≤ e−2αt

∫
Rd
|ϕ|2dν, t ≥ 0, ϕ∈ L2(ν) (1.5)

(cf. [2, Proposition 3.12]).
The aim of this paper is to give a refinement of the Poincaré inequality (1.4) such that

∫
Rd
(ϕ−ϕ)2dν+

1
2α

∫∞
0
dt
∫
Rd

∣∣D2Ptϕ
∣∣2dν≤ 1

2α

∫
Rd
|Dϕ|2dν, ϕ∈H1(ν). (1.6)

When F(x) = −αx in (1.1) (i.e., {Pt} is the Ornstein-Uhlenbeck semigroup), inequality
(1.6) is reduced to an equality. Furthermore, we will show that inequality (1.6) yields
the regularity result such that Ptϕ−ϕ∈ L2((0,∞),dt;H2(ν)) for ϕ∈H1(ν). This regular-
ity result corresponds to the well-known regularity result such that Ptϕ−ϕ∈ L2((0,∞),
dt;H1(ν)) for ϕ∈ L2(ν) (cf. (1.5) and (3.18)).

In the proof of the Poincaré inequality (1.4), the following inequality was used for
ϕ∈ C1

b(R
d):

∣∣DPtϕ(x)∣∣2 ≤ e−2αtPt
(|Dϕ|2)(x), (t,x)∈ (0,∞)×Rd (1.7)

(cf. [2, Proposition 2.8]). In our proof of inequality (1.6), we will also use (1.7). However,
we will derive another differential inequality so as not to lose the term |D2Ptϕ(x)|2. For
this purpose, it is crucial to assume that the Kolmogorov operator L0 has the form of (1.1).
It seems hard for the author to apply our proof directly to a more general Kolmogorov
operator such as (1/2)tr[C(x)D2] +F(x) ·D.

The contents of this paper are as follows. In Section 2, we will state the main results.
They will be proved in Section 3.

2. Main results

First of all, we recall the results about invariant probability measures on Rd (for de-
tails, see [2]). Following [1, Hypothesis 1.1], we make the following assumptions on
F = (F1, . . . ,Fd) of (1.1).

(A) F ∈ C4
(
Rd;Rd

)
, and there exist

m≥ 0 such that sup
x∈Rd

∣∣DβF(x)
∣∣

1+ |x|2m+1−β < +∞, β = 0,1,2,3,4,

α > 0 such that DF(x)y · y ≤−α|y|2, x, y ∈Rd,

a,γ,c > 0 such that
(
F(x+ y)−F(x)

) · y ≤−a|y|2m+2 + c
(|x|γ +1

)
, x, y ∈Rd.

(2.1)

By [1, Proposition 1.2.2], the stochastic differential equation

dξ(t,x)= F
(
ξ(t,x)

)
dt+dw(t), ξ(0,x)= x, (2.2)
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admits a unique strong solution (ξ(t,x)), where (w(t)) is a d-dimensional standard Brow-
nian motion on a probability space. Then we can define the semigroup {Pt} on Bb(Rd)
by

Ptϕ(x)= E
[
ϕ
(
ξ(t,x)

)]
. (2.3)

By [2, Proposition 2.7], there exists a unique probability measure ν on Rd satisfying the
following: for any uniformly continuous and bounded function χ on Rd, we have

∫
Rd
Ptχ dν=

∫
Rd
χ dν, t ≥ 0. (2.4)

Such a probability measure ν on Rd is called the invariant probability measure for {Pt}.
Using this invariant probability measure ν, we can extend {Pt} to a strongly continuous
semigroup of contractions on Lp(ν) for every p ≥ 1. We also denote by {Pt} this extended
strongly continuous semigroup. The generator (L,domp(L)) of {Pt} in Lp(ν) is the clo-
sure of the Kolmogorov operator (L0,C∞0 (Rd)), where L0 is the operator defined by (1.1),
and C∞0 (Rd) is the space of C∞-functions with compact supports. An important example
of L is the Ornstein-Uhlenbeck operator corresponding to the case F(x)=−αx.

Next, we define the Sobolev spaces H1(ν) and H2(ν). The operators (D,C∞0 (Rd)) and
(D2,C∞0 (Rd)) are closable in Lp(ν) for every p ≥ 1. We also denote their closures by
(D,domp(D)) and (D2,domp(D2)), respectively. Then, we can define the Sobolev spaces
H1(ν) and H2(ν) by H1(ν) = dom2(D) and H2(ν) = dom2(D2), respectively. They be-
come Hilbert spaces with the norms defined by (1.2) and (1.3), respectively. Then, the
Poincaré inequality (1.4) holds for the constant α of (2.1).

Now, we state the main results of this paper.

Theorem 2.1. Assume (2.1). Then, for every ϕ∈H1(ν),

Ptϕ∈H2(ν), t-a.e. on (0,∞), (2.5)

Ptϕ−ϕ∈ L2
(
(0,∞),dt;H2(ν)

)
, (2.6)∫

Rd
(ϕ−ϕ)2dν+

1
2α

∫∞
0
dt
∫
Rd

∣∣D2Ptϕ
∣∣2dν≤ 1

2α

∫
Rd
|Dϕ|2dν. (2.7)

When F(x)=−αx, inequality (2.7) is reduced to an equality. (2.8)

Results (2.5) and (2.6) give a regularity result of Ptϕ for ϕ∈H1(ν). On the other hand,
results (2.7) and (2.8) give refinements of the Poincaré inequality.

3. Proof of Theorem 2.1

In this section, we prove Theorem 2.1. For ϕ∈ C∞0 (Rd), we set

η(t,x)= Ptϕ(x), (t,x)∈ [0,∞)×Rd. (3.1)

First, we give two lemmas.
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Lemma 3.1. Assume (2.1). If ϕ∈ C∞0 (Rd), then

(Dη)t, Dβη (β = 0,1,2,3) are continuous on [0,∞)×Rd, (3.2)

(Dη)t =Dηt on [0,∞)×Rd. (3.3)

Proof. Since F ∈ C4(Rd;Rd) and ϕ ∈ C∞0 (Rd), it follows from the theory in [1, Chapter
1] that

Dβη is continuous on [0,∞)×Rd for β = 0,1,2,3. (3.4)

Since η of (3.1) satisfies the Kolmogorov equation

ηt = 1
2
∆η+F ·Dη on [0,∞)×Rd, (3.5)

we have, for any R,T > 0,

Dη(t+h,x)−Dη(t,x)=
∫ t+h

t
DLη(s,x)ds, 0≤ t ≤ T , |x| < R, (3.6)

where h∈R is chosen such that t+h≥ 0. By (3.4) and (3.6), we conclude that Dη(t,x) is
differentiable with respect to t for |x| < R and

(Dη)t(t,x)=DLη(t,x)=Dηt(t,x), 0≤ t ≤ T , |x| < R. (3.7)

Since R,T > 0 are arbitrary, (3.3) follows. By (3.4) and (3.7), (Dη)t is continuous on
[0,∞)×Rd. The proof is complete. �

Lemma 3.2. Assume that (2.1) holds and ϕ∈ C∞0 (Rd). Let

χ(t,x)= ∣∣Dη(t,x)∣∣2 =
d∑
j=1

∣∣Djη(t,x)
∣∣2, (t,x)∈ [0,∞)×Rd. (3.8)

Then,

χt, Dβχ (β = 0,1,2) are continuous on [0,∞)×Rd, (3.9)

|D2η|2 + χt ≤ Lχ− 2αχ on [0,∞)×Rd. (3.10)

When F(x)=−αx, inequality (3.10) is reduced to an equality.

Proof. We obtain (3.9) from (3.2). Differentiating equation (3.5) with respect to xj , we
have, by (3.3),

(
Djη

)
t =

1
2
∆
(
Djη

)
+

d∑
i=1

Fi
[
Di
(
Djη

)]
+

d∑
i=1

(
DjFi

)(
Diη

)
on [0,∞)×Rd. (3.11)
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On the other hand, we note that

1
2
Diχ =

d∑
j=1

(
Djη

)[
Di
(
Djη

)]
, 1≤ i≤ d, (3.12)

1
2
∆χ = ∣∣D2η

∣∣2 +
d∑
j=1

(
Djη

)[
∆
(
Djη

)]
, (3.13)

d∑
i, j=1

(
DjFi

)(
Diη

)(
Djη

)≤−αχ. (3.14)

Here we used (2.1) in (3.14). Inequality (3.14) is reduced to an equality when F(x)=−αx.
Then, by (3.11)–(3.14), we obtain on [0,∞)×Rd

1
2
χt =

d∑
j=1

(
Djη

)(
Djη

)
t

= 1
2

d∑
j=1

(
Djη

)[
∆
(
Dkη

)]

+
d∑

i, j=1
Fi
(
Djη

)[
Di
(
Djη

)]
+

d∑
i, j=1

(
DjFi

)(
Diη

)(
Djη

)

≤ 1
2

(
1
2
∆χ−∣∣D2η

∣∣2)+ 1
2
F ·Dχ−αχ.

(3.15)

Thus, (3.10) follows. It is easy to see that inequality (3.10) is reduced to an equality when
F(x)=−αx. The proof is complete. �

Now, we prove Theorem 2.1.

Proof of Theorem 2.1.

Step 1. In this step, we will show Theorem 2.1 under the assumption that ϕ∈ C∞0 (Rd).We
choose 0 < T < +∞ arbitrarily. Integrating (3.10) over [0,T]×Rd with respect to dt×dν,
we have

∫ T

0
dt
∫
Rd

∣∣D2η(t,·)∣∣2dν+
∫
Rd

[∣∣Dη(T ,·)∣∣2−∣∣Dϕ(·)∣∣2]dν

≤
∫ T

0
dt
∫
Rd
Lχ(t,·)dν− 2α

∫ T

0
dt
∫
Rd

∣∣Dη(t,·)∣∣2dν.

(3.16)

By Lemma 3.2, inequality (3.16) is reduced to an equality when F(x) = −αx. Since ν is
the invariant probability measure for {Pt} as in (2.4), we have

∫
Rd
Lχ(t,·)dν= 0, t ≥ 0. (3.17)



30 A refinement of the Poincaré inequality

On the other hand, by [2, Corollary 3.6], we have

∫ T

0
dt
∫
Rd

∣∣DPtϕ∣∣2dν=
∫
Rd

[|ϕ|2−|PTϕ|2]dν. (3.18)

Thus, we obtain by (3.16)–(3.18)

∫ T

0
dt
∫
Rd

∣∣D2Ptϕ
∣∣2dν+ 2α

∫
Rd

[
|ϕ|2−∣∣PTϕ∣∣2

]
dν

≤
∫
Rd
|Dϕ|2dν−

∫
Rd

∣∣DPTϕ∣∣2dν, T > 0.
(3.19)

Now, let T tend to positive infinity in (3.19). Using (1.7) and the ergodic property

lim
T→∞

PTϕ(x)= ϕ, x ∈Rd (3.20)

(cf. [2, (3.11)]), we have obtained (2.7). Then, by (1.5) and (3.18), we have (2.5) and (2.6).
Since inequality (3.19) is reduced to the equality when F(x) = −αx, it is not difficult to
see (2.8).

Step 2. In this step, we conclude Theorem 2.1. Let ϕ ∈H1(ν). Since C∞0 (Rd) is dense in
H1(ν), we can choose {ϕn} ⊂ C∞0 (Rd) such that ϕn→ ϕ in H1(ν). By Step 1, we see that

∫∞
0
dt
∫
Rd

∣∣D2Ptϕm−D2Ptϕn

∣∣2dν≤
∫
Rd

∣∣Dϕm−Dϕn

∣∣2dν. (3.21)

Thus, {D2Ptϕn} is a Cauchy sequence in L2((0,∞)×Rd,dt× dν;Rd2 ). Hence, we find an
element f ∈ L2((0,∞)×Rd,dt×dν;Rd2 ) such that

D2P·ϕn(·)−→ f (·,·) in L2
(
(0,∞)×Rd,dt×dν;Rd2

)
. (3.22)

By the Fubini theorem, we see that f (t,·) ∈ L2(Rd,ν;Rd2 ), t-a.e. On the other hand, by
(3.22), we find a subsequence {nj} such that

∫
Rd

∣∣D2Ptϕnj (·)−→ f (t,·)∣∣2dν−→ 0, t-a.e. (3.23)

This means that

D2Ptϕnj (·)−→ f (t,·) in L2
(
Rd,ν;Rd2

)
, t-a.e. (3.24)

Since Ptϕnj ∈H2(ν)(= dom2(D2)) and D2 is a closed operator in L2(ν), we obtain

Ptϕ∈H2(ν), f (t,·)=D2Ptϕ(·), t-a.e. (3.25)
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Then we obtain (2.5). Next, by (3.24), (3.25), Step 1, and Fatou’s lemma, we have

∫∞
0
dt
∫
Rd

∣∣D2Ptϕ
∣∣2dν≤ liminf

n→∞

∫∞
0
dt
∫
Rd

∣∣D2Ptϕnj

∣∣2dν

≤ liminf
n→∞

∫
Rd

∣∣Dϕnj

∣∣2dν

=
∫
Rd
|Dϕ|2dν.

(3.26)

Hence, by (1.5) and (3.18), we obtain (2.6). Finally, by (3.22) and (3.25), we conclude
that

D2P·ϕn(·)−→D2P·ϕ(·) in L2
(
(0,∞)×Rd,dt×dν;Rd2

)
. (3.27)

Therefore, (2.7) follows from Step 1. By (3.27) and Step 1, it is easy to see (2.8). The proof
is complete. �
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