NEW WEIGHTED POINCARE-TYPE INEQUALITIES
FOR DIFFERENTIAL FORMS

GAO HONGYA AND ZHANG HUA

Received 20 July 2003

We first prove local weighted Poincaré-type inequalities for differential forms. Then, by
using the local results, we prove global weighted Poincaré-type inequalities for differen-
tial forms in John domains, which can be considered as generalizations of the classical
Poincaré-type inequality.

1. Introduction

Differential forms have wide applications in many fields, such as tensor analysis, potential
theory, partial differential equations, and quasiregular mappings, see [1, 2, 3, 5, 6, 7, 8].
Different versions of the classical Poincaré inequality have been established in the study
of the Sobolev space and differential forms, see [2, 7, 10]. Susan G. Staples proved the
Poincaré inequality in L-averaging domains in [10]. Tadeusz Iwaniec and Adam Luto-
borski proved a local Poincaré-type inequality in [7], which plays a crucial role in gener-
alizing the theory of Sobolev functions to differential forms. In this paper, we prove local
weighted Poincaré-type inequalities for differential forms in any kind of domains, and
the global weighted Poincaré-type inequalities for differential forms in John domains.

A-harmonic tensors are the special differential forms which are solutions to the A-
harmonic equation for differential forms

d*A(x,dw) =0, (1.1)

where A : Q x AH(R") — A/(R") is an operator satisfying some conditions, see [6, 7, 9].
Thus, all of the results on differential forms in this paper remain true for A-harmonic
tensors. Therefore, our new results concerning differential forms are of interest in some
fields, such as those mentioned above.

Throughout this paper, we always assume () is a connected open subset of R". Let
e1,€2,...,e, denote the standard unit basis of R". For [ = 0,1,...,n, the linear space of
vectors, spanned by the exterior products, corresponding to all ordered I-tuples I = (4,15,
wosip), 1 <14 <ip < -+ <i] <mn,is denoted by Al = A(R™). The Grassmann algebra A =
@Al is a graded algebra with respect to the exterior products. For a« = > ale; € Aand f =
> Bler € A, the inner product in A is given by (a,8) = > ! f! with summation over all
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I-tuples I = (i}, i,...,i;) and all integers [ = 0,1,...,1n. We define the Hodge star operator
*:A— Abytherule xl=¢e;AesA- - Aeganda A *xB =LA *a=(a,3)(*1) for all
o, 3 € A. Hence, the norm of « € A is given by the formula |a| = (a,a) = *(a A *a) €
A" = R. The Hodge star is an isometric isomorphism on A with * : Al — A""'and x
(=1)"n=D s AT — Al Letting 0 < p < o0, we denote the weighted L?-norm of a measurable
function f over E by

1/p
|uum=(Lumemw). (1.2)

As we know, a differential [-form w on Q is a Schwartz distribution on Q with val-
ues in A/(R"). In particular, for [ = 0, w is a real function or a distribution. We de-
note the space of differential I-forms by D’(Q,A!). We write L?(Q,A") for the [-forms
w(x) = Djwr(x)dxr = X wiyiy...;dxi, A dxi, A -+ A dx;, with wp € LP(Q,R) for all or-
dered I-tuples I. Thus, L? (Q, A} is a Banach space with norm

1/p p/2 1/p
lwlpa= (] 1ot dx) =@X2wmw)da NS
1

Similarly, W;(Q,Al) are those differential [-forms on ) whose coefficients are in W;(Q,
R). The notations W;)IOC(Q, R) and W;JOC(Q,AI ) are self-explanatory. We denote the ex-
terior derivative by d : D’'(Q,A!) — D'(Q,A*!) for [ = 0,1,...,n. Its formal adjoint op-
erator d* : D'(Q,A*!) — D'(Q,A)) is given by d* = (=1)"#! x dx on D' (Q,A"*!), [ =
0,1,...,n.

We write R = R!. Balls are denoted by B, and 0B is the ball with the same center as B
and with diam(oB) = odiam(B). The n-dimensional Lebesgue measure of a set E C R”
is denoted by |E|. We call w a weight if w € L} (R") and w >0 a.e. Also, in general dy =
wdx, where w is a weight. The following result appears in [7]: let Q C R" be a cube or
a ball. To each y € Q there corresponds a linear operator K, : C*(Q,A) —» C(Q,AI"1)
defined by

(Kyw) (58, -+ - &) = J: lw(tx+y —tysx— y,&,..,8)dt (1.4)

and the decomposition
w=d(K,w) +K,(dw). (1.5)
We define another linear operator T : C*(Q,A!) — C*(Q, A'"!) by averaging K, over all
points y in Q: Tow = [, ¢(y)K,wdy, where ¢ € C5°(Q) is normalized by [, ¢(y)dy = 1.

We define the I-form wq € D'(Q,A") by wg = [Q|™! [pw(y)dy, I = 0, and wq = d(Tqw),
[=1,2,...,n,forallw € LP(Q,A!), 1 < p < 0.
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The following generalized Holder’s inequality will be used repeatedly.

LEMMA 1.1. Let 0<a< o, 0<f< oo, and s*' =a ' + B If f and g are measurable
functions on R", then || fgllsa < || fllaq - ligllga for any Q C R™.

Definition 1.2. The weight w(x) > 0 satisfies the A,-condition, r > 1, and write w € A,, if

1 A va-n )H
S%P<|B|J3de>(\B|LW dx) < (16)

for any ball B c R".
We also need the following lemma [4].
Lemma 1.3. If w € A,, then there exist constants 5 > 1 and C, independent of w, such that
Iwligq < ClQIMPYE|lwllyq for any cube or any ball Q C R™.
2. Local weighted Poincaré-type inequalities
We need the following lemma, see [7].

LemMma 2.1. Let u € D'(Q,A) and du € LP(Q,A")), 1< p <n. Then, u— uq is in
L/(n=p)(Q, Al and

)(n—p)/np

1/p
(J =g | P dx < C(n,p)(J |du|de> (2.1)
Q Q

for Q a cube or a ball in R" and l = 0,1,...,n.

We now prove the following version of the local weighted Poincaré-type inequalities
for differential forms.

Tueorem 2.2. Letu € D' (Q,A!) and du € LP(Q, A1), where 1 < p<nandl=0,1,...,n
Ifw € A4y for any A > 0, then there exist a constant C, independent of u and du, and > 1,
such that for any a with 1 < a < f$ and np(a — 1) > (n — p)p, it holds that

1L

1/p
5 L |du|PwP/$(x)dx) (2.2)

1 s 1/s
(EJ’ |u—ug| w(x)dx) sCIBI””(
B

for any ball or any cube B C R", here s = np(a—1)/(n— p)p.

Proof. Since w € A4, by Lemma 1.3, there exist constants § > 1 and C; > 0, such that

Iwllgs < CrIBIYP B |lwlly g (2.3)
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for any cube or any ball B C R". Choose t = sf/(f — 1), then 1 <s<tand =t/(t —s).
Since 1/s = 1/t + (¢ — s)/st, by Holder’s inequality, Lemmas 1.3 and 2.1, we have

1/s
l|u— “B”s,B,w = (JB (|u—up] wl/s)sdx>

: 1/t (t—s) (t—s)/st
S(,[ |u—up| dx) (J (w')? de)
B B

1/t
- (I '“‘”B'tdx) Iwllgs (2.4)
B
, 1/p’
< Cz(J |du|P dx) . C3|B|(1_ﬁ)/ﬁ5||w||})/§
B
, 1/p’
= cutemwty( [ i)
B
here,
,_nt nsp

Pt T aB D+ B 25)

Using the assumption np(a — 1) > (n — p)p, it is easy to see that p’ < p. By Holder’s in-
equality, again we have

. 1/p
<j \dul? dx)
B

, p
<J (|du|wl/sw—l/s)P dx)
B

/p pp'/s(p=p")
(I (Idulwl/s)pdx) J (i) dx
B B\w

Substituting (2.6) into (2.4) yields

IA

) (p—p")/pp’ (2.6)

||M— uBHs,B,w

p L\PP/so-p) PPV (2.7)
< CulBI P ([ 1dulrwrax) (J () dx) |
B B

w

Choose A >0, such that A < 1 — a/f. Then, 1 +A <2 — &/ = r. Hence, w € A;;) C A,. By
simple computation, we find that s(p — p")/pp’ = 1 — o/ = r — 1. Thus, we have

/s(p—p’
Il J <l>pp (p p)dx
T\ Jp\w
o\ Vs | (1 1\ PP/sp=p) N\ PTPVRP Vs
oy [ () ([ (L) s
1 s
’ 1 1 1\ V=D r
_ |B|VsH/p ~1p (_J d ) _J <_> p
s | B BW x |B| Jg \w x

<Cs |B| 1/s+1/p'71/p'

) (p=p")/pp’
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Substituting (2.8) into (2.7) implies

, /p
e = sl g, = ColBIOPB BV Vo ([ [dulpwrdx) (29)
that is,
1 1/s 1 /p
(EL |u—u3|5w(x)dx> < Cg|B|V-PVBst1/p (ELIdulpwl’/‘dx> . (2.10)
Theorem 2.2 follows because (1 — 8)/Bs+1/p’ = 1/n. O

We now prove another version of the local weighted Poincaré-type inequality for dif-
ferential forms.

Tueorem 2.3. Letu € D' (B, A') and du € LP(B, A™!), where 1 < p<nand1=0,1,...,n.
If w € A, for some r > 1, then there exist a constant C, independent of u and du, and 5 > 1,
such that for any T with 0 < 7 < 1/r(1 — 1/p + 1/n), it holds that

1 < 1/s 1 1/p
(@J |u—ug| wf(x)dx> SCIBIV”(EJ |du|PwTP/S(x)dx> (2.11)
B B

for any ball or any cube B C R". Here, s = np(1 —1r)/(n— p).
Proof. Let T = s/(1 — 7). Using Lemma 1.3 and Holder’s inequality, we have

(J;; |u—up |5wf(x)dx> Vs ) (L} ([ ] WT/S)de) Vs

< <JB |u—up| de) VT(JB w(x)dx)r/s (2.12)

= ||u— uB||T,B||W|H,/IS3'

Since

’

s np(l —1r) . np

T=1—T_(n—p)(1—‘r)_n—p” (2.13)
where p’ = ns/(n(1 - 1) +5s) < p, then using Lemma 2.1, we have
) 1/p’
||u—uB||TB§C7(J |du|? dx) . (2.14)
? B

Substituting (2.14) into (2.12), we obtain

. 1/p
it = e < c7uw||f{,§(j3 \dul? dx) . (2.15)
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Since p’ < p, using Holder’s inequality again, we have

, 1/p’ , 1/p’
(I \dul? dx) _ (J (Idul w5 dx)
B B
1/p 1\ PP /s(p=p")
< (J (\dule/s)de) (J (—) dx
B B\w
1/p [\ V=D T
= (J IduIPWPT/de) (J (—) dx) .
B B\w

Combining (2.15) and (2.16) yields

- (r=1)
1\ Ye-D T
sl e < ottt [, (1)

Since w € A,, we obtain

Iw ||T/S(J “" B )T"”“ N
| s (J, () )|
oGl (2T

< Cg|B|rT/S.

(p—p")/pp’
) (2.16)

/s p
(J IdulpwPT/de) . (217)
B

Sl
r

Substituting (2.18) into (2.17) yields

[l = us|l; g, e

1/p
<ColBI™( [ ldulrwrax) (2.19)
B
Simple calculation shows that r7/s = 1/n+ 1/s — 1/p, this clearly implies (2.11) and com-
pletes the proof of Theorem 2.3. O

3. Global weighted Poincaré-type inequalities

Definition 3.1. Call Q, a proper subdomain of R”, a §-John domain, § > 0, if there exists
a point xo € Q) which can be joined to any other point x € () by a continuous curve
v C Q so that d(&,0Q) > 8|x — €| for each & € v. Here, d(£,0Q)) is the Euclidean distance
between & and 0Q).

As we know, John domains are bounded. Bounded quasiballs and bounded uniform
domains are John domains. We also know that a §-John doamin has the following prop-
erties [9].
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LemMa 3.2. Let Q C R" be a §-John domain. Then, there exists a covering v of Q) consisting
of open cubes such that the following hold:

(1) XqevXo(x) < Nxa(x), 0 >1and x € R,

(2) there is a distinguished cube Qy € v (called the central cube) which can be connected
with every cube Q € v by a chain of cubes Qo,Qy,...,Qx = Q from v such that for each
i=0,1,....k—1, QC NQ, there is a cube R; C R" (this cube does not need to be a
member of v) such that R; C Q; N Qis1, and Q; U Qi1 C NR;.

We also know that if w € A,, then the measure y defined by du = w(x)dx is a doubling
measure, that is, 4(2B) < Cu(B) for all balls B in R", see [5, page 299]. Since the doubling
property implies ¢(B) ~ u(Q) whenever Q is an open cube with B C Q C /nB, we may
use cubes in place of balls whenever it is convenient to us.

We now prove the following weighted global results in John domains.

Tueorem 3.3. Let u € D' (Q,A!) and du € LP(Q, A1), where 1< p<nandl=0,1,...,n.
Ifw € Ay for any A >0, then there exists a constant C, independent of u and du, and 8 > 1,
such that for any a with 1 < a < and np(a — 1) > (n — p)p, it holds that

(ﬁ L} |u—uq |5wdx) " < Cy(Q)V”(ﬁ JQ Idulpwp/sdx) v (3.1)

for any §-John domain Q0 C R". Here, Q is any cube in the covering v of Q) appearing in
Lemma 3.2 and s = np(a—1)/(n— p)p.

Proof. Supposing ¢ > 1, by Theorem 2.2 and Lemma 3.2(1), we have

J lu—uq|'wdx < >
o

Qev

s/p
< Cio Z |Q|s(1/n+1/sfl/p)<J |du|pwp/sdx> .
Qev Q

J |u—uq| wdx
Q

(3.2)

Since s = np(a—1)/(n — p)pB, then 1/s+1/n—1/p > 0. Therefore,

s/p

J |u—uq|'wdx < Cip . IQIS(V"H/‘*VP)(J Idulpwp/sdx)

Q Q
Qevy

s/p
< Cyo| Q[sV/nt1/s=1/p) Z (J Idulpwp/‘>
Qev 7o (3.3)

s/p
< C10N|Q|s(1/n+1/s—1/p) (I |du|pwp/sdx)
Q

s/p
:C11|Q|s(1/n+l/s—l/p)(J |du|pwp/sdx> .
Q

This completes the proof of Theorem 3.3. O
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THEOREM 3.4. Let u € D'(Q,A"!) and du € LP(Q, A1), where 1 < p<nandl=0,1,...,
n. If w € A, for some r > 1, then there exists a constant C, independent of u and du, and
B> 1, such that for any T with 0 < 7 < 1/r(1 — 1/p + 1/n), it holds that

1

/p
ol L) \duIPwTP/de> (3.4)

(‘Lﬁ JQ |u— uQ|SwT(x)dx) " < C|Q|l/n<

for any 8-John domain Q0 C R". Here, Q is any cube in the covering v of Q appearing in
Lemma 3.2 and s = np(1 —1r)/(n— p).

Proof. Supposing ¢ > 1, by Theorem 2.3 and the Lemma 3.2(1), we have

J lu—ug|'widx< >
o

Qevy

s/p
<Cp Z |Q‘s(1/n+l/s—l/p)(J |du|pwp‘r/sdx) .
Qev Q

J |u—uq| widx
Q

(3.5)

Since s =np(1—1r)/(n—p) < p<np/(n—p), then 1/n+1/s—1/p > 0. Therefore,

s/p
J |u—uQ|szdXS Cp Z |Q|s(l/n+l/s—1/p)(I \duIPwPT/de>
Q Qev Q

s/p
< C12|Q|s(l/n+1/s—1/p) Z <J |du|pwpr/sdx)
Qev 2779 (3.6)

s/p
< C12N|Q|s(l/n+l/s—1/p)(J \dulp Wp‘r/sdx>
Q
s/p
<Cp; |Q|s(l/n+1/sfl/p) (I |du|pwpr/sdx) .
Q

This completes the proof of Theorem 3.4. O
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