NEW WEIGHTED POINCARÉ-TYPE INEQUALITIES FOR DIFFERENTIAL FORMS

GAO HONGYA AND ZHANG HUA

Received 20 July 2003

We first prove local weighted Poincaré-type inequalities for differential forms. Then, by using the local results, we prove global weighted Poincaré-type inequalities for differential forms in John domains, which can be considered as generalizations of the classical Poincaré-type inequality.

1. Introduction

Differential forms have wide applications in many fields, such as tensor analysis, potential theory, partial differential equations, and quasiregular mappings, see [1, 2, 3, 5, 6, 7, 8]. Different versions of the classical Poincaré inequality have been established in the study of the Sobolev space and differential forms, see [2, 7, 10]. Susan G. Staples proved the Poincaré inequality in L^s -averaging domains in [10]. Tadeusz Iwaniec and Adam Lutoborski proved a local Poincaré-type inequality in [7], which plays a crucial role in generalizing the theory of Sobolev functions to differential forms. In this paper, we prove local weighted Poincaré-type inequalities for differential forms in any kind of domains, and the global weighted Poincaré-type inequalities for differential forms in John domains.

A-harmonic tensors are the special differential forms which are solutions to the *A*-harmonic equation for differential forms

$$d^*A(x,d\omega) = 0, \tag{1.1}$$

where $A: \Omega \times \Lambda^{l}(\mathbb{R}^{n}) \to \Lambda^{l}(\mathbb{R}^{n})$ is an operator satisfying some conditions, see [6, 7, 9]. Thus, all of the results on differential forms in this paper remain true for *A*-harmonic tensors. Therefore, our new results concerning differential forms are of interest in some fields, such as those mentioned above.

Throughout this paper, we always assume Ω is a connected open subset of \mathbb{R}^n . Let e_1, e_2, \ldots, e_n denote the standard unit basis of \mathbb{R}^n . For $l = 0, 1, \ldots, n$, the linear space of vectors, spanned by the exterior products, corresponding to all ordered *l*-tuples $I = (i_1, i_2, \ldots, i_l)$, $1 \le i_1 < i_2 < \cdots < i_l \le n$, is denoted by $\Lambda^l = \Lambda^l(\mathbb{R}^n)$. The Grassmann algebra $\Lambda = \oplus \Lambda^l$ is a graded algebra with respect to the exterior products. For $\alpha = \sum \alpha^l e_l \in \Lambda$ and $\beta = \sum \beta^l e_l \in \Lambda$, the inner product in Λ is given by $\langle \alpha, \beta \rangle = \sum \alpha^l \beta^l$ with summation over all

l-tuples $I = (i_1, i_2, ..., i_l)$ and all integers l = 0, 1, ..., n. We define the Hodge star operator $\star : \Lambda \to \Lambda$ by the rule $\star 1 = e_1 \land e_2 \land \cdots \land e_n$ and $\alpha \land \star \beta = \beta \land \star \alpha = \langle \alpha, \beta \rangle (\star 1)$ for all $\alpha, \beta \in \Lambda$. Hence, the norm of $\alpha \in \Lambda$ is given by the formula $|\alpha| = \langle \alpha, \alpha \rangle = \star (\alpha \land \star \alpha) \in \Lambda^0 = \mathbb{R}$. The Hodge star is an isometric isomorphism on Λ with $\star : \Lambda^l \to \Lambda^{n-l}$ and $\star \star (-1)^{l(n-l)} : \Lambda^l \to \Lambda^l$. Letting $0 , we denote the weighted <math>L^p$ -norm of a measurable function f over E by

$$\|f\|_{p,E,w} = \left(\int_{E} |f(x)|^{p} w(x) dx\right)^{1/p}.$$
(1.2)

As we know, a differential *l*-form ω on Ω is a Schwartz distribution on Ω with values in $\Lambda^{l}(\mathbb{R}^{n})$. In particular, for l = 0, ω is a real function or a distribution. We denote the space of differential *l*-forms by $D'(\Omega, \Lambda^{l})$. We write $L^{p}(\Omega, \Lambda^{l})$ for the *l*-forms $\omega(x) = \sum_{I} \omega_{I}(x) dx_{I} = \sum_{I} \omega_{i_{1}i_{2}}...i_{l} dx_{i_{1}} \wedge dx_{i_{2}} \wedge \cdots \wedge dx_{i_{l}}$ with $\omega_{I} \in L^{p}(\Omega, \mathbb{R})$ for all ordered *l*-tuples *I*. Thus, $L^{p}(\Omega, \Lambda^{l})$ is a Banach space with norm

$$\|\omega\|_{p,\Omega} = \left(\int_{\Omega} |\omega(x)|^p dx\right)^{1/p} = \left(\int_{\Omega} \left(\sum_{I} |\omega_{I}(x)|^2\right)^{p/2} dx\right)^{1/p}.$$
 (1.3)

Similarly, $W_p^1(\Omega, \Lambda^l)$ are those differential *l*-forms on Ω whose coefficients are in $W_p^1(\Omega, \mathbb{R})$. \mathbb{R}). The notations $W_{p,\text{loc}}^1(\Omega, \mathbb{R})$ and $W_{p,\text{loc}}^1(\Omega, \Lambda^l)$ are self-explanatory. We denote the exterior derivative by $d: D'(\Omega, \Lambda^l) \to D'(\Omega, \Lambda^{l+1})$ for l = 0, 1, ..., n. Its formal adjoint operator $d^*: D'(\Omega, \Lambda^{l+1}) \to D'(\Omega, \Lambda^l)$ is given by $d^* = (-1)^{nl+1} * d *$ on $D'(\Omega, \Lambda^{l+1}), l = 0, 1, ..., n$.

We write $\mathbb{R} = \mathbb{R}^1$. Balls are denoted by *B*, and σB is the ball with the same center as *B* and with diam(σB) = σ diam(*B*). The *n*-dimensional Lebesgue measure of a set $E \subset \mathbb{R}^n$ is denoted by |E|. We call *w* a weight if $w \in L^1_{loc}(\mathbb{R}^n)$ and w > 0 a.e. Also, in general $d\mu = wdx$, where *w* is a weight. The following result appears in [7]: let $Q \subset \mathbb{R}^n$ be a cube or a ball. To each $y \in Q$ there corresponds a linear operator $K_y : C^{\infty}(Q, \Lambda^l) \to C^{\infty}(Q, \Lambda^{l-1})$ defined by

$$(K_{y}\omega)(x;\xi_{1}\cdots\xi_{l}) = \int_{0}^{1} t^{l-1}\omega(tx+y-ty;x-y,\xi_{1},\ldots,\xi_{l-1})dt$$
(1.4)

and the decomposition

$$\omega = d(K_y \omega) + K_y(d\omega). \tag{1.5}$$

We define another linear operator $T_Q : C^{\infty}(Q, \Lambda^l) \to C^{\infty}(Q, \Lambda^{l-1})$ by averaging K_y over all points y in $Q : T_Q \omega = \int_Q \varphi(y) K_y \omega dy$, where $\varphi \in C_0^{\infty}(Q)$ is normalized by $\int_Q \varphi(y) dy = 1$. We define the *l*-form $\omega_Q \in D'(\Omega, \Lambda^l)$ by $\omega_Q = |Q|^{-1} \int_Q \omega(y) dy$, l = 0, and $\omega_Q = d(T_Q \omega)$, l = 1, 2, ..., n, for all $\omega \in L^p(Q, \Lambda^l)$, $1 \le p < \infty$. The following generalized Hölder's inequality will be used repeatedly.

LEMMA 1.1. Let $0 < \alpha < \infty$, $0 < \beta < \infty$, and $s^{-1} = \alpha^{-1} + \beta^{-1}$. If f and g are measurable functions on \mathbb{R}^n , then $\|fg\|_{s,\Omega} \le \|f\|_{\alpha,\Omega} \cdot \|g\|_{\beta,\Omega}$ for any $\Omega \subset \mathbb{R}^n$.

Definition 1.2. The weight w(x) > 0 satisfies the A_r -condition, r > 1, and write $w \in A_r$, if

$$\sup_{B} \left(\frac{1}{|B|} \int_{B} w \, dx\right) \left(\frac{1}{|B|} \int_{B} w^{1/(1-r)} \, dx\right)^{r-1} < \infty \tag{1.6}$$

for any ball $B \subset \mathbb{R}^n$.

We also need the following lemma [4].

LEMMA 1.3. If $w \in A_r$, then there exist constants $\beta > 1$ and C, independent of w, such that $\|w\|_{\beta,Q} \le C |Q|^{(1-\beta)/\beta} \|w\|_{1,Q}$ for any cube or any ball $Q \subset \mathbb{R}^n$.

2. Local weighted Poincaré-type inequalities

We need the following lemma, see [7].

LEMMA 2.1. Let $u \in D'(Q, \Lambda^l)$ and $du \in L^p(Q, \Lambda^{l+1})$, $1 . Then, <math>u - u_Q$ is in $L^{np/(n-p)}(Q, \Lambda^l)$ and

$$\left(\int_{Q} |u - u_{Q}|^{np/(n-p)} dx\right)^{(n-p)/np} \le C(n,p) \left(\int_{Q} |du|^{p} dx\right)^{1/p}$$
(2.1)

for Q a cube or a ball in \mathbb{R}^n and l = 0, 1, ..., n.

We now prove the following version of the local weighted Poincaré-type inequalities for differential forms.

THEOREM 2.2. Let $u \in D'(Q, \Lambda^l)$ and $du \in L^p(Q, \Lambda^{l+1})$, where 1 , and <math>l = 0, 1, ..., n. If $w \in A_{1+\lambda}$ for any $\lambda > 0$, then there exist a constant *C*, independent of *u* and *du*, and $\beta > 1$, such that for any α with $1 < \alpha < \beta$ and $np(\alpha - 1) > (n - p)\beta$, it holds that

$$\left(\frac{1}{|B|}\int_{B}|u-u_{B}|^{s}w(x)dx\right)^{1/s} \le C|B|^{1/n}\left(\frac{1}{|B|}\int_{B}|du|^{p}w^{p/s}(x)dx\right)^{1/p}$$
(2.2)

for any ball or any cube $B \subset \mathbb{R}^n$, here $s = np(\alpha - 1)/(n - p)\beta$.

Proof. Since $w \in A_{1+\lambda}$, by Lemma 1.3, there exist constants $\beta > 1$ and $C_1 > 0$, such that

$$\|w\|_{\beta,B} \le C_1 |B|^{(1-\beta)/\beta} \|w\|_{1,B}$$
(2.3)

168 New weighted Poincaré-type inequalities

for any cube or any ball $B \subset \mathbb{R}^n$. Choose $t = s\beta/(\beta - 1)$, then 1 < s < t and $\beta = t/(t - s)$. Since 1/s = 1/t + (t - s)/st, by Hölder's inequality, Lemmas 1.3 and 2.1, we have

$$\begin{aligned} ||u - u_{B}||_{s,B,w} &= \left(\int_{B} \left(|u - u_{B}| w^{1/s} \right)^{s} dx \right)^{1/s} \\ &\leq \left(\int_{B} |u - u_{B}|^{t} dx \right)^{1/t} \cdot \left(\int_{B} (w^{1/s})^{st/(t-s)} dx \right)^{(t-s)/st} \\ &= \left(\int_{B} |u - u_{B}|^{t} dx \right)^{1/t} \cdot ||w||_{\beta,B}^{1/s} \\ &\leq C_{2} \left(\int_{B} |du|^{p'} dx \right)^{1/p'} \cdot C_{3} |B|^{(1-\beta)/\beta s} ||w||_{1,B}^{1/s} \\ &= C_{4} |B|^{(1-\beta)/\beta s} ||w||_{1,B}^{1/s} \left(\int_{B} |du|^{p'} dx \right)^{1/p'}, \end{aligned}$$

$$(2.4)$$

here,

$$p' = \frac{nt}{n+t} = \frac{ns\beta}{n(\beta-1) + s\beta}.$$
(2.5)

Using the assumption $np(\alpha - 1) > (n - p)\beta$, it is easy to see that p' < p. By Hölder's inequality, again we have

$$\left(\int_{B} |du|^{p'} dx\right)^{1/p'} = \left(\int_{B} \left(|du|w^{1/s}w^{-1/s}\right)^{p'} dx\right)^{1/p'} \le \left(\int_{B} \left(|du|w^{1/s}\right)^{p} dx\right)^{1/p} \left(\int_{B} \left(\frac{1}{w}\right)^{pp'/s(p-p')} dx\right)^{(p-p')/pp'}.$$
(2.6)

Substituting (2.6) into (2.4) yields

$$||u - u_B||_{s,B,w} \le C_4 |B|^{(1-\beta)/\beta_s} ||w||_{1,B}^{1/s} \left(\int_B |du|^p w^{p/s} dx \right)^{1/p} \left(\int_B \left(\frac{1}{w} \right)^{pp'/s(p-p')} dx \right)^{(p-p')/pp'}.$$
 (2.7)

Choose $\lambda > 0$, such that $\lambda < 1 - \alpha/\beta$. Then, $1 + \lambda < 2 - \alpha/\beta = r$. Hence, $w \in A_{1+\lambda} \subset A_r$. By simple computation, we find that $s(p - p')/pp' = 1 - \alpha/\beta = r - 1$. Thus, we have

$$\|w\|_{1,B}^{1/s} \left(\int_{B} \left(\frac{1}{w} \right)^{pp'/s(p-p')} dx \right)^{(p-p')/pp'} = \left(|B|^{1+s(p-p')/pp'} \right)^{1/s} \left[\left(\frac{1}{|B|} \int_{B} w \, dx \right) \left(\int_{B} \left(\frac{1}{w} \right)^{pp'/s(p-p')} dx \right)^{s(p-p')/pp'} \right]^{1/s} = |B|^{1/s+1/p'-1/p} \left[\left(\frac{1}{|B|} \int_{B} w \, dx \right) \left(\frac{1}{|B|} \int_{B} \left(\frac{1}{w} \right)^{1/(r-1)} dx \right)^{r-1} \right]^{1/s} \le C_{5} |B|^{1/s+1/p'-1/p}.$$

$$(2.8)$$

Substituting (2.8) into (2.7) implies

$$\left|\left|u-u_{B}\right|\right|_{s,B,w} \le C_{6}|B|^{(1-\beta)/\beta s}|B|^{1/s+1/p'-1/p} \left(\int_{B} |du|^{p} w^{p/s} dx\right)^{1/p},$$
(2.9)

that is,

$$\left(\frac{1}{|B|}\int_{B}|u-u_{B}|^{s}w(x)dx\right)^{1/s} \le C_{6}|B|^{(1-\beta)/\beta s+1/p'}\left(\frac{1}{|B|}\int_{B}|du|^{p}w^{p/s}dx\right)^{1/p}.$$
 (2.10)

Theorem 2.2 follows because $(1 - \beta)/\beta s + 1/p' = 1/n$.

We now prove another version of the local weighted Poincaré-type inequality for differential forms.

THEOREM 2.3. Let $u \in D'(B, \wedge^l)$ and $du \in L^p(B, \wedge^{l+1})$, where 1 and <math>l = 0, 1, ..., n. If $w \in A_r$ for some r > 1, then there exist a constant C, independent of u and du, and $\beta > 1$, such that for any τ with $0 < \tau < 1/r(1 - 1/p + 1/n)$, it holds that

$$\left(\frac{1}{|B|} \int_{B} |u - u_{B}|^{s} w^{\tau}(x) dx\right)^{1/s} \le C|B|^{1/n} \left(\frac{1}{B} \int_{B} |du|^{p} w^{\tau p/s}(x) dx\right)^{1/p}$$
(2.11)

for any ball or any cube $B \subset \mathbb{R}^n$. Here, $s = np(1 - \tau r)/(n - p)$.

Proof. Let $T = s/(1 - \tau)$. Using Lemma 1.3 and Hölder's inequality, we have

$$\left(\int_{B} |u - u_{B}|^{s} w^{\tau}(x) dx\right)^{1/s} = \left(\int_{B} (|u - u_{B}| w^{\tau/s})^{s} dx\right)^{1/s}$$

$$\leq \left(\int_{B} |u - u_{B}|^{T} dx\right)^{1/T} \left(\int_{B} w(x) dx\right)^{\tau/s}$$

$$= ||u - u_{B}||_{T,B} ||w||_{1,B}^{\tau/s}.$$

(2.12)

Since

$$T = \frac{s}{1 - \tau} = \frac{np(1 - \tau r)}{(n - p)(1 - \tau)} = \frac{np'}{n - p'},$$
(2.13)

where $p' = ns/(n(1 - \tau) + s) < p$, then using Lemma 2.1, we have

$$||u - u_B||_{T,B} \le C_7 \left(\int_B |du|^{p'} dx\right)^{1/p'}.$$
 (2.14)

Substituting (2.14) into (2.12), we obtain

$$\left\| u - u_B \right\|_{s, B, w^{\tau}} \le C_7 \|w\|_{1, B}^{\tau/s} \left(\int_B |du|^{p'} dx \right)^{1/p'}.$$
(2.15)

170 New weighted Poincaré-type inequalities

Since p' < p, using Hölder's inequality again, we have

$$\left(\int_{B} |du|^{p'} dx\right)^{1/p'} = \left(\int_{B} \left(|du|w^{\tau/s}w^{-\tau/s}\right)^{p'} dx\right)^{1/p'} \le \left(\int_{B} \left(|du|w^{\tau/s}\right)^{p} dx\right)^{1/p} \left(\int_{B} \left(\frac{1}{w}\right)^{\tau p p'/s(p-p')} dx\right)^{(p-p')/p p'} = \left(\int_{B} |du|^{p} w^{p\tau/s} dx\right)^{1/p} \left(\int_{B} \left(\frac{1}{w}\right)^{1/(r-1)} dx\right)^{\tau(r-1)/s}.$$
(2.16)

Combining (2.15) and (2.16) yields

$$||u - u_B||_{s,B,w^{\tau}} \le C_7 ||w||_{1,B}^{\tau/s} \left(\int_B \left(\frac{1}{w}\right)^{1/(r-1)} dx \right)^{\tau(r-1)/s} \left(\int_B |du|^p w^{p\tau/s} dx \right)^{1/p}.$$
 (2.17)

Since $w \in A_r$, we obtain

$$\|w\|_{1,B}^{\tau/s} \left(\int_{B} \left(\frac{1}{w} \right)^{1/(r-1)} dx \right)^{\tau(r-1)/s} \\ = \left[\left(\int_{B} w(x) dx \right) \left(\int_{B} \left(\frac{1}{w} \right)^{1/(r-1)} dx \right)^{r-1} \right]^{\tau/s} \\ = |B|^{r\tau/s} \left[\left(\frac{1}{|B|} \int_{B} w(x) dx \right) \left(\int_{B} \left(\frac{1}{w} \right)^{1/(r-1)} dx \right)^{r-1} \right]^{\tau/s} \\ \le C_{8} |B|^{r\tau/s}.$$
(2.18)

Substituting (2.18) into (2.17) yields

$$||u - u_B||_{s,B,w^{\tau}} \le C_9 |B|^{r\tau/s} \left(\int_B |du|^p w^{p\tau/s} dx \right)^{1/p}.$$
 (2.19)

Simple calculation shows that $r\tau/s = 1/n + 1/s - 1/p$, this clearly implies (2.11) and completes the proof of Theorem 2.3.

3. Global weighted Poincaré-type inequalities

Definition 3.1. Call Ω , a proper subdomain of \mathbb{R}^n , a δ -John domain, $\delta > 0$, if there exists a point $x_0 \in \Omega$ which can be joined to any other point $x \in \Omega$ by a continuous curve $\nu \subset \Omega$ so that $d(\xi, \partial \Omega) \ge \delta |x - \xi|$ for each $\xi \in \nu$. Here, $d(\xi, \partial \Omega)$ is the Euclidean distance between ξ and $\partial \Omega$.

As we know, John domains are bounded. Bounded quasiballs and bounded uniform domains are John domains. We also know that a δ -John doamin has the following properties [9].

LEMMA 3.2. Let $\Omega \subset \mathbb{R}^n$ be a δ -John domain. Then, there exists a covering ν of Ω consisting of open cubes such that the following hold:

- (1) $\sum_{Q \in \gamma} \chi_{\sigma Q}(x) \leq N \chi_{\Omega}(x), \sigma > 1 \text{ and } x \in \mathbb{R}^n$,
- (2) there is a distinguished cube $Q_0 \in v$ (called the central cube) which can be connected with every cube $Q \in v$ by a chain of cubes $Q_0, Q_1, \dots, Q_k = Q$ from v such that for each $i = 0, 1, \dots, k - 1, Q \subset NQ_i$, there is a cube $\mathbb{R}_i \subset \mathbb{R}^n$ (this cube does not need to be a member of v) such that $\mathbb{R}_i \subset Q_i \cap Q_{i+1}$, and $Q_i \cup Q_{i+1} \subset N\mathbb{R}_i$.

We also know that if $w \in A_r$, then the measure μ defined by $d\mu = w(x)dx$ is a doubling measure, that is, $\mu(2B) \leq C\mu(B)$ for all balls *B* in \mathbb{R}^n , see [5, page 299]. Since the doubling property implies $\mu(B) \approx \mu(Q)$ whenever *Q* is an open cube with $B \subset Q \subset \sqrt{nB}$, we may use cubes in place of balls whenever it is convenient to us.

We now prove the following weighted global results in John domains.

THEOREM 3.3. Let $u \in D'(\Omega, \Lambda^l)$ and $du \in L^p(\Omega, \Lambda^{l+1})$, where 1 and <math>l = 0, 1, ..., n. If $w \in A_{1+\lambda}$ for any $\lambda > 0$, then there exists a constant *C*, independent of *u* and *du*, and $\beta > 1$, such that for any α with $1 < \alpha < \beta$ and $np(\alpha - 1) > (n - p)\beta$, it holds that

$$\left(\frac{1}{\mu(\Omega)}\int_{\Omega}|u-u_{Q}|^{s}w\,dx\right)^{1/s} \leq C\mu(\Omega)^{1/n}\left(\frac{1}{\mu(\Omega)}\int_{\Omega}|du|^{p}w^{p/s}dx\right)^{1/p}$$
(3.1)

for any δ -John domain $\Omega \subset \mathbb{R}^n$. Here, Q is any cube in the covering ν of Ω appearing in Lemma 3.2 and $s = np(\alpha - 1)/(n - p)\beta$.

Proof. Supposing $\sigma > 1$, by Theorem 2.2 and Lemma 3.2(1), we have

$$\int_{\Omega} |u - u_{Q}|^{s} w \, dx \leq \sum_{Q \in \nu} \int_{Q} |u - u_{Q}|^{s} w \, dx$$

$$\leq C_{10} \sum_{Q \in \nu} |Q|^{s(1/n + 1/s - 1/p)} \left(\int_{Q} |du|^{p} w^{p/s} dx \right)^{s/p}.$$
(3.2)

Since $s = np(\alpha - 1)/(n - p)\beta$, then 1/s + 1/n - 1/p > 0. Therefore,

$$\begin{split} \int_{\Omega} |u - u_{Q}|^{s} w \, dx &\leq C_{10} \sum_{Q \in \nu} |\Omega|^{s(1/n+1/s-1/p)} \left(\int_{Q} |du|^{p} w^{p/s} dx \right)^{s/p} \\ &\leq C_{10} |\Omega|^{s(1/n+1/s-1/p)} \sum_{Q \in \nu} \left(\int_{\sigma Q} |du|^{p} w^{p/s} dx \right)^{s/p} \\ &\leq C_{10} N |\Omega|^{s(1/n+1/s-1/p)} \left(\int_{\Omega} |du|^{p} w^{p/s} dx \right)^{s/p} \\ &= C_{11} |\Omega|^{s(1/n+1/s-1/p)} \left(\int_{\Omega} |du|^{p} w^{p/s} dx \right)^{s/p}. \end{split}$$
(3.3)

This completes the proof of Theorem 3.3.

THEOREM 3.4. Let $u \in D'(\Omega, \Lambda^{l+1})$ and $du \in L^p(\Omega, \Lambda^{l+1})$, where 1 and <math>l = 0, 1, ..., n. If $w \in A_r$ for some r > 1, then there exists a constant C, independent of u and du, and $\beta > 1$, such that for any τ with $0 < \tau < 1/r(1 - 1/p + 1/n)$, it holds that

$$\left(\frac{1}{\mu(\Omega)}\int_{\Omega}\left|u-u_{Q}\right|^{s}w^{\tau}(x)dx\right)^{1/s} \leq C|\Omega|^{1/n}\left(\frac{1}{|\Omega|}\int_{\Omega}\left|du\right|^{p}w^{\tau p/s}dx\right)^{1/p}$$
(3.4)

for any δ -John domain $\Omega \subset \mathbb{R}^n$. Here, Q is any cube in the covering ν of Ω appearing in Lemma 3.2 and $s = np(1 - \tau r)/(n - p)$.

Proof. Supposing $\sigma > 1$, by Theorem 2.3 and the Lemma 3.2(1), we have

$$\begin{split} \int_{\Omega} |u - u_{Q}|^{s} w^{\tau} dx &\leq \sum_{Q \in \nu} \int_{Q} |u - u_{Q}|^{s} w^{\tau} dx \\ &\leq C_{12} \sum_{Q \in \nu} |Q|^{s(1/n + 1/s - 1/p)} \left(\int_{Q} |du|^{p} w^{p\tau/s} dx \right)^{s/p}. \end{split}$$
(3.5)

Since $s = np(1 - \tau r)/(n - p) , then <math>1/n + 1/s - 1/p > 0$. Therefore,

$$\begin{split} \int_{\Omega} |u - u_{Q}|^{s} w^{\tau} dx &\leq C_{12} \sum_{Q \in \nu} |\Omega|^{s(1/n+1/s-1/p)} \left(\int_{Q} |du|^{p} w^{p\tau/s} dx \right)^{s/p} \\ &\leq C_{12} |\Omega|^{s(1/n+1/s-1/p)} \sum_{Q \in \nu} \left(\int_{\sigma Q} |du|^{p} w^{p\tau/s} dx \right)^{s/p} \\ &\leq C_{12} N |\Omega|^{s(1/n+1/s-1/p)} \left(\int_{\Omega} |du|^{p} w^{p\tau/s} dx \right)^{s/p} \\ &\leq C_{13} |\Omega|^{s(1/n+1/s-1/p)} \left(\int_{\Omega} |du|^{p} w^{p\tau/s} dx \right)^{s/p}. \end{split}$$
(3.6)

This completes the proof of Theorem 3.4.

Acknowledgments

This research is supported by NNSF of China (10471149 and A0324610). The authors would like to thank Professors R. P. Agarwal and Shusen Ding for providing their excellent paper [1] to them.

References

- R. P. Agarwal and S. Ding, Advances in differential forms and the A-harmonic equation, Math. Comput. Modelling 37 (2003), no. 12-13, 1393–1426.
- J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 (1976/77), no. 4, 337–403.
- [3] H. Cartan, Differential Forms, Houghton Mifflin, Massachusetts, 1970.
- [4] S. Ding and Y. Gai, A_r-weighted Poincaré-type inequalities for differential forms in some domains, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 2, 287–294.
- [5] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1970.

- [6] J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1999.
- T. Iwaniec, *p*-harmonic tensors and quasiregular mappings, Ann. of Math. (2) 136 (1992), no. 3, 589–624.
- [8] T. Iwaniec and A. Lutoborski, *Integral estimates for null Lagrangians*, Arch. Ration. Mech. Anal. 125 (1993), no. 1, 25–79.
- [9] T. Iwaniec and G. Martin, *Quasiregular mappings in even dimensions*, Acta Math. 170 (1993), no. 1, 29–81.
- [10] C. A. Nolder, Hardy-Littlewood theorems for A-harmonic tensors, Illinois J. Math. 43 (1999), no. 4, 613–632.

Gao Hongya: College of Mathematics and Computer, Hebei University, Baoding 071002, China *E-mail address*: hongya-gao@sohu.com

Zhang Hua: College of Mathematics and Computer, Hebei University, Baoding 071002, China *E-mail address*: zhanghuamaths@163.com