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The inequality discovered by L. K. Hua in 1965 has been generalized in several directions.
In this paper, we adopt a certain conjugate method to give a simple and fundamental
inequality on two functions on a semigroup, which is the key to the proof of many gen-
eralizations of Hua’s inequality.

1. Introduction

In 1965, L. K. Hua discovered the following inequality which plays an important role in
number theory.

Theorem 1.1 (Hua’s inequality [2]). If δ,α > 0 and x1, . . . ,xn ∈R, then

(
δ−

n∑
i=1

xi

)2

+α
n∑
i=1

x2i ≥
αδ2

α+n
. (1.1)

In (1.1), the equality holds if and only if x1 = ··· = xn = δ/(α+n).

This inequality has been generalized as follows.

Theorem 1.2 (Wang’s inequality [6]). If p > 1, then

∣∣∣∣∣δ−
n∑
i=1

xi

∣∣∣∣∣
p

+αp−1
n∑
i=1

∣∣xi∣∣p ≥
(

α

α+n

)p−1
δp (1.2)

for any δ,α > 0, x1, . . . ,xn ∈ R. If 0 < p < 1, then the inequality sign in (1.2) is reversed,
where δ,α > 0, x1, . . . ,xn ≥ 0 with

∑n
i=1 xi ≤ δ. In both cases, the equality holds in (1.2) if

and only if x1 = ··· = xn = δ/(α+n).
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Theorem 1.3 (Dragomir-Yang inequalities [1]). Let X be a real inner product space. Then

(
δ−〈x, y〉)2 +α‖x‖2 ≥ αδ2

α+‖y‖2 , (1.3)

∥∥∥∥∥y−
n∑
i=1

xi

∥∥∥∥∥
2

+α
n∑
i=1

∥∥xi∥∥2 ≥ α

α+n
‖y‖2 (1.4)

for any δ,α > 0, x, y,x1, . . . ,xn ∈ X . In (1.3), the equality holds if and only if x = (δ/(α+
‖y‖2))y. In (1.4), the equality holds if and only if x1 = ··· = xn = (1/(α+n))y.

In [4], Pearce and Pečarić pointed out that these inequalities are consequences of
Jensen’s inequality. Moreover, Pečarić [5] showed the following three inequalities.

Theorem 1.4 (Pečarić’s inequalities [5]). Let X be a real inner product space. If p,q > 1
and 1/p+1/q = 1, then

∣∣δ−〈x, y〉∣∣p +αp−1‖x‖p ≥
(

α

α+‖y‖q
)p−1

δp (1.5)

for any δ,α > 0, x, y ∈ X . The equality holds in (1.5) if and only if x = y = 0 or x =
(δ‖y‖q−2/(α+‖y‖q))y. Moreover, if f is a nondecreasing convex function on [0,∞), then

f
(∣∣δ−〈x, y〉∣∣)+ ‖y‖

α
f
(
α‖x‖)≥ α+‖y‖

α
f
(

αδ

α+‖y‖
)
, (1.6)

f

(∥∥∥∥∥y−
n∑
i=1

xi

∥∥∥∥∥
)
+
1
α

n∑
i=1

f
(
α
∥∥xi∥∥)≥ α+n

α
f
(
α‖y‖
α+n

)
(1.7)

for any δ,α > 0, x, y,x1, . . . ,xn ∈ X . When f is strictly convex, the equality in (1.6) holds if
and only if y = 0 or x = (δ/(‖y‖(α+ ‖y‖)))y, and the equality in (1.7) holds if and only if
x1 = ··· = xn = (1/(α+n))y.

In this paper, we use a certain conjugate method to give a more extended formulation
including the above inequalities.

2. Results

The main result of this paper is the following inequality.

Theorem 2.1. Let (G,+) be a semigroup, and let ϕ and ψ be nonnegative functions on G.
Suppose ϕ is subadditive on G and there is a positive constant λ such that ϕ(x)≤ λψ(x) for
x ∈G. If f is a nondecreasing convex function on [0,∞), then

f
(
ϕ
(
a0
))

+ λ
n∑
i=1

f
(
ψ
(
ai
))≥ (1+nλ) f

(
1

1+nλ
ϕ

( n∑
i=0

ai

))
(2.1)
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for any a0,a1, . . . ,an ∈G. When f is strictly convex, the equality holds in (2.1) if and only if

ϕ

( n∑
i=0

ai

)
=

n∑
i=0

ϕ
(
ai
)
, ϕ

(
ai
)= λψ

(
ai
)
(i= 1, . . . ,n), ϕ

(
a0
)= ψ

(
a1
)= ··· = ψ

(
an
)
.

(2.2)

The proof is elementary.

Proof. From the hypotheses of ϕ and ψ, we have

ϕ

( n∑
i=0

ai

)
≤

n∑
i=0

ϕ
(
ai
)= ϕ

(
a0
)
+

n∑
i=1

ϕ
(
ai
)≤ ϕ

(
a0
)
+

n∑
i=1

λψ
(
ai
)
. (2.3)

Since f is nondecreasing and convex, it follows that

f

(
1

1+nλ
ϕ

( n∑
i=0

ai

))
≤ f

(
1

1+nλ

(
ϕ
(
a0
)
+

n∑
i=1

λψ
(
ai
)))

≤ 1
1+nλ

f
(
ϕ
(
a0
))

+
n∑
i=1

λ

1+nλ
f
(
ψ
(
ai
))
.

(2.4)

This gives (2.1). If f is strictly convex, then f is increasing, and so the equality occurs
in (2.1) precisely when all the inequality signs in (2.3) and (2.4) become equality signs.
Hence (2.2) is the condition for the equality in (2.1). �

Remark 2.2. Condition (2.2) can be written as follows:

ϕ

( n∑
i=0

ai

)
= (1+nλ)ϕ

(
a0
)
, ϕ

(
a0
)= ψ

(
a1
)= ··· = ψ

(
an
)
. (2.5)

Theorem 2.1 has three useful corollaries.

Corollary 2.3. Let (G,+) be a semigroup, and let ϕ and ψ be nonnegative functions on G.
Suppose ϕ is additive on G and there is a positive constant λ such that ϕ(x)= λψ(x) for x ∈
G. If f is a convex function on [0,∞), then inequality (2.1) holds for any a0,a1, . . . ,an ∈ G.
When f is strictly convex, the equality holds in (2.1) if and only if ϕ(a0) = ψ(a1) = ··· =
ψ(an).

Proof. We can prove Corollary 2.3 similarly as in Theorem 2.1. Thus examine the proof
of Theorem 2.1. �

Corollary 2.4. Under the hypotheses of Theorem 2.1, inequality

f
(
ϕ(a)

)
+ λ f

(
ψ(b)

)≥ (1+ λ) f
(
ϕ(a+ b)
1+ λ

)
(2.6)
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holds for any a,b ∈G. When f is strictly convex, the equality holds in (2.6) if and only if

ϕ(a+ b)= ϕ(a) +ϕ(b), ϕ(b)= λψ(b), ϕ(a)= ψ(b). (2.7)

Proof. Put n= 1, a0 = a, and a1 = b in Theorem 2.1. �

Remark 2.5. Condition (2.7) is equivalent to

ϕ(a+ b)= (1+ λ)ϕ(a), ϕ(a)= ψ(b). (2.8)

Remark 2.6. In Theorem 2.1 and Corollaries 2.3 and 2.4, if we replace the words “nonde-
creasing” and “convex” by “nonincreasing” and “concave”, respectively, then the inequal-
ity signs in (2.1) and (2.6) are reversed. In fact, consider the function − f .

Corollary 2.7. Let X be a real or complex normed space with dual X∗. If p,q > 1 and
1/p+1/q = 1, then

∣∣δ−h(x)
∣∣p +αp−1‖x‖p ≥

(
α

α+‖h‖q
)p−1

δp (2.9)

for any δ,α > 0, x ∈ X , h ∈ X∗. The equality holds in (2.9) if and only if h(x) = ‖h‖‖x‖
and ‖x‖ = δ‖h‖q−1/(α+‖h‖q) (and hence h is a norm-attaining functional).

Proof. If h is the zero functional on X , then (2.9) is trivial, and it becomes an equality
precisely when x = 0. So, assume that h is nonzero. To prove (2.9), we use Corollary 2.4.
Take G = X . Define ϕ and ψ by ϕ(x) = |h(x)| and ψ(x) = α‖h‖1−q‖x‖ for any x ∈ X .
Then ϕ is subadditive on X and ϕ(x) ≤ ‖h‖‖x‖ = λψ(x) for x ∈ X , where λ = ‖h‖q/α.
Moreover, put f (t) = tp for t ≥ 0. Then f is nondecreasing and convex on [0,∞). Now,
apply Corollary 2.4. Then we have

∣∣h(a)∣∣p +αp−1‖b‖p ≥
(
1+

‖h‖q
α

)1−p∣∣h(a+ b)
∣∣p (2.10)

for a,b ∈ X , and the equality holds if and only if
∣∣h(a+ b)

∣∣= ∣∣h(a)∣∣+∣∣h(b)∣∣, ∣∣h(b)∣∣= ‖h‖‖b‖, ∣∣h(a)∣∣= α‖h‖1−q‖b‖. (2.11)

Now choose y ∈ X so that h(y)= δ, and replace a and b by y− x and x, respectively. Then
(2.10) implies (2.9), and the equality holds in (2.9) if and only if

δ = ∣∣δ−h(x)
∣∣+∣∣h(x)∣∣, (2.12)∣∣h(x)∣∣= ‖h‖‖x‖, (2.13)∣∣δ−h(x)

∣∣= α‖h‖1−q‖x‖. (2.14)

From (2.12), we can easily see that 0≤ h(x)≤ δ. Hence (2.13) and (2.14) become h(x)=
‖h‖‖x‖ and δ− h(x)= α‖h‖1−q‖x‖. By deleting the term h(x) from these equations, we
obtain ‖x‖ = δ‖h‖q−1/(α+‖h‖q). Consequently, we have

h(x)= ‖h‖‖x‖, ‖x‖ = δ‖h‖q−1
α+‖h‖q . (2.15)
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Also, the simple computation shows that (2.15) implies (2.12), (2.13), and (2.14). Hence
(2.15) is the condition for the equality in (2.9). Thus we proved Corollary 2.7. �

3. Connections between inequalities

Inequalities (1.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7), (2.1), (2.6), and (2.9) are con-
nected as in Figure 3.1.

Theorem 2.1 (2.1)

Corollary 2.4 (2.6)

Corollary 2.7 (2.9)

Corollary 2.3 (2.1)
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Dragomir-Yang (1.4)

Dragomir-Yang (1.3)

Wang’s (1.2) (p > 1)

Wang’s (1.2) (0 < p < 1)
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Hua’s (1.1)

Figure 3.1

In what follows, we will explain the relations in Figure 3.1.
(1) Inequality (2.1) implies Pečarić’s inequality (1.7). Take G= X and put ϕ(x)= ‖x‖

and ψ(x) = α‖x‖ for x ∈ X . Then ϕ is subadditive on X and ϕ(x) = λψ(x) for x ∈ X ,
where λ= 1/α. Apply Theorem 2.1 with a0 = y−∑n

i=1 xi and ai = xi for i= 1, . . . ,n. Then
(2.1) yields (1.7), and (2.2) becomes

‖y‖ =
∥∥∥∥∥y−

n∑
i=1

xi

∥∥∥∥∥+
n∑
i=1

∥∥xi∥∥, ∥∥xi∥∥= 1
α
α
∥∥xi∥∥ (i= 1, . . . ,n),

∥∥∥∥∥y−
n∑
i=1

xi

∥∥∥∥∥= α‖x1‖ = ··· = α
∥∥xn∥∥,

(3.1)

which is the condition for the equality in (1.7). In (3.1), the second equation always holds.
The first equation says that equality holds in the triangle inequality, and we can find a unit
element z in X such that

y−
n∑
i=1

xi =
∥∥∥∥∥y−

n∑
i=1

xi

∥∥∥∥∥z, x1 =
∥∥x1∥∥z, . . . , xn = ∥∥xn∥∥z. (3.2)
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Combining with the third equation, we have y−∑n
i=1 xi = α‖x1‖z = αx1 and x1 = ··· =

xn. Hence

x1 = ··· = xn = 1
α+n

y. (3.3)

Meanwhile, it is obvious that (3.3) implies (3.1). Thus (3.3) is the condition for the equal-
ity in (1.7).

Remark 3.1. In the above observation, we use the condition for equality in the triangle
inequality in an inner product space: ‖x1 + ···+ xn‖ = ‖x1‖+ ···+ ‖xn‖ if and only if
there is a unit element z such that xi = ‖xi‖z for i = 1, . . . ,n. The condition in a Banach
space is investigated in [3].

(2) Inequality (2.6) implies Pečarić’s inequality (1.6). If y = 0, then (1.6) holds clearly
as equality. Fix a nonzero y ∈ X . Take G = X . Put ϕ(x) = |〈x, y〉| and ψ(x) = α‖x‖ for
any x ∈ X . Then ϕ is subadditive on X and ϕ(x) ≤ ‖x‖‖y‖ = λψ(x) for x ∈ X , where
λ = ‖y‖/α. Choose z ∈ X so that δ = 〈z, y〉. Applying Corollary 2.4 with a = z− x and
b = x, we obtain (1.6) from (2.6), and the condition for equality in (1.6) is

δ = ∣∣δ−〈x, y〉∣∣+∣∣〈x, y〉∣∣, ∣∣〈x, y〉∣∣= ‖x‖‖y‖, ∣∣δ−〈x, y〉∣∣= α‖x‖. (3.4)

In (3.4), the first equation tells us that 0≤ 〈x, y〉 ≤ δ, and so the second and third equa-
tions become 〈x, y〉 = ‖x‖‖y‖ and δ−〈x, y〉 = α‖x‖. Deleting the term 〈x, y〉 from these
equations, we get ‖x‖ = δ/(α+ ‖y‖). Moreover, since the equality holds in the Cauchy-
Schwartz inequality 〈x, y〉 ≤ ‖x‖‖y‖, it follows that x = (‖x‖/‖y‖)y. Hence

x = δ

‖y‖(α+‖y‖) y. (3.5)

Also, we can easily check that (3.5) implies (3.4). Thus, in case y 	= 0, (3.5) is the condition
for the equality in (1.6).

(3) Inequality (2.9) implies Pečarić’s inequality (1.5). Fix y ∈ X and put h(x)= 〈x, y〉
for any x ∈ X . Then h∈ X∗ and ‖h‖ = ‖y‖. Hence (1.5) follows immediately from (2.9).
Moreover, the equality holds in (1.5) if and only if

〈x, y〉 = ‖x‖‖y‖, ‖x‖ = δ‖y‖q−1
α+‖y‖q . (3.6)

From the first equation, it follows that ‖y‖x = ‖x‖y. Combining with the second equa-
tion, we see that ‖y‖x = (δ‖y‖q−1/(α+‖y‖q))y. Thus we obtain

x = y = 0 or x = δ‖y‖q−2
α+‖y‖q y. (3.7)

Conversely (3.7) implies (3.6). Hence (3.7) is the condition for the equality in (1.5).
(4) Inequality (2.9) implies the case p > 1 of Wang’s inequality (1.2). Suppose p > 1

and 1/p + 1/q = 1. Let X be the space Rn with norm ‖(x1, . . . ,xn)‖ = (
∑n

i=1 |xi|p)1/p. We
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take h∈ X∗ to be the functional corresponding to (1, . . . ,1)∈Rn, that is,

h
((
x1, . . . ,xn

))= n∑
i=1

xi (3.8)

for any (x1, . . . ,xn)∈Rn = X . As is well known, ‖h‖ = (
∑n

i=1 1q)1/q = n1/q. Now we apply
Corollary 2.7. Then (1.2) follows directly from (2.9). Moreover, the equality holds in (1.2)
if and only if

n∑
i=1

xi = n1/q
( n∑

i=1

∣∣xi∣∣p
)1/p

,

( n∑
i=1

∣∣xi∣∣p
)1/p

= δn1/p

α+n
. (3.9)

By the first equation and Hölder’s inequality, we have

n1/q
( n∑

i=1

∣∣xi∣∣p
)1/p

=
n∑
i=1

xi ≤
n∑
i=1

∣∣xi∣∣≤ n1/q
( n∑

i=1

∣∣xi∣∣p
)1/p

, (3.10)

and the two inequality signs become equal signs. We recall the condition for equality
in Hölder’s inequality and see that |x1| = ··· = |xn|. In addition, we have

∑n
i=1 xi =∑n

i=1 |xi|, and so x1 = ··· = xn ≥ 0. Together with the second equation in (3.9), we have

x1 = ··· = xn = δ

α+n
. (3.11)

Also, we easily check that (3.11) implies (3.9). Consequently, (3.11) is the condition for
the equality in (1.2).

(5) Corollary 2.3 (2.1) implies the case 0 < p < 1 of Wang’s inequality (1.2). As G, take
the additive semigroup R+ of all nonnegative real numbers. Put ϕ(x)= x and ψ(x)= αx
for x ∈ R+. Then ϕ is additive on R+ and ϕ(x) = λψ(x) for x ∈ R+, where λ = 1/α.
Suppose 0 < p < 1 and put f (t) = tp for t ≥ 0. Then f is concave on [0,∞). Now ap-
ply Corollary 2.3 and Remark 2.6 with a0 = δ−∑n

i=1 xi and ai = xi for i= 1, . . . ,n, where
x1, . . . ,xn ≥ 0 and

∑n
i=1 xi ≤ δ. Then (2.1) gives the reverse inequality of (1.2). Also, the

condition for the equality in it is

δ−
n∑
i=1

xi = αx1 = ··· = αxn, (3.12)

which is equivalent to x1 = ··· = xn = δ/(α+n).

Remark 3.2. The reverse inequality of (1.2) in case 0 < p < 1 is false for all x1, . . . ,xn ≥ 0.
A counterexample is δ = α= 1, n= 1, x1 = 2 (x1 > δ).
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(6) In Theorem 1.4, (1.6) implies (1.5). If y = 0, then (1.5) is clearly true, and it becomes
an equality exactly when x = 0. In case y 	= 0, put f (t) = tp (t ≥ 0) and replace α by
α/‖y‖q−1 in (1.6).

(7) Pečarić’s inequality (1.7) implies the case p > 1 of Wang’s inequality (1.2). In (1.7),
put X =R, y = δ, and f (t)= tp (t ≥ 0).

(8) Pečarić’s inequality (1.7) implies Dragomir-Yang inequality (1.4). In (1.7), put f (t)=
t2 (t ≥ 0).

(9) Pečarić’s inequality (1.5) implies Dragomir-Yang inequality (1.3). In (1.5), put p =
q = 2.

Remark 3.3. Pečarić’s inequality (1.5) plus Hölder’s inequality implies the case p > 1 of
Wang’s inequality (1.2). In (1.5), put X = R, x =∑n

i=1 xi, y = 1, and replace α by α/n.
Then we have ∣∣∣∣∣δ−

n∑
i=1

xi

∣∣∣∣∣
p

+
(
α

n

)p−1∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
p

≥
(

α

α+n

)p−1
δp. (3.13)

Meanwhile, by the triangle inequality and Hölder’s inequality, we have

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣≤
n∑
i=1

∣∣xi∣∣≤ n1/q
( n∑

i=1

∣∣xi∣∣p
)1/p

(3.14)

or ∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
p

≤ np−1
n∑
i=1

∣∣xi∣∣p. (3.15)

These inequalities imply (1.2). The condition for equality in (1.2) is obtained by using
the argument in (4).

(10) Dragomir-Yang inequality (1.4) implies Hua’s inequality (1.1). In (1.4), put X =R
and y = δ.

(11)Dragomir-Yang inequality (1.3) implies Hua’s inequality (1.1). In (1.3), let X be the
n-dimensional Euclidean space Rn and take x = (x1, . . . ,xn), y = (1, . . . ,1)∈Rn.

(12)Wang’s inequality (1.2) implies Hua’s inequality (1.1). In (1.2), put p = 2.
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