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We prove some weighted Hardy type inequalities associated with a class of nonisotropic Greiner-
type vector fields on anisotropic Heisenberg groups. As an application, we get some new Hardy
type inequalities on anisotropic Heisenberg groups which generalize a result of Yongyang Jin and
Yazhou Han.

1. Introduction

The Hardy inequality in R states that, for all u € C(RN) and N > 3,

2
M u—zdx. (1.1)

|Vul*dx >
.[RN 4 BN |x

In the case of the Heisenberg group H,,, Garofalo and Lanconelli (cf. [1]) firstly proved the
following Hardy inequality:

_72)2 2
Lﬂn |V rul® > % IH" %WHdlz, ue CPH"\ (e}), (1.2)

where e is the neutral element of H", d = (|z|* + £2)'/* is the Koranyi-Folland nonisotropic

gauge induced by the fundamental solution, and Q = 2n + 2 is the homogenous dimension
of H" (see also [2]). Inequality (1.2) was generalized by Niu et al. [3] (see also [4]) using the
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Picone-type identify. For more Hardy-Sobolev inequalities on nilpotent groups, we refer the
reader to [5-19].

More recently, Jin and Han (cf. [20, 21]), using the method by Niu et al. [3], have
proved the following Hardy inequalities on anisotropic Heisenberg groups H:

p/2 2\ (k-1)p
25" 4. +2-p\? S a?|z; 2 > ailz;
J |VLu|p2 Z]_l Cl] P j < j=1 ]l ]| > < 2]k1 I| ]| > |u|p, (13)
H? p H? N(z,t)F

where V; are the nonisotropic Greiner-type vector fields, k is a positive integer,

2k
N(z, t)* = <i aj|z,-|2> + 12, (1.4)

j=1

and 2 <p <237, a; + 2. However, the inequalities above do not cover the case of 1 < p < 2
and 2377, a; + 2k < p < 2n + 2k. So, it is an interesting problem to study a Hardy-type
inequality related to N(z,t) for 1 < p <2 on Hj and 2377, a; + 2k < p < 2n + 2k. In this
note, we will consider some Hardy inequalities on H”, for 1 < p < 2n + 2k. In fact, we prove
a representation formula associated with N(z, t), which is analogous to the Kordnyi-Folland
nonisotropic gauge on Heisenberg group (cf. [22]). Using this representation formula, we
prove some new Hardy inequalities on Hj, which include the case of 1 <p <2and 2 377, a;+
2k <p <2n+2k.

This paper is organized as follows. We start in Section 2 with the necessary background
on anisotropic Heisenberg groups H.. In Section 3, we prove a representation formula and use
it to obtain some Hardy-type inequalities.

2. Notations and Preliminaries

Recall that the anisotropic Heisenberg groups H, are the Carnot group of step two whose
group structure is given by (cf. [23])

n
(z,t)o (2, 1) = <z +Z, b+t + 22@2?) , (2.1)

j=1

where z = (z1,...,24), 2j = xj +1y; (xj,y; € R), and ay,...,a, are positive constants,
numbered so that

O<ay1<a,<---<a,. (2.2)
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We consider the following nonisotropic Greiner-type vector fields which are introduced by
Jin and Han [21]:

k-1 k-1
0 o 2 0 0 o 2 0
)(j = Zi;; +-2kxyg/j<:;§;aj|zj| :) 5;, ]7 = Eﬁ;} —-2l:ajx7 <:;§;aj|2j| :) 6;, (2'3)

(j = 1,...,n). These vector fields are not left or right invariant when k > 2. The horizontal
gradient is the (2n-) dimensional vector given by

Ve=X1,...,. X0, Y1,..., Ya). (2.4)
A natural family of anisotropic dilations related to V is

51(z,t) = ()LZ, )Skt). (2.5)

For simplicity, we denote by A(z,t) = (1z, A?*t). The Jacobian determinant of 6, is A2, where
Q = 2n + 2k is the homogenous dimension. The anisotropic norm on H, is

1/4k

2%k
N(z,t) = (iaj|z,-|2> + 1 . (2.6)
j=1

For simplicity, we use the notation |z|”> = 37, |z;|* and |z[; = 37, a;|z;[*. Then,
1/4k
Nz b = (lF+#) ", (2.7)

and ay|z* < |z]2 < a,|z|*. With this norm, we can define the metric ball centered at neutral
element and with radius p by

B(e,p) = {(z,t) eH} : N(z,t) <p}, (2.8)

and the unit sphere X = 0B(e, 1). Furthermore, we have the following polar coordinates for
all f € L'(H") (cf. [24]):

f(z,t)dzdt = J:O f . f(r(z, ) dodr, (2.9)

Ha

where z* = z/N(z,t) and t* = t/N?*(z, t).
Let > -2nandset Cp = | |z*|§do. We will explicitly calculate the constant Cg to show
Cp < oo when p > —2n. The method of calculation is similar to that used in [22].
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Lemma 2.1. For > —2n,

_ @ T(1/2)T((B+Q - 2K) /4k)

s - , (2.10)
I((p+ Q)/4k)Hj:1af
where wyy,_1 is the volume of S*1, that is, the unit sphere in R>".
Proof. To compute Cg, let p > -Q, then,
1
J lz*fodo = (Q + ) f rl”Q-ldrf Iz do
s 0 s
1
=(Q+p) j j Irz*Fr1dr do (2.11)
sJo
= (Q+p) |z} do.
N(z,t)<1l
Next, if g > -2n,
f |z do = f f z|fdz dt
N(z)<1 1<t J |zl <)
2.12
= nl f f o |zPdzat. 212)
ITjma; Jina Jz<ammpy
Therefore,
(-l
[ do= L [ [T e
N(z,t)<1 Hj:l aj Jig<1Jo
- (B+2n) /4k
=Wl f (1—|t|2>ﬂ dt
@n+B)ITia Jina
Won-1 ! 2n) /4k
= —nJ‘ (1 - 5)fram/akg1/244 (2.13)
(2n+p)ITia; Jo
_ Wop-1 B<ﬁ+2"+1 1)
@ pITae \ & TV
Want T((B +2n)/4k +1)T(1/2)

T @n+ )T T((f+Q)/4k+1)
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Thus, if g > -2n,
Cp=(Q+P) [zlado
N(z,t)<1

_ w2l (1/2)T((B +2n) /4k)

T((B+Q)/4k) T} 4 (2.14)
_ w1 T(1/2)T((B+ Q - 2k) /4k)
T((B+Q)/4)[T}a; )

3. Hardy-Type Inequality

Firstly, we prove the following representation formula on H, which is of its independent
interest.

Lemma 3.1. Let > -2n+2k —1and f € Cy°(H}). Then,

p+2-4k
_ 1 |Z|a 4k
-Csf () = 2 IHIZW<va(z,t),AavLN(z,t) Ydzdt, (3.1)

where A\, is a diagonal matrix given by

A, = diag{ ! l,l,... l} (3.2)

_,..., V2
a ap a1 ap

Proof. We argue as in the proof of Theorem 1.2 in [22]. Since f € C§°(H}),

-f(0) = fo dirf(r(z*,t*))dr
(T (5O ey YO 2ktOf ., .
_fo §<Ta_x,-(r(z ,t ))+7a_y,-(r(z ,t ))> + =5 (@ )dr

® n 0 3 5
= f Z<?a—£j(z,t) + %a—;(z,t)> - 2Tlda—];(z,t)dr

42 12 2k-2
_ (T~ (% of y; of ajx; +ajy; 2k|z*2tof
_J' Z< A @ @ o oz dr.

a

(3.3)
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Therefore,
70 =~([_I"hdo) )
2o $ (3 L, O T e g
o NQ+ﬁ = ] xj y] ayl ] |Z|2uk a ot
Izlg_Zk c 2k 2k (34)
= an NGO Z;(X]-f- (1285 + yit) + i f - (123Fy; - x3t) )
a ]:
B2k n
t|z|a of of
- i—— —xj—— )dzdt.
f n NQ+ a <y’ax]~ i ay] “
Notice that

X,-N‘”‘ = 4kaj|z|§k’2<|z|ikx,- + y]-t>, Y]-N4k = 4ka]-|z|ik’2<|z|§ky]- - xjt>, (3.5)

we have, by (3.4),

pr2-4k
_ — 1 |Z|a 4k
Cof 0) =5 fm N (T D AN G 0z
Hale “ & (. Of Of o
z
- =i i —Xj—— |dzdt.
J‘Hg NQ+P ]Z_;<y] 0x; ]ayj>
To finish the proof, it is enough to show that
p-2k n
tzla of _9of
i=— —Xj7— |dzdt 3.7
J‘Hfz‘ NQ+p ;:Zl <]/] axj ]ay], ( )

vanishes. Notice that the operator y;05, - x;0,, annihilates functions of |z|,, and, for f > —2n+
2k -1, the integrand above is absolutely integrable. We have, for any e > 0, though integration
by parts,

)15/2-2

f t<|Z|a+€ zn:<y of 6f>dzdt:0' (3.8)

NTenT) of _ 9F
1 (N4 +e)@PAS\ T ox; "y,

Let ¢ — 0. By dominated convergence theorem,

p2k
tz[a (v, of _of _
,[HZ NQ"’[} ' <y] ax] x] a—y] dZ dt = 0 (39)

j=1

The proof is therefore completed. O
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We now prove the following Hardy inequalities on H.

Theorem 3.2. Let 1 <p < Q-aandy > -2n— (p - 1)(2k — 1). There holds, for all u € Cf° (H}),

|V iulP |Z|E |z| P> Q-p-a p M |Z|£+p(2k—1) (310)
mr N* Nv\|zl,/ ~ p g NP NY+pk-1)° :

Proof. Set u, := (|ul*+€*)P/*~eP with € > 0. Replacing f by u. N2~ in Lemma 3.1, we obtain,
forany > -2n+2k -1,

p+2-4k

1 |Z|a 4k —p—
=77 NG erNa Q-p-a
0 P JH; NG, t)QJrﬁ <VLu VN >N

(3.11)
1 |Z|ﬂ+2—4k
— L Q-p-a 4k
t IHZ N (VLN A VLN hu,.
It is easy to check that the following equations hold
L 2 2
<VLN4k,AaVLN4k> = 16k2|z|§k_42a]- (<|Z|§kx]- + y]-t> + <|Z|§ky]- - x]-t> )
j=1
= 16Kk%|z[ 2 N*;
(3.12)

(AVIN*' A VLN?) = 16k2|z|ik_4]il <(|z|§kx,- + yjt)z + (1=, - xit>2>

= 16N*|z[} )z,

Therefore, by (3.11),

1 |Z|ﬂ+2—4k 0 N
_ _\=la -p-a
) N (VINOT™ AV N Y,

C(Q-p-a) [ |2FT(VIN, AL VLN
B 16k2 e N(z, t)p+zx+ﬂ—4k

€

_(0- —“>f 2la
P i N (z, £)PToP ‘
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1 | |ﬂ+2—4k .
- ol 4 Q-p-a
7)., N(th)Q+ﬂ<VLue,AaVLN IN
p |Z|§72 2 2\P2/2 4
- —<|u| +€> u<VLu,AuVLN >

4k Jup N (z,t)pret?

+2—4k
p Bl

4k f N (

IN

(p-2)/2
jul + )"l -1V [ A VLN

| |ﬁ+2—4k

P
4k )i N(z, t)Pret?

p-2k

z z (r-1)/2

= p f —N(| 'ﬂt)w'vﬁ'ﬂ_% (luP+e2)" " 1v1ul
H" z,

IN

(luf? + ez)(” 9 |AaVLN|

(3.13)
By dominated convergence, letting ¢ — 0+, we have
p p-2k
|2la p |2la |2 -1
-p- —=1 __|uff < — |yl . 3.14
(Q-p-a) —[Hg NG, [ulf <p o NG, by P [ul"|VLul (3.14)
By Holder’s inequality,
e m—
N( t)p+a+ﬂ
1)/ Y (3.15)
I S A /07 A E A
< . 7a
=P J‘]HI;’ N(z,if)"”""J’ﬂlu| J n N®  NPpk-1) <|Z| >
Canceling and raising both sides to the power p, we obtain
Q-p-ay’ |2la [V0up 2la 7 (2] \?
[ulp < — ). (3.16)
p o1 N(z, 7P . Ne NFPED \[],
Sety =p—-p(2k -1). Then, y > -2n - (p — 1)(2k — 1), and we get (3.11). O

Remark 3.3. Notice that a1|z|* < |z[3 < a|z|?, we have, by Theorem 3.2, for all u € C (HZ),

Vol 2l | (VarQ-p-a)\' [ |2 (3.17)
n N« Nv — p H Na+p NY+P(2’<—1) ’ ’

From inequality (3.17), we have the following corollary which generalizes the result
of 21] whenl<p<2and237, a;+2-a<p<Q-a
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Corollary 3.4. LetO0<a; <ay <+ <a,<1,1<p<Q-aandy+p > 0. There holds, for all
u e C(HY),

2p(k-1) n 2 2\ (r+p)/2
p ! a2z
\Viul |zla (V@1 (Q-p-a) jup’|la (Z,:1 a;|z)] > (3.18)

Fn N« NY — p e Na+p NY+p(2k-1)
Proof. Sincea; <a; <---<a, <1,

2 Z 2 = 2 2
EREDYAET DAY (3.19)
=1 =1

We have, by inequality (3.17),

2p(k-1) (en 2] |2 (r+p)/2
Vol 2 (vaQ-p-a)\' [ F (Ehalsl) 6.20)
m N® NV~ p mwr N*P N+p(2k-1) ’
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