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This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally
important population process, namely the delay Lotka-Volterra model. The stochastic version
of this process appears to have some intriguing properties such as pathwise estimation and
asymptotic moment estimation. Indeed, their solutions will be stochastically ultimately bounded.

1. Introduction

As is well known, Lotka-Volterra Model is nonlinear and tractable models of predator-prey
system. The predator-prey system is also studied in many papers. In the last few years, Mao
et al. change the deterministic model in this field into the stochastic delay model. and give it
more important properties [1–8].

Fluctuations play an important role for the self-organization of nonlinear systems;
we will study their influence on a simple nonlinear model of interacting populations, that
is, the Lotka-Volterra model. A simple analysis shows the result that the system allows
extreme behaviour, leading to the extinction of both of their species or to the extinction of
the predator and explosion of the prey. For example, in Mao et al. [1–8], we can see that once
the population dynamics are corporate into the deterministic subclasses of the delay Lotka-
Voterra model, the stochastic model will bear more attractive properties: the solutions will be
be stochastically ultimately bounded, and their pathwise estimation and asymptotic moment
estimation will be well done.

The most simple stochastic model is given in the form of a stochastic delay differential
equation (also called a diffusion process); we call it a delay Lotka-Volterra model with
diffusion. The model will be

dx(t) = diag(x(t))
[
(b +Ax(t))dt + By(t)dt +Gdw(t)

]
, (1.1)
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where y(t) = x(t−τ), x(t) = (x1(t), . . . , xd(t))T (where (x1(t), . . . , xd(t))T denotes the transpose
of a vector or matrix (x1(t), . . . , xd(t)), b = (b1, b2, . . . , bd)T , A = [aij] ∈ Rd×m, B = [bij] ∈ Rd×m,
G = [γij] ∈ Rd×m and w(t) is the m-dimensional Brownian motion, diag (x(t)) is the diag
matrix.

This model of the stochastic delay Lotka-Volterra is different from Mao et al. [3–
10], which paid more attention to the mathematical properties of the model than the real
background of the model. However, our model has the following three characteristics. First,
it is another stochastic delay subclass of the Lotka-Volterra model which is different from
Mao et al. Then we can obtain more comprehensive properties in Theorem 2.1. Second, in
this field no paper gives more attention to it so far, especially for the stochastic delay model
which is the focus in our model. Third, this model has many real applications, for example,
in economic growth model it is different from the old delay Lotka-Volterra model which only
palys a role in predator-prey system, for example, the stochastic R&D model [9, 10] is the
best application of this model. We hope our model can have new applications of the Lotka-
Volterra model. Throughout this paper, we impose the condition

−aii > Ai =
∑

j /= i

a+
ij , (1 ≤ i ≤ d), (1.2)

where a+
ij = aij if aij > 0.

Of course, it is important for us to point that the condition (1.2) may be not real in
predator-prey interactions, but in the stochastic R&D model in economic growth model, it
has a special meaning

−Kθ = max
i

[

aii +Ai −
θθA1+θ

i

(1 + θ)1+θ|aii|θ
]

+
∑

i

θθA1+θ
i

(1 + θ)1+θ |aii|θ
< 0. (1.3)

If θ = 1/2 or 1, the inequality (1.3) can be deduced to

−K1/2 = max
i

[

aii +Ai −
2A3/2

i√
27|aii|

]

+
∑

i

2A3/2
i√

27|aii|
< 0, (1.4)

−K1 = max
i

[

aii +Ai −
A2

i

4|aii|

]

+
∑

i

A2
i

4|aii| < 0. (1.5)

If condition (1.2) is satisfied, then

lim
θ→∞

θθA1+θ
i

(1 + θ)1+θ|aii|θ
= 0. (1.6)

Therefore, if θ is big enough, condition (1.2) implies condition (1.3).
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It is obvious the conditions (1.3)–(1.5) are dependent on the matrix A, independent
on G.

Condition (1.4) will be used in a further topic in the paper; the condition (1.4) is
complicated, we can find many matrixesA that have a property like this. For example,

A = diag(a11, a22, . . . add) (aii < 0 for 1 ≤ i ≤ d) (1.7)

satisfy the condition (1.4). Furthermore, if i /= j, aij ≤ 0, or aij are proper small enough positive
numbers, condition (1.4) holds too. Particularly, if d = 2, the condition can be induced into

a11 + a+
12 <

−2(a+
21

)3/2
√
27a22

, a22 + a+
12 <

−2(a+
12

)3/2
√
27a11

(1.8)

It is clear that the upper inequalities are the key conditions in the stochastic R&D model in
economic growth model.

Let

Iθ(x) =
∑

ij

aijx
θ
i xj . (1.9)

The homogeneous function Iθ(x) of degree 1 + θ has the following key property.

Lemma 1.1. Suppose the matrix A satisfies condition (1.2). Let

S =
{
x ∈ Rd

+ : ‖x‖∞ = 1
}
; (1.10)

then

sup
x∈S

Iθ(x) ≤ −Kθ, θ > 0, (1.11)

where Kθ is given in condition (1.3).

Proof. Fix x ∈ S, so 0 < xj ≤ ‖x‖∞ = 1. We will show Iθ(x) ≤ −Kθ. We have

Iθ(x) ≤
∑

i

aiix
1+θ
i +

∑

i

∑

j /= i

a+
ijx

θ
i xj

≤
∑

i

(
aiix

1+θ
i +Aix

θ
i

)

=
∑

i

ϕi(xi)

(1.12)
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with Ai satisfying condition (1.2), where ϕi(xi) = aiix
1+θ
i + Aix

θ
i . Since, from condition (1.2),

ϕi(0) = 0, ϕi(1) = aii +Ai < 0, and

ϕ′
i(t) = 0 =⇒ t = t0 = − θAi

(1 + θ)aii
=

θAi

(1 + θ)|aii| ∈ [0, 1), (1.13)

then

max
0≤t≤1

ϕi(t) = ϕi(to) =
θθA1+θ

i

(1 + θ)1+θ|aii|θ
= Mi. (1 ≤ i ≤ d). (1.14)

Since x ∈ S, we have 0 < xi ≤ 1, (1 ≤ i ≤ d), x ∈ S, and there exits at least xi = 1, such that
ϕi(xi) ≤ Mi, (1 ≤ i ≤ d) and at least ϕi(xi) = ϕi(1) = aii +Ai for some i. Thus

∑
ϕi(xi) ≤ max

i

⎛

⎝aii +Ai +
∑

j /= i

Mj

⎞

⎠

= max
i

(aii +Ai −Mi) +
∑

i

Mi.

(1.15)

Now, from condition (1.3), the right hand of the upper equation is just −Kθ, so Iθ(x) ≤ −Kθ;
Lemma 1.1 is proved.

We use the ordinary result of the polynomial functions.

Lemma 1.2. Let fi(1 ≤ i ≤ n) be a homogeneous function of degree θi, θ > θi ≥ 0, and a > 0; then
the function as follows has an upper bound for some constantK.

F(x) =
n∑

i=1

fi − a
d∑

i=1

xθ
i ≤ K. (1.16)

2. Positive and Global Solutions

Let (Ω, F, {Ft}t≥0, P) be a complete probability spacewith filtration {Ft}t≥0 satisfying the usual
conditions, that is, it is increasing and right continuous while F0 contains all P -null sets [8].
Moreover, let w(t) be an m-dimensional Brownian motion defined on the filtered space and
Rd
+ = {x ∈ Rd

+ : xi > 0 for all 1 ≤ i ≤ d}. Finally, denote the trace norm of a matrix A
by |A| =

√
trace(ATA) (where AT denotes the transpose of a vector or matrix A) and its

operator norm by ‖A‖ = sup{|Ax| : |x| = 1}. Moreover, let τ > 0 and denote by C([−τ, 0];Rd
+)

the family of continuous functions from [−τ, 0] to Rd
+.

The coefficients of (1.1) do not satisfy the linear growth condition, though they are
locally Lipschitz continuous, so the solution of (1.1) may explode at a finite time.

let us emphasize the important feature of this theorem. It is well known that a
deterministic equation may explode to infinity at a finite time for some system parameters
b ∈ Rd and A ∈ Rd×m. However, the explosion will no longer happen as long as conditions
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(1.2) and (1.3) hold. In other words, this result reveals the important property that conditions
(1.2) and (1.3) suppress the explosion for the equation. The following theorem shows that
this solution is positive and global.

Theorem 2.1. Let us assume thatK1/2 satisfy

3K1/2 > d
(
βi + 2β′i

)
, βi =

∑

j

b+ij , β′j =
∑

i

b+ij . (2.1)

Then for any given initial data {xt : −τ ≤ t ≤ 0} ∈ C([−τ, 0], Rd
+), there exists a unique global

solution x = x(t) to (1.1) on t ≥ −τ . Moreover, this solution remains in Rd
+ with probability 1,

namely, xt ∈ Rd
+ for all t ≥ −τ almost surely.

Proof. Since the coefficients of the equation are locally Lipschitz continuous, for any given
initial data {xt : −τ ≤ t ≤ 0} ∈ C([−τ, 0], Rd

+), there is a unique maximal local solution x(t)
on t ∈ [0, ρ), where ρ is the explosion time [3–10]. To show this solution is global, we need to
show that ρ = ∞ a.s. Let k0 be sufficiently large for

1
k0

< min
−τ≤t≤0

|x(t)| ≤ max
−τ≤t≤0

|x(t)| ≤ k0. (2.2)

For each integer k ≥ k0, define the stopping time

τk = inf
{
t ∈ [0, ρ) : xi(t) /∈

(
k−1, k

)
, for some i = 1, . . . , d

}
, (2.3)

where throughout this paper we set infφ = ∞ (as usual φ denotes the empty set). Clearly, τk
is increasing as k → ∞. Set τ∞ = limk→∞τk, whence τ∞ ≤ ρ a.s. If we can show that τ∞ = ∞
a.s., then ρ = ∞ a.s. and x(t) ∈ Rd

+ a.s. for all t ≥ −τ . In other words, to complete the proof all
we need to show is that τ∞ = ∞ a.s. Or for all t > 0, we have P(τk ≤ T) → 0, (k → ∞). To
show this statement, let us define a C2-functions V : Rd

+ − R+ by

u(t) = t − ln(t), V (t) =
∑

u(
√
xi)

(
x ∈ Rd

+

)
. (2.4)

The nonnegativity of this function can be seen from

u(t) = t − ln(t) > 0 on t > 0. (2.5)
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Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ T ∧τk, we apply the Itô formula to V (x) to obtain
that

LV (x) =
1
2

∑

i

(
√
xi − 1)

⎡

⎣bi +
∑

j

aijxj + bijyj

⎤

⎦ +
1
8

∑

ij

(2 − √
xi)r2ij

=
1
2

∑

i

bi(
√
xi − 1) +

1
8

∑

ij

[
−4aijxj + r2ij(2 −

√
xi)
]

+
1
2

∑

ij

bij(
√
xi − 1) +

1
2

∑

ij

aij
√
xixj

= φ(x) +
1
2

∑

ij

bij
√
xixj − 1

2

∑

ij

aijyj +
1
2
I(x),

(2.6)

where φ(x) = (1/2)
∑

i bi(
√
xi−1)+(1/8)

∑
ij[−4aijxj+r2ij(2−

√
xi)] is a homogeneous function

of a degree not above 1, G = [γij] ∈ Rd×m, and by (1.9), I(x) = I1/2(x), and let z = x/‖x‖∞, for
all x ∈ Rd

+; then ‖z‖∞ = 1. By Lemma 1.1, we obtain

I(x) = I(z‖x‖∞) = I(z)‖x‖3/2∞

≤ −k1/2‖x‖3/2∞ ≤ −d−3/2k1/2|x|3/2,
(2.7)

where we use the fact V3/2(x) =
∑d

i=1 x
3/2
i and V3/2(x) ≤ d‖x‖3/2∞ , K1/2 > 0, and

∑

ij

bij
√
xiyj ≤

∑

ij

b+ij

⎛

⎝x3/2
i

3
+
2y3/2

j

3

⎞

⎠

=
1
3

∑

i

∑

j

b+ijx
3/2
i +

2
3

∑

j

∑

i

b+ijy
3/2
j

=
1
3

∑

i

βix
3/2
i +

2
3

∑

j

β′jy
3/2
j

−∑
ij
bijyj ≤ −∑

ij
b−ijyj = −∑

j
ρjyj ,

(2.8)

where b−ij = −bij , if bij < 0, and ρj =
∑

i b
−
ij .

Thus

LV (x) ≤ φ(x) +
1
6

∑

i

βix
3/2
i − 1

2d
K1/2V3/2(x) +

∑

i

(
1
3
β′iy

3/2
i +

1
2
ρiyi

)

. (2.9)
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Put

W(t, x(t)) = V (x) +
∫ t

t−τ

∑

i

[
1
3
β′ix

3/2
i (s) +

1
2
ρixi(s)

]
ds. (2.10)

Then, if t ≤ τk, by Lemma 1.2, we obtain

LW(t, x(t)) = LV (x) +
∑

i

[
1
3
β′ix

3/2
i (t) − y3/2

i (t) +
1
2
ρi
(
xi(t) − yi(t)

)
]

≤ φ(x) +
1
2

∑

i

ρixi(t) − 1
6d

∑

i

[
3k1/2 − d

(
βi + 2β′i

)]
x3/2
i (t)

≤ K

(2.11)

with a constant K.
Consequently,

EW(x(τk ∧ T)) ≤ EW(τk ∧ T, x(τk ∧ T))

= W(0 · x(0)) + E

∫ τk∧T

0
LW(t, x(t))dt

≤ W(0 · x(0)) +KT.

(2.12)

On the other hand, if τk ≤ T , then xi(τk) /∈ (k−1, k) for some i; therefore,

V (x(τk)) ≥ u

(
1√
k

)
∧ u
(√

k
)
−→ ∞,

EV (x(τk ∧ T)) ≥ P(τk ≤ T)
(
u

(
1√
k

)
∧ u
(√

k
)) (2.13)

so limk→∞P(τk ≤ T) = 0; Theorem 2.1 is proved.

3. Stochastically Ultimate Boundedness

Theorem 2.1 shows that under simple hypothesis conditions (1.2), (1.3), and (2.1), the
solutions of (1.1) will remain in the positive cone Rd

+. This nice positive property provides
us with a great opportunity to construct other types of Lyapunov functions to discuss how
the solutions vary in Rd

+ in more detail.
As mentioned in Section 2, the nonexplosion property in a population dynamical

system is often not good enough but the property of ultimate boundedness is more desired.
Let us now give the definition of stochastically ultimate boundedness.
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Theorem 3.1. Suppose (2.1) and the following condition:

min
i
(−aii −Ai) > max

i
dβi (3.1)

hold. Then for all θ > 0 and any initial data {xt : −τ ≤ t ≤ 0} ∈ C([−τ, 0], Rd
+), there is a positive

constant K, which is independent of the initial data, such that the solution x(t) of (1.1) has the
property that

lim sup
t→∞

E|x(t)|θ ≤ K. (3.2)

Proof. If condition (1.2) is satisfied, then

lim
θ→∞

θθA1+θ
i

(1 + θ)1+θ|aii|θ
= 0. (3.3)

By Liapunov inequality,

(
E|x|r)1/r ≤

(
E|x|θ

)1/θ
, if 0 < r < θ < ∞. (3.4)

So in the proof, we suppose θ is big enough, and these hypotheses will not effect the
conclusion of the theorem.

Define the Lyapunov functions.

V (x(t)) = Vθ(x(t)) =
d∑

i=1

xθ
i ,

(
x ∈ Rd

+

)
. (3.5)

It is sufficient to prove

lim sup
t→∞

E|V (x(t))| ≤ K0, (3.6)

with a constant K0, independent of initial data {xt : −τ ≤ t ≤ 0} ∈ C([−τ, 0], Rd
+).

We have

LVθ

(
x, y

)
=
∑

i

θxθ
i

⎡

⎣bi +
∑

j

(
aijxj + bijyj

)
⎤

⎦ +
θ(θ − 1)

2

∑

ij

γ2ijx
θ
i

=
∑

i

θxθ
i

⎛

⎝bi +
θ − 1
2

∑

j

γ2ij

⎞

⎠ + θIθ(x) + θ
∑

ij

bijx
θ
i yj

≤ cVθ(x) + θIθ(x) + θ
∑

ij

bijx
θ
i yj ,

(3.7)
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where c = maxi θ(bi+((θ−1)/2)
∑

j γ
2
ij) is constant and Iθ(x) is given in (1.9). Let z = x/‖x‖∞,

for all x ∈ Rd
+; by Lemma 1.1, we have

Iθ(x) = Iθ(z‖x‖∞) = Iθ(z)‖x‖1+θ∞ ≤ −Kθd−1−θ|x|1+θ. (3.8)

Then,

Iθ(x) ≤ −Kθ‖x‖1+θ∞ ≤ −Kθd−1Vθ+1(x),

∑

ij
bijx

θ
i yj ≤

∑

ij
b+ij

1
1 + θ

(
θx1+θ

i + y1+θ
j

)
.

(3.9)

Thus we obtain

LVθ

(
x, y

) ≤ cVθ(x) − θ

d(1 + θ)

∑

i

[
(1 + θ)Kθx

1+θ
i − dβiθx

1+θ
i − dβ′iy

1+θ
i

]
, (3.10)

and from (1.3)

lim
θ→∞

Kθ = min
i
(−aii −Ai), (3.11)

if θ is big enough, then

(1 + θ)Kθ > d
(
θβi + eτβ′i

)
. (3.12)

By Lemma 1.2 and inequality (3.12),

esEVθ(x(s))|t0

= E

∫ t

0
es[Vθ(x(s)) + LVθ(x(s))]ds

≤
∫ t

0
es
[

c1Vθ(x(s)) − θ

d(1 + θ)

∑

i

(
(1 + θ)Kθ − dβiθ

)
x1+θ
i (s)

]

ds

+ E

∫ t

0
es
∑

i

β′iθ

1 + θ
x1+θ
i (s − τ)ds (c1 = c + 1)

≤ E

∫ t

0
es
[

c1Vθ(x(s)) − θ

d(1 + θ)

∑

i

(
(1 + θ)Kθ − dβiθ − deτβ′i

)
x1+θ
i (s)

]

ds

+ Eeτ
∫0

−τ
es
∑

i

β′iθ

1 + θ
x1+θ
i (s)ds



10 Journal of Inequalities and Applications

≤ E

∫ t

0
es[c1Vθ(x(s)) − c2V1+θ(x(s))]ds + Eeτ

∫0

−τ
es
∑

i

β′iθ

1 + θ
x1+θ
i (s)ds

≤
∫ t

0
K0e

sds + Eeτ
∫0

−τ
es
∑

i

β′iθ

1 + θ
x1+θ
i (s)ds

≤ K0e
t −K0 + Eeτ

∫0

−τ
es
∑

i

β′iθ

1 + θ
x1+θ
i (s)ds,

(3.13)

where c2 = infi(θ/d(1+θ))[(1+θ)Kθ −dβiθ−deτβ′i] > 0 is a constant. Then (3.2) follows from
the above inequality and Theorem 3.1 is proved.

4. Asymptotic Pathwise Estimation

In the previous sections, we have discussed how the solutions vary in Rd
+ in probability or in

moment. In this section, we will discuss the solutions pathwisely.

Theorem 4.1. Suppose (2.1) holds and the following condition:

K1 > d3/2eτ‖B‖ (4.1)

is satisfied, where K1 is given by (1.5) and ‖B‖ = sup‖x‖=1|Bx|. Then for any initial data {xt : −τ ≤
t ≤ 0} ∈ C([−τ, 0], Rd

+), the solution x(t) of (1.1) has the property that

lim sup
t→∞

1
t

[

ln|x(t)| +
(
K1d

−3/2 − ‖B‖
)∫ t

0
|x(s)|ds

]

≤ |b| − λ

2d
a.s., (4.2)

where λ = λminGGT .

Proof. Define the Lyapunov functions

V (x) = V1(x), for x ∈ Rd
+. (4.3)

By Itô’s formula, we have

LV
(
x, y

)

V (x)
=
bTx + I1(x) + xTBy

V (x)

≤ |b||x| −K1d−1|x|2 + |x|‖B‖∣∣y∣∣
V (x)

≤ |b| −K1d
−3/2|x| + ‖B‖∣∣y∣∣.

(4.4)
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Therefore,

lnV (x)|t0 =
∫ t

0

[
LV (s)
V (s)

− Z(s)2

2

]

ds +M(t)

≤
∫ t

0

[

|b| −K1d
−3/2|x(s)| + ‖B‖∣∣y(s)∣∣ − Z(s)2

2

]

ds +M(t),

(4.5)

where

M(t) =
∫ t

0
Z(s)dw(s), (4.6)

where Z = xTG/V (x) is a real-valued continuous local martingale vanishing at t = 0 and its
quadratic form is given by

〈M(t),M(t)〉 =
∫ t

0
Z(s)2ds, (4.7)

and then

|Z|2 = V −2(x)xTGGTx ≥ λ

d
. (4.8)

Now, let δ ∈ (0, 1) be arbitrary. By the exponential martingale inequality [3–10], we can show
that for every integer n ≥ 1,

P

{

sup
0≤t≤n

[

M(t) − δ

2

∫ t

0
|Z|2ds

]

≥ 2lnn
δ

}

<
1
n2 . (4.9)

Since the series
∑∞

n=1 1/n
2 converges, the well-known Borel-Cantelli lemma yields that there

isΩ0 ⊂ Ωwith P(Ω0) = 1 such that for everyω ∈ Ω0 there exists a random integer n0(ω) such
that for all n ≥ n0(ω),

sup
0≤t≤n

[

M(t) − δ

2

∫ t

0
|Z|2ds

]

≤ 2lnn
δ

(4.10)

which implies

M(t) ≤ δ

2

∫ t

0
|Z(s)|2ds + 2

δ
ln(t + 1) on 0 ≤ t ≤ n a.s. (4.11)
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Substituting this into (4.6) and making use of the upper inequality, we derive that

lnV (x(t)) − lnV (x0) − 2
δ
ln(t + 1)

≤
∫ t

0

[
|b| − K1

d3/2
|x(s)| + ‖B‖∣∣y(s)∣∣ − λ(1 − δ)

2d

]
ds

≤ t

[
|b| − λ(1 − δ)

2d

]
−
(

K1

d3/2
− ‖B‖

)∫ t

0
|x(s)|ds +

∫0

−τ
‖B‖|x(s)|ds.

(4.12)

Therefore,

lim sup
t→∞

1
t

[

ln|x(t)| +
(
K1d

−3/2 − ‖B‖
)∫ t

0
|x(s)|ds

]

≤ |b| − λ(1 − δ)
2d

, a.s. (4.13)

Puting δ → 0, we can get inequality(4.2).

5. Further Topic

In this section, we introduce an economic model named stochastic R&D model in economic
growth [10]; for the notion of the model, see details in reference [9, 10]. The equation is

d

[
x

y

]

=

[
x

y

]{([
p

q

]

+

[−θ ξ

α −β

][
x

y

])

dt +

[
aθ bη

aα bα

][
dW1

dW2

]}

, (5.1)

where we put the delay τ = 0; it is clear that the property of the model can be done by the
example of condition (1.4). So we have the following theorem.

Theorem 5.1. Let the following conditions be satisfied

ξ − θ <
−2α3/2

√
27β

, α − β <
−2ξ3/2√
27θ

. (5.2)

Then for any given initial data (x0, y0) ∈ Rd
+, there exists a unique global solution to (5.1) on t ≥ 0.

Moreover, this solution remains in Rd
+ with probability 1.

Remark 5.2. The explanations in population dynamic of the conditions (1.2), (1.3), and (2.1)
for (1.1) are worth pointing out. Each species xi has a special ability to inhibit the fast growth;
the relationship of the species is the role of either species competition (aij < 0, i /= j), or a low
level of cooperation (aij > 0, i /= j, but they are small enough).
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