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We prove two normality criteria for families of some functions concerning Lahiri’s type, the results
generalize those given by Charak and Rieppo, Xu and Cao. As applications, we study a problem
related to R. Brück’s Conjecture and obtain a result that generalizes those given by Yang and
Zhang, Lü, Xu and Chen.

1. Introduction and Main Results

Let � denote the complex plane, and let f(z) be a nonconstant meromorphic function in � . It
is assumed that the reader is familiar with the standard notion used in the Nevanlinna value
distribution theory such as the characteristic function T(r, f), the proximity function m(r, f),
the counting functionN(r, f) (see, e.g., [1–4]), and S(r, f) denotes any quantity that satisfies
the condition S(r, f) = o(T(r, f)) as r → ∞ outside of a possible exceptional set of finite
linear measure. A meromorphic function a(z) is called a small function with respect to f(z),
provided that T(r, a) = S(r, f).

Let f(z) and g(z) be two nonconstant meromorphic functions. Let a(z) and b(z) be
small functions of f(z) and g(z). f(z) = a(z) � g(z) = b(z) means f(z) − a(z) and g(z) −
b(z) have the same zeros (counting multiplicity) and f(z) = ∞� g(z) = ∞means that f and
g have the same poles (counting multiplicity). If g(z)−b(z) = 0 whenever f(z)−a(z) = 0, we
write f(z) = a(z) ⇒ g(z) = b(z). If f(z) = a(z) ⇒ g(z) = b(z) and g(z) = b(z) ⇒ f(z) = a(z),
we write f(z) = a(z) ⇔ g(z) = b(z). If f(z) = a(z) ⇔ g(z) = a(z), then we say that f and g
share a.
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Set

P
(
f
)
= fn+n1+···+nk ,

M1

(
f, f ′, . . . , f (k)

)
= fn(f ′)n1 · · ·

(
f (k)

)nk

,

M2

(
f, f ′, . . . , f (k)

)
= fm(f ′)m1 · · ·

(
f (k)

)mk

,

γM1 = n + n1 + · · · + nk, γM2 = m +m1 + · · · +mk,

γ ∗M1
=

k−1∑

j=1

nj, ΓM1 =
k∑

j=1

jnj , γ ∗M2
=

k−1∑

j=1

mj, ΓM2 =
k∑

j=1

jmj ,

(1.1)

where n, n1, . . . , nk, m,m1, . . . , mk are nonnegative integers. Mi(f, f ′, . . . , f (k)) is called the
differential monomial of f and γMi is called the degree of Mi(f, f ′, . . . , f (k)) (i = 1, 2).

Let F be a family of meromorphic functions defined in a domain D ⊂ � . F is said to
be normal inD, in the sense of Montel, if for any sequence fn ∈ F, there exists a subsequence
fnj such that fnj converges spherically locally uniformly in D, to a meromorphic function or
∞.

According to Bloch’s principle, every condition which reduces a meromorphic
function in � to a constant makes a family of meromorphic functions in a domain D normal.
Although the principle is false in general, many authors proved normality criteria for families
of meromorphic functions starting from Picard type theorems, for instance.

Theorem A (see [5]). Let n ≥ 5 be an integer, a, b ∈ � and a/= 0. If, for a meromorphic function f ,
f ′ + afn /= b for all z ∈ � , then f must be a constant.

TheoremB (see [6, 7]). Let n ≥ 3 be an integer, a, b ∈ � , a/= 0, and letF, be a family of meromorphic
functions in a domainD. If f ′ + afn /= b for all f ∈ F, then F is a normal family.

In 2005, Lahiri [8] got a normality criterion as follows.

Theorem C. Let F be a family of meromorphic functions in a complex domain D. Let a, b ∈ � such
that a/= 0. Define

Ef =
{
z ∈ D : f ′(z) +

a

f(z)
= b

}
. (1.2)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

In 2009, Charak and Rieppo [9] generalized Theorem C and obtained two normality
criteria of Lahiri’s type.
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Theorem D. Let F be a family of meromorphic functions in a complex domain D. Let a, b ∈ � such
that a/= 0. Let m1, m2, n1, n2 be positive integers such that m1n2 − m2n1 > 0, m1 + m2 ≥ 1,
n1 + n2 ≥ 2, and put

Ef =

{

z ∈ D :
(
f(z)

)n1
(
f ′(z)

)m1 +
a

(
f(z)

)n2
(
f ′(z)

)m2
= b

}

. (1.3)

If there exists a positive constant M such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

Theorem E. Let F be a family of meromorphic functions in a complex domain D. Let a, b ∈ � such
that a /= 0. Let m1, m2, n1, n2 be nonnegative integers such thatm1n2 = m2n1, and put

Ef =

{

z ∈ D :
(
f(z)

)n1
(
f ′(z)

)m1 +
a

(
f(z)

)n2
(
f ′(z)

)m2
= b

}

. (1.4)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

Very recently, Xu and Cao [10] further extended Theorems D and E by replacing f ′

with f (k); they got

Theorem F. Let F be a family of meromorphic functions in a complex domain D, all of whose zeros
have multiplicity at least k. Let a, b ∈ � such that a /= 0. Letm1,m2, n1, n2 be nonnegative integers
such thatm1n2 −m2n1 > 0, m1 +m2 ≥ 1, n1 + n2 ≥ 2, (if n1 = n2 = 1, k ≥ 5), and put

Ef =

{

z ∈ D :
(
f(z)

)n1
(
f (k)(z)

)m1
+

a
(
f(z)

)n2
(
f (k)(z)

)m2
= b

}

. (1.5)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

Theorem G. Let F be a family of meromorphic functions in a complex domain D, all of whose zeros
have multiplicity at least k. Let a, b ∈ � such that a /= 0. Letm1 ≥ 2,m2, n1, n2 be positive integers
such thatm1n2 = m2n1, and put

Ef =

{

z ∈ D :
(
f(z)

)n1
(
f (k)(z)

)m1
+

a
(
f(z)

)n2
(
f (k)(z)

)m2
= b

}

. (1.6)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

To prove Theorems D–G, the authors used a key lemma (Lemma 2.4 in this paper)
besides Zalcman-Pang’s Lemma. It’s natural to askwhether such normality criteria of Lahiri’s
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type still hold for the general differential monomial M(f, f ′, . . . , f (k)). We study this problem
and obtain the following theorem.

Theorem 1.1. Let F be a family of meromorphic functions in a complex domain D, for every f ∈ F,
all zeros of f have multiplicity at least k. Let a, b ∈ � such that a /= 0, let m, n, k(≥ 1), mj ,
nj (j = 1, 2, . . . , k) be nonnegative integers such that

γM2ΓM1 − γM1ΓM2 > 0, nk +mk > 0, m + n ≥ 2. (1.7)

Put

Ef =

{

z ∈ D : M1

(
f, f ′, . . . , f (k)

)
+

a

M2
(
f, f ′, . . . , f (k)

) = b

}

. (1.8)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

Theorem 1.2. Let F be a family of meromorphic functions in a complex domain D, for every f ∈ F,
all zeros of f have multiplicity at least k. Let a, b ∈ � such that a /= 0, let m, n, k(≥ 1), mj ,
nj (j = 1, 2, . . . , k) be nonnegative integers such that mnmknkγ

∗
M1

γ ∗M2
> 0, (k /= 2 when n = 1 or

m = 1),m/n = mj/nj for all positive integers mj and nj , (1 ≤ j ≤ k). Put

Ef =

{

z ∈ D : M1

(
f, f ′, . . . , f (k)

)
+

a

M2
(
f, f ′, . . . , f (k)

) = b

}

. (1.9)

If there exists a positive constantM such that |f(z)| ≥ M for all f ∈ F whenever z ∈ Ef , then F is a
normal family.

As an application of Theorem 1.1, we obtain the following theorem.

Theorem 1.3. Let F be a family of holomorphic functions in a domainD, for every f ∈ F, all zeros of
f have multiplicity at least k. Let a, b(/= 0) be two finite values and n, k, n1, . . . , nk be nonnegative
integers with n ≥ 1, k ≥ 1, nk ≥ 1. For every f ∈ F, all zeros of f have multiplicity at least k, if
P(f) = a ⇔ M1(f, f ′, . . . , f (k)) = b, then F is normal in D.

Example 1.4. Let D = {z : |z| < 1} and F = {fm}. If a = 0, let fm := emz. For each function
f ∈ F, P(f) and M1(f, f ′, . . . , f (k)) share 0 in D. However, it can be easily verified that F is
not normal in D. Example 1.4 shows that the condition b /= 0 in Theorem 1.3 is sharp.

Example 1.5. Let D = {z : |z| < 1} and F = {fm}. If a /= 0, let fm := m(eλz − e−λz), where
λ is the root of z2 = b/a. For each function f ∈ F, f ′′ = (b/a)f , fn+1 = a ⇔ fnf ′′ = b in
D. However, it can be easily verified that F is not normal in D. Example 1.5 shows that the
multiplicity restriction on zeros of f in Theorem 1.3 is sharp (at least for k = 2).
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2. Preliminary Lemmas

Lemma 2.1 (see [11]). Let F be a family of meromorphic functions on the unit disc Δ, all of whose
zeros have the multiplicity at least k, then if F is not normal, there exist, for each 0 ≤ α < k

(a) a number r, 0 < r < 1,

(b) points zn, |zn| < r,

(c) functions fn ∈ F, and

(d) positive numbers ρn → 0

such that ρ−αn fn(zn + ρnξ) = gn(ξ) → g(ξ) locally uniformly with respect to the spherical metric,
where g(ξ) is a nonconstant meromorphic function on � , all of whose zeros have multiplicity at least
k, such that g#(ξ) ≤ g#(0). Here, as usual, g#(z) = |g ′(z)|/(1 + |g(z)|2) is the spherical derivative.

Lemma 2.2 (see [1, page 158]). Let F = {f} be a family of meromorphic functions in a domain
D ⊂ � . ThenF is normal inD if and only if the spherical derivatives of functions f ∈ F are uniformly
bounded on each compact subset of D.

Lemma 2.3 (see [12]). Let f be an entire function and M a positive integer. If f#(z) ≤ M for all
z ∈ � , then f has the order at most one.

Lemma 2.4 (see [13]). Take nonnegative integers n, n1, . . . , nk with n ≥ 1, n1 + n2 + · · · + nk ≥ 1
and define d = n+n1+n2+· · ·+nk. Let f be a transcendental meromorphic function with the deficiency
δ(0, f) > 3/(3d+1). Then for any nonzero value c, the function fn(f ′)n1 · · · (f (k))nk −c has infinitely
many zeros. Moreover, if n ≥ 2, the deficient condition can be omitted.

The following two lemmas can be seen as supplements of Lemma 2.4.

Lemma 2.5. Take nonnegative integers n, n1, . . . , nk with n ≥ 1, nk ≥ 1 and define d = n + n1 +
n2 + · · ·+nk . Let f be a transcendental meromorphic function whose zeros have multiplicity at least k.
Then for any nonzero value c, the function fn(f ′)n1 · · · (f (k))nk −c has infinitely many zeros, provided
that n1 + n2 + · · · + nk−1 ≥ 1 and k /= 2 when n = 1. Specially, if f is transcendental entire, the
function fn(f ′)n1 · · · (f (k))nk − c has infinitely many zeros.

Proof. If n1 + n2 + · · · + nk−1 = 0, then fn(f ′)n1 · · · (f (k))nk = fn(f (k))nk , this case has been
considered (see [5, 12–20]).

If n1 + n2 + · · · + nk−1 ≥ 1 and if n ≥ 2, we immediately get the conclusion from
Lemma 2.4. Next we consider the case n = 1.

Let Ψ = fn(f ′)n1 · · · (f (k))nk . Using the proof of Lemma 2.4 (see [13, page 161–163] ),
we obtain

(3d − 2)T
(
r, f

) ≤ 3dN
(
r,

1
f

)
+N

(
r,

1
f

)
+ 4N

(
r,

1
Ψ − c

)

+N

(
r,
Ψ − c

Ψ′

)
− 3N

(
r,
Ψ − c

Ψ′

)
+ S

(
r, f

)
.

(2.1)
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Suppose that z0 is a zero of f of multiplicity p(≥ k), then z0 is a zero of Ψ of multiplicity
dp − Σk

j=1jnj , and thus is a pole of (Ψ − c)/Ψ′ of multiplicity dp − Σk
j=1jnj − 1. Thereby, from

(2.1) we get

(3d − 2)T
(
r, f

) ≤
⎛

⎝3
k∑

j=1

jnj + 5

⎞

⎠N

(
r,

1
f

)
+ 4N

(
r,

1
Ψ − c

)
+ S

(
r, f

)

≤
3
∑k

j=1 jnj + 5

k
N

(
r,

1
f

)
+ 4N

(
r,

1
Ψ − c

)
+ S

(
r, f

)
.

(2.2)

Note that n = 1, we deduce from (2.2) that

k − 5 + 3
∑k−1

j=1
(
k − j

)
nj

k
T
(
r, f

) ≤ 4N
(
r,

1
Ψ − c

)
+ S

(
r, f

)
. (2.3)

If k = 1, then Ψ = fn(f ′)n1 ; this case has been proved as mentioned above (see [13–16]).
If k ≥ 5, then we have k − 5 + 3

∑k−1
j=1 (k − j)nj > 0; the conclusion is evident.

If 3 ≤ k ≤ 4, note that n1 + n2 + · · · + nk−1 ≥ 1 and we deduce that k − 5 + 3
∑k−1

j=1 (k−
j) nj > 0, thus the conclusion holds.

If f is a transcendental entire function, we only need to consider the case k ≥ 2. Note
that (see Hu et al. [21, page 67])

dT
(
r, f

) ≤ dN

(
r,

1
f

)
+N

(
r,

1
Ψ − c

)
−N

(
r,
Ψ − c

Ψ′

)
+ S

(
r, f

)
. (2.4)

With similar discussion as above, we obtain

⎛

⎝n +

∑k−1
j=1

(
k − j

)
nj − 1

k

⎞

⎠T
(
r, f

) ≤ N

(
r,

1
Ψ − c

)
+ S

(
r, f

)
. (2.5)

In view of n ≥ 1 and k ≥ 2, we get n + (
∑k−1

j=1 (k − j)nj − 1)/k > 0, thus we immediately obtain
the conclusion. This completes the proof of Lemma 2.5.

Lemma 2.6. Take nonnegative integers n, n1, . . . , nk, k with n ≥ 1, nk ≥ 1, k ≥ 1 and define
d = n + n1 + n2 + · · · + nk. Let f be a nonconstant rational function whose zeros have multiplicity
at least k. Then for any nonzero value c, the function fn(f ′)n1 · · · (f (k))nk − c has at least one finite
zero.

Proof. Since the case k = 1 has been proved by Charak and Rieppo [9], we only need to
consider k ≥ 2.
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Suppose that fn(f ′)n1 · · · (f (k))nk − c has no zero.

Case 1. If f is a nonconstant polynomial, since the zeros of f have multiplicity at least k, we
know that fn(f ′)n1 · · · (f (k))nk is also a nonconstant polynomial, so fn(f ′)n1 · · · (f (k))nk − c has
at least one zero, which contradicts our assumption.

Case 2. If f is a nonconstant rational function but not a polynomial. Set

f(z) = A
(z − a1)m1(z − a2)m2 · · · (z − as)ms

(z − b1)l1(z − b2)l2 · · · (z − bt)lt
, (2.6)

where A is a nonzero constant andmi ≥ k (i = 1, 2, . . . , s), lj ≥ 1 (j = 1, 2, . . . , t).
Then by mathematical induction, we get

f (k)(z) = A
(z − a1)m1−k(z − a2)m2−k · · · (z − as)ms−kgk(z)

(z − b1)l1+k(z − b2)l2+k · · · (z − bt)lt+k
, (2.7)

where gk(z) = (M−N)(M−N−1) · · · (M−N−k+1)zk(s+t−1) +cmzk(s+t−1)−1+ · · ·+c0, cm, . . . , c0
are constants and

m1 +m2 + · · · +ms = M ≥ ks, (2.8)

l1 + l2 + · · · + lt = N ≥ t. (2.9)

It is easily obtained that

deg
(
gk
) ≤ k(s + t − 1). (2.10)

Combining (2.6) and (2.7) yields

fn
(
f ′)n1 · · ·

(
f (k)

)nk

= Ad (z − a1)dm1−
∑k

j=1 jnj · · · (z − as)dms−
∑k

j=1 jnj g(z)

(z − b1)dl1+
∑k

j=1 jnj · · · (z − bt)dlt+
∑k

j=1 jnj

, (2.11)

where g(z) =
∏k

j=1g
nj

j (z) with deg(g) ≤ ∑k
j=1 jnj(s + t − 1).

Moreover, g(z) is not a constant, or else, we get gj is a constant for j = 1, . . . , k. The
leading coefficient of gj is M −N − (j − 1)(s + t).

If g1 is a constant, then we get

M = N. (2.12)

If gk is a constant, then we get

(k − 1)(s + t) = 0, (2.13)

which implies k = 1, a contradiction with the assumption k ≥ 2.
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Then from (2.11), we obtain

(
fn

(
f ′)n1 · · ·

(
f (k)

)nk
)′

= Ad (z − a1)dm1−
∑k

j=1 jnj−1 · · · (z − as)dms−
∑k

j=1 jnj−1h(z)

(z − b1)dl1+
∑k

j=1 jnj+1 · · · (z − bt)dlt+
∑k

j=1 jnj+1
, (2.14)

where h(z) is a polynomial with s + t − 1 ≤ deg(h) ≤ (
∑k

j=1 jnj + 1) (s + t − 1).
Since fn(f ′)n1 · · · (f (k))nk − c /= 0, we obtain from (2.11) that

fn(f ′)n1 · · ·
(
f (k)

)nk

= c +
B

(z − b1)dl1+
∑k

j=1 jnj · · · (z − bt)dlt+
∑k

j=1 jnj

, (2.15)

where B is a nonzero constant. Then

(
fn(f ′)n1 · · ·

(
f (k)

)nk
)′

=
B ·H(z)

(z − b1)dl1+
∑k

j=1 jnj+1 · · · (z − bt)dlt+
∑k

j=1 jnj+1
, (2.16)

where H(z) is a polynomial with deg(H) = t − 1.
From (2.14) and (2.16), we deduce that

dM −
⎛

⎝
k∑

j=1

jnj + 1

⎞

⎠s + deg(h) = deg(H) = t − 1, (2.17)

in view of deg(h) ≥ s + t + 1, together with (2.8), we have

dks ≤
k∑

j=1

jnjs, (2.18)

namely

nks +
k∑

j=1

(
k − j

)
njs ≤ 0. (2.19)

which is a contradiction since n ≥ 1.
Hence fn(f ′)n1 · · · (f (k))nk − c has at least one finite zero.
This proves Lemma 2.6.

Remark 2.7. Lemma 2.6 is a generalization of Lemma 2.2 in [10]. The proof of Lemma 2.6 is
quite different from its proof. Actually, the proof of Lemma 2.2 in [10] is incorrect. The main
problem appears at (2.2) in [10]. Since f has only zero with multiplicity at least k, then each
zero of fn is of multiplicity at least nk, but this does not mean that each zero of fn(f (k))m is
of multiplicity at least nk because the zeros of f (k) may not be the zeros of f , and thus their
multiplicity may less than nk. Therefore, the inequality of (2.2) in [10] is not valid, which
implies that the proof of Lemma 2.2 in [10] is not correct.
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Lemma 2.8. Let a, b ∈ � such that a /= 0. Letm, n, k(≥ 1),mj , nj (j = 1, 2, . . . , k) be nonnegative
integers such thatmnmknkγ

∗
M1

γ ∗M2
> 0, (k /= 2 when n = 1 orm = 1),m/n = mj/nj for all positive

integersmj and nj , (1 ≤ j ≤ k). Let f be a meromorphic function in � ; all zeros of f have multiplicity
at least k. Define

Φ(z) = M1

(
f, f ′, . . . , f (k)

)
+

a

M2
(
f, f ′, . . . , f (k)

) − b. (2.20)

Then Φ(z) has a finite zero.

Proof. The algebraic complex equation

x +
a

xm/n
= b (2.21)

has always a nonzero solution, say x0 ∈ � . By Lemmas 2.5 and 2.6, the differential
monomial M1(f, f ′, . . . , f (k)) cannot avoid it and thus there exists z0 ∈ � such that
M1(f(z0), f ′(z0), . . . , f (k)(z0)) = x0.

Under the assumptions, for all positive integersm, n, mj , nj , we have

m = n
m

n
, mj = nj

m

n
. (2.22)

Thus

Φ(z0) = M1

(
f(z0), f ′(z0), . . . , f (k)(z0)

)
+

a

Mm/n
1

(
f(z0), f ′(z0), . . . , f (k)(z0)

) − b = 0. (2.23)

This proves Lemma 2.8.

Lemma 2.9 (see [2, page 51]). If f is an entire function of order σ(f), then

σ
(
f
)
= lim sup

r→∞

log ν
(
r, f

)

log r
, (2.24)

where ν(r, f) denotes the central-index of f(z).

Lemma 2.10 (see [22, page 187–199] or [2, page 51]). If g is a transcendental entire function, let
0 < δ < 1/4 and z be such that |z| = r and that |g(z)| = M(r, g)ν(r, g)−(1/4)+δ holds. Then there
exists a set F ⊂ �+ of finite logarithmic measure, that is,

∫
F dt/t < +∞ such that

g(m)(z)
g(z)

=

(
ν
(
r, g

)

z

)m

(1 + o(1)) (2.25)

holds for all m ≥ 0 and all r /∈ F.
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3. Proof of Theorem 1.1

Without loss of generality, we may assume D = Δ = {z : |z| < 1}. Suppose that F is not
normal at z0 ∈ D. By Lemma 2.1, for 0 ≤ α < k, there exist r < 1, zj ∈ Δ such that zj → z0,
fj ∈ F and ρj → 0 such that gj(ξ) = ρ−αj fj(zj + ρjξ) → g(ξ) locally uniformly with respect
to the spherical metric, where g(ξ) is a nonconstant meromorphic function on � , all of whose
zeros have multiplicity at least k. For simplicity, we denote fj(zj + ρjξ) by fj . By Lemmas 2.4
and 2.6, there exists ξ0 ∈ � such that

g(ξ0)n
(
g ′(ξ0)

)n1 · · ·
(
g(k)(ξ0)

)nk

+
a

g(ξ0)m
(
g ′(ξ0)

)m1 · · · (g(k)(ξ0)
)mk

= 0. (3.1)

Obviously, g(ξ0) /= 0,∞, so in some neighborhood of ξ0, gj(ξ) converges uniformly to g(ξ).
We have

gj(ξ)n
(
g ′
j(ξ)

)n1 · · ·
(
g
(k)
j (ξ)

)nk

+
a

gj(ξ)m
(
g ′
j(ξ)

)m1 · · ·
(
g
(k)
j (ξ)

)mk
− ρ

αγM2−ΓM2
j b

= ρ
−αγM1+ΓM1
j fn

j

(
f ′
j

)n1 · · ·
(
f
(k)
j

)nk

+
a

ρ
−αγM2+ΓM2
j fm

j

(
f ′
j

)m1 · · ·
(
f
(k)
j

)mk
− ρ

αγM2−ΓM2
j b

= ρ
αγM2−ΓM2
j

⎡

⎢
⎣ρ

−α(γM1+γM2 )+ΓM1+ΓM2
j fn

j

(
f ′
j

)n1 · · ·
(
f
(k)
j

)nk

+
a

fm
j

(
f ′
j

)m1 · · ·
(
f
(k)
j

)mk
− b

⎤

⎥
⎦.

(3.2)

Let α = (ΓM1 + ΓM2)/(γM1 + γM2) < k, and under the assumption γM2ΓM1 − γM1ΓM2 > 0, we
obtain

gn(g ′)n1 · · ·
(
g(k)

)nk

+
a

gm
(
g ′)m1 · · · (g(k)

)mk (3.3)

is the uniform limit of

ρ
(γM2ΓM1−γM1ΓM2 )/(γM1+γM2 )
j

⎡

⎢
⎣fn

j

(
f ′
j

)n1 · · ·
(
f
(k)
j

)nk

+
a

fm
j

(
f ′
j

)m1 · · ·
(
f
(k)
j

)mk
− b

⎤

⎥
⎦ (3.4)

in some neighborhood of ξ0.
By (3.1) and Hurwitz’s theorem, there exists a sequence ξj → ξ0 such that for all large

values of j and ζj = zj + ρjξj ,

(
fj
(
ζj
))n(

f ′
j

(
ζj
))n1 · · ·

(
f
(k)
j

(
ζj
))nk

+
a

(
fj
(
ζj
))m(

f ′
j

(
ζj
))m1 · · ·

(
f
(k)
j

(
ζj
))mk

= b. (3.5)
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Hence for all large values of j, ζj = zj + ρjξj ∈ Ef , it follows from the condition that

∣∣gj
(
ξj
)∣∣ =

∣∣fj
(
ζj
)∣∣

ραj
≥ M

ραj
. (3.6)

Since ξ0 is not a pole of g, there exists a positive number K such that in some neighborhood
of ξ0 we get |g(ξ)| ≤ K.

Since gj(ξ) converges uniformly to g(ξ) in some neighborhood of ξ0, we get for all large
values of j and for all ξ in that neighborhood of ξ0

∣∣gj(ξ) − g(ξ)
∣∣ < 1. (3.7)

By (3.7), we get

K ≥ ∣
∣g
(
ξj
)∣∣ ≥ ∣

∣gj
(
ξj
)∣∣ − ∣

∣gj
(
ξj
) − g

(
ξj
)∣∣ ≥ M

ραj − 1
, (3.8)

which is a contradiction since ρj → 0 as j → ∞.
This completes the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Without loss of generality, we may assume D = Δ = {z : |z| < 1}. Suppose that F is not
normal in D. By Lemma 2.1, for 0 ≤ α < k, there exist r < 1, zj ∈ Δ, fj ∈ F and ρj → 0+ such
that gj(ξ) = ρ−αj fj(zj + ρjξ) → g(ξ) locally uniformly with respect to the spherical metric,
where g(ξ) is a nonconstant meromorphic function on � , all of whose zeros have multiplicity
at least k. By Lemma 2.8, we get

g(ξ0)n
(
g ′(ξ0)

)n1 · · ·
(
g(k)(ξ0)

)nk

+
a

g(ξ0)m
(
g ′(ξ0)

)m1 · · · (g(k)(ξ0)
)mk

− b = 0, (4.1)

for some ξ0 ∈ � .
We can arrive at a contradiction by using the same argument as in the latter part of

proof of Theorem 1.1.
This completes the proof of Theorem 1.2.

5. Applications

Proof of Theorem 1.3. We shall divide our argument into two cases.

Case 1 (a /= 0). Let M be a positive constant with M ≤ γM1

√
|a|; under the assumptions, we

have

Ef =
{
z ∈ D : M1

(
f, f ′, . . . , f (k)

)
= b

}
(5.1)
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and |f(z)| ≥ M for all f ∈ Fwhenever z ∈ Ef ; by Lemmas 2.5 and 2.6, using the similar proof
of Theorem 1.1, we obtain the conclusion.

Case 2 (a = 0). For f ∈ F, if f(z0) = 0 for z0 ∈ D, since P(f) = 0 ⇒ M1(f, f ′, . . . , f (k)) = b, we
have b = 0, which is a contradiction, hence f /= 0.

If M1(f(z0), f ′(z0), . . . , f (k)(z0)) = b for z0 ∈ D, since M1(f, f ′, . . . , f (k)) = b ⇒ P(f) =
0, we immediately get f(z0) = 0 and hence M1(f, f ′, . . . , f (k)) = b = 0, which is still a
contradiction, hence M1(f, f ′, . . . , f (k)) /= b.

Suppose that F is not normal in D, by Lemma 2.1, there exist r < 1, zj ∈ Δ, fj ∈ F,
and ρj → 0+ such that gj(ξ) = ρ

−ΓM1/γM1
j fj(zj + ρjξ) → g(ξ) locally uniformly with respect

to the spherical metric, where g(ξ) is a nonconstant entire function, all of whose zeros have
multiplicity at least k. By Hurwitz’s theorem, we have

(i) g ≡ 0 or g /= 0, and

(ii) gn(g ′)n1 · · · (g(k))nk ≡ b or gn(g ′)n1 · · · (g(k))nk /= b.

Since g is not a constant, we have g /= 0. By Lemma 2.3, g has the order at most 1, so g(ξ) =
ecξ+d, where c(/= 0), d are two constants. Thus

gn(ξ)
(
g ′)n1(ξ) · · ·

(
g(k)

)nk

(ξ) = cΓM1 eγM1 (cξ+d). (5.2)

If gn(g ′)n1 · · · (g(k))nk ≡ b, we immediately get a contradiction. Hence

gn(g ′)n1 · · ·
(
g(k)

)nk

/= b, (5.3)

but by Lemmas 2.5 and 2.6 we get a contradiction again.
This proves Theorem 5.1.

Furthermore, using Theorem 1.3, we obtain a uniqueness theorem related to R. Brück’s
Conjecture. Firstly, we recall this conjecture.

R. Brück’s Conjecture

Let f be a nonconstant entire function such that the hyper-order σ2(f) is not a positive integer and
σ2(f) < ∞. If f and f ′ share a finite value a CM, then

f ′ − a

f − a
= c, (5.4)

where c is a nonzero constant and the hyper-order σ2(f) is defined as follow:

σ2
(
f
)
= lim sup

r→∞

log+log+T
(
r, f

)

log r
. (5.5)
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Since then, many results related to this conjecture have been obtained. We refer the
reader to Brück [23], Gundersen and Yang [24], Yang [25], Chen and Shon [26], Li and Gao
[27], and Wang [28].

It’s interesting to ask what happens if f is replaced by fn in Brück’s Conjecture.
Recently, Yang and Zhang [29] considered this problem and got the following theorem.

Theorem H. Let f be a nonconstant entire function. n ≥ 7 be an integer, and let F = fn. If F and F ′

share 1 CM, then F = F ′, and f assumes the form

f(z) = cez/n, (5.6)

where c is a nonzero constant.

Lü et al. [30] improves Theorem H and obtained the following theorem.

Theorem I. Let Q1(/≡ 0) be a polynomial, and let n ≥ 2 be an intege; let f(z) be a transcendental
entire function, and let F(z) = (f(z))n. If F(z) and F ′(z) shareQ1 CM, then

f(z) = Aez/n, (5.7)

where A is a nonzero constant.

We obtain a more general result as follows.

Theorem 5.1. Let n, k, n1, . . . , nk be nonnegative integers with n ≥ 1, k ≥ 1, nk ≥ 1, and a, b be two
finite nonzero values. Let f be a nonconstant entire function whose zeros have multiplicity at least k.
If fn+n1+···+nk = a� fn(f ′)n1 · · · (f (k))nk = b, then

fn
(
f ′)n1 · · · (f (k))nk − b

fn+n1+···+nk − a
= c, (5.8)

where c is a nonzero constant. Specially, if a = b, then f = c1eωz, where c1 is a nonzero constant, ω
is the root of tΓM1 = 1.

Proof of Theorem 5.1. First we assert that σ(f) ≤ 1. Let

F =
{
gω(z) = f(z +ω), ω ∈ �

}
, z ∈ D = Δ. (5.9)

Under the assumptions of Theorem 1.3, we get that F is a normal family of holomorphic
functions in D. By Lemma 2.2, there exists a constant M such that

f#(ω) =

∣∣f ′(ω)
∣∣

1 +
∣∣f(ω)

∣∣2
=

∣∣g ′
ω(0)

∣∣

1 +
∣∣gω(0)

∣∣2
= g#

ω(0) ≤ M, (5.10)

for all ω ∈ � . Hence by Lemma 2.3, f has the order at most 1.
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Since fn+n1+···+nk = a � fn(f ′)n1 · · · (f (k))nk = b, f must be a transcendental entire
function and

fn
(
f ′)n1 · · · (f (k))nk − b

fn+n1+···+nk − a
= eα(z). (5.11)

From (5.11), we have T(r, eα(z)) = O(T(r, f)), hence σ(eα) ≤ σ(f) ≤ 1 and α(z) is a polynomial
with deg(α) ≤ 1. Note that f is transcendental, we have M(r, f) → ∞, as r → ∞. Let
M(rn, f) = f(zn), where zn = rneiθn , we deduce

lim
rn →∞

1
f(zn)

= lim
rn →∞

1
M

(
rn, f

) = 0. (5.12)

By Lemma 2.10, there exists a subset F1 ⊂ (1,∞) of finite logarithmic measure, namely∫
F1
dt/t < +∞ such that for some point zn = rneiθn (θn ∈ (0, 2π)) satisfying |zn| = rn /∈ F1

and M(rn, f) = |f(zn)|, we obtain

f (k)(zn)
f(zn)

=

(
ν
(
rn, f

)

zn

)k

(1 + o(1)), (5.13)

as r → ∞.
Rewrite (5.11) as

(
f ′/f

)n1 · · · (f (k)/f
)nk − b/fn+n1+···+nk

1 − a/fn+n1+···+nk
= eα(z), (5.14)

it follows from (5.12)–(5.14) and Lemma 2.8 that

|α(zn)| =
∣∣∣log eα(zn)

∣∣∣ =
∣∣∣ΓM1

(
log ν

(
rn, f

) − log
(
rne

iθn
))

+ o(1)
∣∣∣

=
∣
∣ΓM1

(
log ν

(
rn, f

) − log rn − iθ(rn)
)
+ o(1)

∣
∣

≤ O
(
log rn

)
,

(5.15)

as rn → ∞. Since α(z) is a polynomial, from (5.15), we deduce that α(z) is a constant. Let
eα = c, then c is a nonzero constant. Thus

fn
(
f ′)n1 · · · (f (k))nk − b

fn+n1+···+nk − a
= c. (5.16)

Specially, if a = b, suppose that f has a zero z0, by letting z = z0 in (5.16), we get c = 1; hence

fn1+···+nk =
(
f ′)n1 · · ·

(
f (k)

)nk

. (5.17)
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Suppose that z0 is a zero of f with multiplicity p(≥ k), then z0 is a zero of fn1+···+nk with
multiplicity (n1+· · ·+nk)p, and a zero of (f ′)n1 · · · (f (k))nk with multiplicity (n1+· · ·+nk)p−ΓM1 ,
which is a contradiction. So f has no zero, note that f is a transcendental entire function and
σ(f) ≤ 1, we have f = c1e

tz, where c1 and t are two finite nonzero values. In view of (5.16)
and a = b, we deduce that

c
ΓM1
1

(
tΓM1 − c

)
eγM1 tz = b(1 − c); (5.18)

hence c = 1 and tΓM1 = c = 1. f = c1eωz, ω is the root of tΓM1 = 1.
This completes the proof of Theorem 5.1.
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