
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2011, Article ID 839679, 24 pages
doi:10.1155/2011/839679

Research Article
Tightly Proper Efficiency in Vector Optimization
with Nearly Cone-Subconvexlike Set-Valued Maps

Y. D. Xu and S. J. Li

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

Correspondence should be addressed to Y. D. Xu, xyd04010241@126.com

Received 26 September 2010; Revised 17 December 2010; Accepted 7 January 2011

Academic Editor: Kok Teo

Copyright q 2011 Y. D. Xu and S. J. Li. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

A scalarization theorem and two Lagrange multiplier theorems are established for tightly proper
efficiency in vector optimization involving nearly cone-subconvexlike set-valued maps. A dual is
proposed, and some duality results are obtained in terms of tightly properly efficient solutions. A
new type of saddle point, which is called tightly proper saddle point of an appropriate set-valued
Lagrange map, is introduced and is used to characterize tightly proper efficiency.

1. Introduction

One important problem in vector optimization is to find efficient points of a set. As observed
by Kuhn, Tucker and later by Geoffrion, some efficient points exhibit certain abnormal
properties. To eliminate such abnormal efficient points, there are many papers to introduce
various concepts of proper efficiency; see [1–8]. Particularly, Zaffaroni [9] introduced the
concept of tightly proper efficiency and used a special scalar function to characterize the
tightly proper efficiency, and obtained some properties of tightly proper efficiency. Zheng [10]
extended the concept of superefficiency from normed spaces to locally convex topological
vector spaces. Guerraggio et al. [11] and Liu and Song [12] made a survey on a number
of definitions of proper efficiency and discussed the relationships among these efficiencies,
respectively.

Recently, several authors have turned their interests to vector optimization of set-
valued maps, for instance, see [13–18]. Gong [19] discussed set-valued constrained vector
optimization problems under the constraint ordering cone with empty interior. Sach [20]
discussed the efficiency, weak efficiency and Benson proper efficiency in vector optimization
problem involving ic-cone-convexlike set-valued maps. Li [21] extended the concept of
Benson proper efficiency to set-valued maps and presented two scalarization theorems
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and Lagrange mulitplier theorems for set-valued vector optimization problem under cone-
subconvexlikeness. Mehra [22], Xia and Qiu [23] discussed the superefficiency in vector
optimization problem involving nearly cone-convexlike set-valued maps, nearly cone-
subconvexlike set-valued maps, respectively. For other results for proper efficiencies in
optimization problems with generalized convexity and generalized constraints, we refer to
[24–26] and the references therein.

In this paper, inspired by [10, 21–23], we extend the concept of tight properness from
normed linear spaces to locally convex topological vector spaces, and study tightly proper
efficiency for vector optimization problem involving nearly cone-subconvexlike set-valued
maps and with nonempty interior of constraint cone in the framework of locally convex
topological vector spaces.

The paper is organized as follows. Some concepts about tightly proper efficiency,
superefficiency and strict efficiency are introduced and a lemma is given in Section 2. In
Section 3, the relationships among the concepts of tightly proper efficiency, strict efficiency
and superefficiency in local convex topological vector spaces are clarified. In Section 4, the
concept of tightly proper efficiency for set-valued vector optimization problem is introduced
and a scalarization theorem for tightly proper efficiency in vector optimization problems
involving nearly cone-subconvexlike set-valued maps is obtained. In Section 5, we establish
two Lagrange multiplier theorems which show that tightly properly efficient solution of the
constrained vector optimization problem is equivalent to tightly properly efficient solution
of an appropriate unconstrained vector optimization problem. In Section 6, some results on
tightly proper duality are given. Finally, a new concept of tightly proper saddle point for
set-valued Lagrangian map is introduced and is then utilized to characterize tightly proper
efficiency in Section 7. Section 8 contains some remarks and conclusions.

2. Preliminaries

Throughout this paper, let X be a linear space, Y and Z be two real locally convex topological
spaces (in brief, LCTS), with topological dual spaces Y ∗ and Z∗, respectively. For a setA ⊂ Y ,
clA, intA, ∂A, and Ac denote the closure, the interior, the boundary, and the complement of
A, respectively. Moreover, by B we denote the closed unit ball of Y . A set C ⊂ Y is said to be
a cone if λc ∈ C for any c ∈ C and λ ≥ 0. A cone C is said to be convex if C + C ⊂ C, and it is
said to be pointed if C ∩ (−C) = {0}. The generated cone of C is defined by

coneC := {λc | λ ≥ 0, c ∈ C}. (2.1)

The dual cone of C is defined as

C+ :=
{
ϕ ∈ Y ∗ | ϕ(c) ≥ 0, ∀c ∈ C

}
(2.2)

and the quasi-interior of C+ is the set

C+i :=
{
ϕ ∈ Y ∗ | ϕ(c) > 0, ∀c ∈ C \ {0Y}

}
. (2.3)
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Recall that a base of a cone C is a convex subset of C such that

0Y /∈ clB, C = coneB. (2.4)

Of course,C is pointedwheneverC has a base. Furthermore, ifC is a nonempty closed convex
pointed cone in Y , then C+i /= ∅ if and only if C has a base.

Also, in this paper, we assume that, unless indicated otherwise, C ⊂ Y and D ⊂ Z are
pointed closed convex cones with intC/= ∅ and intD/= ∅, respectively.

Definition 2.1 (see [27]). Let Θ be a base of C. Define

Θst :=
{
ϕ ∈ Y ∗ : ∃t > 0 such that ϕ(θ) ≥ t, ∀θ ∈ Θ

}
. (2.5)

Cheng and Fu in [27] discussed the propositions ofΘst, and the following remark also
gives some propositions of Θst.

Remark 2.2 (see [27]). (i) Let ϕ ∈ Y ∗ \ {0Y ∗ }. Then ϕ ∈ Θst if and only if there exists a
neighborhood U of 0Y such that ϕ(U −Θ) < (≤)0.

(ii) If Θ is a bounded base of C, then Θst = C+i.

Definition 2.3. A point y ∈ S ⊂ Y is said to be efficient with respect to C (denoted y ∈ E(S,C))
if

(
S − y

) ∩ −C = {0Y}. (2.6)

Remark 2.4 (see [28]). If C is a closed convex pointed cone and 0Y ∈ H ⊂ C, then E(S,C) =
E(S +H,C).

In [10], Zheng generalized two kinds of proper efficiency, namely, Henig proper
efficiency and superefficiency, from normed linear spaces to LCTS. And Fu [8] generalized a
kind of proper efficiency, namely strict efficiency, from normed linear spaces to LCTS. Let C
be an ordering cone with a base Θ. Then 0Y /∈ clΘ, by the Hahn Banach separation theorem,
there are a fΘ ∈ Y ∗ and an α > 0 such that

α = inf
{
fΘ(θ) | θ ∈ Θ

}
. (2.7)

Let UΘ = {y ∈ Y : |fΘ(y)| < α/2}. ThenUΘ is a neighborhood of 0Y and

inf
{
fΘ

(
y
)
: y ∈ Θ +UΘ

} ≥ α

2
. (2.8)

It is clear that, for each convex neighborhood U of 0Y with U ⊂ UΘ, Θ + U is convex and
0Y /∈ cl(Θ +U). Obviously, SU(Θ) := cone(U + Θ) is convex pointed cone, indeed, Θ + U is
also a base of SU(Θ).
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Definition 2.5 (see [8]). Suppose that S is a subset of Y andB(C) denotes the family of all bases
of C. y is said to be a strictly efficient point with respect toΘ ∈ B(C), written as y ∈ STE(S,Θ),
if there is a convex neighborhood U of 0Y such that

cl cone
(
S − y

) ∩ (U −Θ) = ∅. (2.9)

y is said to be a strictly efficient point with respect to C, written as, y ∈ STE(S,C) if

y ∈
⋂

Θ∈B(C)
STE(S,Θ). (2.10)

Remark 2.6. Since U − Θ is open in Y , thus cl cone(S − y) ∩ (U − Θ) = ∅ is equivalent to
cone(S − y) ∩ (U −Θ) = ∅.

Definition 2.7. The point y ∈ S ⊂ Y is called tightly properly efficient with respect toΘ ∈ B(C)
(denoted y ∈ TPE(S,Θ)) if there exists a convex cone K ⊂ Y with C \ {0Y} ⊂ intK satisfying
(S − y) ∩ −K = {0Y} and there exists a neighborhood U of 0Y such that

(−K)c ∩ (U −Θ) = ∅. (2.11)

y is said to be a tightly properly efficient point with respect to C, written as, y ∈ TPE(S,C) if

y ∈
⋂

Θ∈B(C)
TPE(S,Θ). (2.12)

Now, we give the following example to illustrate Definition 2.7.

Example 2.8. Let Y = R2, S = {(x, y) ∈ Y | −x ≤ y ≤ 1 and x ≤ 1}. Given C (see Figure 1).
Thus, it follows from the direct computation and Definition 2.7 that

TPE(S,C) =
{(
x, y

) | y = −x, −1 ≤ x ≤ 1
}
. (2.13)

Remark 2.9. By Definitions 2.7 and 2.3, it is easy to verify that

TPE(S,C) ⊆ E(S,C), (2.14)

but, in general, the converse is not valid. The following example illustrates this case.



Journal of Inequalities and Applications 5

y

xO

C

3x − y = 0

x − 3y = 0

Figure 1: The set C.

Example 2.10. Y = R2, S = {(x, y) ∈ [0, 1] × [0, 1] | y ≥ 1 −
√
1 − (x − 1)2}, and C = R2

+. Then,
by Definitions 2.3 and 2.7, we get

E(S,C) =
{
(
x, y

) | y = 1 −
√
1 − (x − 1)2, x ∈ [0, 1]

}
,

TPE(S,C) = E(S,C) \ {(0, 1), (1, 0)},
(2.15)

thus, E(S,C)/⊆TPE(S,C).

Definition 2.11 (see [10]). y ∈ S is called a superefficient point of a subset S of Y with respect
to ordering cone C, written as y ∈ SE(S,C), if, for each neighborhood V of 0Y , there is
neighborhood U of 0Y such that

cl cone
(
S − y

) ∩ (U −C) ⊂ V. (2.16)

Definition 2.12 (see [29, 30]). A set-valued map F : X → 2Y is said to be nearly C-
subconvexlike on X if cl cone(F(X) + C) is convex.

Given the two set-valued maps F : X → 2Y , G : X → 2Z, let

H(x) = (F(x), G(x)), x ∈ X. (2.17)

The product F × G is called nearly C × D-subconvexlike on X if H is nearly C × D-
subconvexlike on X. Let L(Z, Y) be the space of continuous linear operators from Z to Y ,
and let

L+(Z, Y) = {T ∈ L(Z, Y) : T(D) ⊂ C}. (2.18)

Denote by (F,G) the set-valued map from X to Y × Z defined by

(F,G)(x) = F(x) ×G(x). (2.19)
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If ϕ ∈ Y ∗, T ∈ L(Z, Y), we also define ϕF : X → 2R and F + TG : X → 2Y by

(
ϕF

)
(x) = ϕ[F(x)], (F + TG)(x) = F(x) + T[G(x)], (2.20)

respectively.

Lemma 2.13 (see [23]). If (F,G) is nearly C ×D-subconvexlike on X, then:

(i) for each ϕ ∈ C+ \ {0Y ∗ }, (ϕF,G) is nearly R+ ×D-subconvexlike on X;

(ii) for each T ∈ L+(Z, Y), F + TG is nearly C-subconvexlike on X.

3. Tightly Proper Efficiency, Strict Efficiency, and Superefficiency

In [11, 12], the authors introduced many concepts of proper efficiency (tightly proper
efficiency except) for normed spaces and for topological vector spaces, respectively. Further-
more, they discussed the relationships between superefficiency and other proper efficiencies.
If we can get the relationship between tightly proper efficiency and superefficiency, then we
can get the relationships between tightly proper efficiency and other proper efficiencies. So,
in this section, the aim is to get the equivalent relationships between tightly proper efficiency
and superefficiency under suitable assumption by virtue of strict efficiency.

Lemma 3.1. If C has a bounded base Θ, then

TPE(S,Θ) = TPE(S,C). (3.1)

Proof. From the definition of TPE(S,C) and TPE(S,Θ), we only need prove that TPE(S,Θ) ⊂
TPE(S,Θ′) for any Θ′ ∈ B(C). Indeed, for each Θ′ ∈ B(C), by the separation theorem, there
exists f ∈ Y ∗ such that

α = inf
{
f(θ) | θ ∈ Θ′} > 0. (3.2)

Hence, f ∈ C+i. Since Θ is bounded, there exists λ > 0 such that

λΘ ⊂ {
y ∈ Y | 0 < f

(
y
)
< α

}
. (3.3)

It is clear that λΘ ∈ B(C) and TPE(S,Θ) = TPE(S, λΘ). If there exists y ∈ TPE(S,Θ) such that
y /∈ TPE(S,Θ′), then for any convex cone K with C \ {0Y} ⊂ intK satisfying (S − y) ∩ (−K) =
{0Y} and for any neighborhood U of 0Y such that

(−K)c ∩ (
U −Θ′)

/= ∅. (3.4)

It implies that there exists y ∈ Y such that

y ∈ (−K)c ∩ (
U −Θ′). (3.5)
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Then there is u ∈ U and θ′ ∈ Θ′ such that y = u − θ′, since θ′ ∈ Θ′ ∈ C = cone(λΘ), then
there exists μ > 0 and θ ∈ λΘ such that θ′ = μθ. By (3.2) and (3.3), we see that μ ≥ 1.
Therefore, u/μ ∈ U and y/μ ∈ (−K)C ∩ (U−λΘ), it is a contradiction. Therefore, TPE(S,Θ) =
TPE(S, λΘ) = TPE(S,Θ′) for each Θ′ ∈ B(C).

Proposition 3.2. If C has a bounded base Θ, then

SE(S,C) ⊆ TPE(S,C). (3.6)

Proof. By Definition 2.11, for any y ∈ SE(S,C), there exists a convex neighborhood U of {0Y}
with U ⊂ UΘ such that

cl cone
(
S − y

) ∩ −SU(Θ) = {0Y}. (3.7)

It is easy to verify that

(−SU(Θ))c ∩ (U −Θ) = ∅. (3.8)

Now, let K = SU(Θ) and by Lemma 3.1, we have

y ∈ TPE(S,Θ) = TPE(S,C). (3.9)

which implies that SE(S,C) ⊂ TPE(S,C).

Proposition 3.3. Let Θ ∈ B(C). Then

TPE(S,Θ) ⊆ STE(S,Θ). (3.10)

Proof. For each y ∈ TPE(S,Θ), there exists a convex cone K ⊂ Y with C \ {0Y} ⊂ intK
satisfying

(
S − y

) ∩ −K = {0Y}, (3.11)

and there exists a neighborhood U of 0Y such that

(−K)c ∩ (U −Θ) = ∅. (3.12)

Since expression (3.11) can be equivalently expressed as

cone
(
S − y

) ∩ −K = {0Y}, (3.13)

cone(S − y) ⊂ [(−K)c ∪ {0Y}], and by (3.12), we have

cone
(
S − y

) ∩ (U −Θ) = ∅. (3.14)
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Figure 2: The set S.

Since U −Θ is open in Y , we get

cl cone
(
S − y

) ∩ (U −Θ) = ∅. (3.15)

It implies that y ∈ STE(S,Θ). Therefore this proof is completed.

Remark 3.4. If C does not have a bounded base, then the converse of Proposition 3.3 may not
hold. The following example illustrates this case.

Example 3.5. Let Y = R2, S = {(x, y) ∈ [0, 2] × [0, 2] | y ≥ 1 −
√
1 − (x − 1)2 for x ∈ [0, 1]} (see

Figure 2) and C = {(x, y) ∪ {(0, 0)} | x > 0, y ∈ R}.
Then, letΘ = {(x, y) | x = 1, y ∈ R}, we haveΘ ∈ B(C). It follows from the definitions

of STE(S,Θ) and TPE(S,Θ) that

STE(S,Θ) =
{(

x, 1 −
√
1 − (x − 1)2

)
| x ∈ [0, 1]

}
∪ {(

0, y
) | y ∈ (1, 2]

} ∪ {(x, 0) | x ∈ (1, 2]},

TPE(S,Θ) =
{(

x, 1 −
√
1 − (x − 1)2

)
| x ∈ (0, 1)

}
,

(3.16)

respectively. Thus, the converse of Proposition 3.3 is not valid.

Proposition 3.6 (see [8]). If C has a bounded base Θ, then

SE(S,Θ) = SE(S,C) = STE(S,C) = STE(S,Θ). (3.17)

From Propositions 3.2, 3.3, and 3.6, we can get immediately the following corollary.
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Corollary 3.7. If C has a bounded base Θ, then

SE(S,C) = TPE(S,C) = STE(S,C). (3.18)

Example 3.8. Let Y = R2, S be given in Example 3.5 and C = R2
+. Then

TPE(S,C) = SE(S,C) = STE(S,C) =
{(

x, 1 −
√
1 − (x − 1)2

)
| x ∈ (0, 1)

}
. (3.19)

Lemma 3.9 (see [23]). Let C ⊂ Y be a closed convex pointed cone with a bounded base Θ and S ⊂ Y .
Then, SE(S,C) = SE(S + C,C).

From Corollary 3.7 and Lemma 3.9, we can get the following proposition.

Proposition 3.10. If C has a bounded base Θ and S is a nonempty subset of Y , then TPE(S,C) =
TPE(S +C,C).

4. Tightly Proper Efficiency and Scalarization

Let D ⊂ Z be a closed convex pointed cone. We consider the following vector optimization
problem with set-valued maps

C-min F(x),

s.t. G(x) ∩ (−D)/= ∅, x ∈ X,
(VP)

where F : X → 2Y , G : X → 2Z are set-valued maps with nonempty values. LetA = {x ∈ X :
G(x) ∩ (−D)/= ∅} be the set of all feasible solutions of (VP).

Definition 4.1. x ∈ A is said to be a tightly properly efficient solution of (VP), if there exists
y ∈ F(x) such that y ∈ TPE(F(A), C).

We call (x, y) is a tightly properly efficient minimizer of (VP). The set of all tightly
properly efficient solutions of (VP) is denoted by TPE(VP).

In association with the vector optimization problem (VP) of set-valued maps, we
consider the following scalar optimization problem with set-valued map F:

min ϕ(F(x)),

s.t. x ∈ A,
(SPϕ)

where ϕ ∈ Y ∗ \ {0Y ∗}. The set of all optimal solutions of (SPϕ) is denoted by M(SPϕ), that is,

M
(
SPϕ

)
=
{
x ∈ A : ∃y ∈ F(x) such that ϕ

(
y
) ≤ ϕ

(
y
)
, ∀y ∈ F(A)

}
. (4.1)

The fundamental results characterize tightly properly efficient solution of (VP) in terms of
the solutions of (SPϕ) are given below.
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Theorem 4.2. Let the cone C have a bounded base Θ. Let x ∈ A, y ∈ F(x), and F − y be nearly C-
subconvexlike on A. Then y ∈ TPE(F(A), C) if and only if there exists ϕ ∈ C+i such that ϕ((F(A) −
y)) ≥ 0.

Proof. Necessity. Let y ∈ TPE(F(A), C). Then, by Lemma 3.1 and Proposition 3.10, we have
y ∈ TPE(F(A) + C,Θ). Hence, there exists a convex cone K with C \ {0Y} ⊂ intK satisfying
(F(A) + C − y) ∩ (−K) = {0Y} and there exists a convex neighborhood U of 0Y such that

(−K)c ∩ (U −Θ) = ∅. (4.2)

From the above expression and (F(A) + C − y) ∩ (−K) = {0Y}, we have

cone
(
F(A) +C − y

) ∩ (U −Θ) = ∅. (4.3)

Since U −Θ is open in Y , we have

cl cone
(
F(A) + C − y

) ∩ (U −Θ) = ∅. (4.4)

By the assumption that F − y is nearly C-subconvexlike on A, thus cl cone(F(A) + C − y) is
convex set. By the Hahn-Banach separation theorem, there exists ϕ ∈ Y ∗ \ {0Y ∗ } such that

ϕ
(
cl cone

(
F(A) +C − y

))
> ϕ(U −Θ). (4.5)

It is easy to see that

ϕ
(
cone

(
F(A) +C − y

)) ≥ 0, ϕ(U −Θ) < 0. (4.6)

Hence, we obtain

ϕ
(
F(A) − y

) ≥ 0. (4.7)

Furthermore, according to Remark 2.2, we have ϕ ∈ C+i.
Sufficiency. Suppose that there exists ϕ ∈ C+i such that ϕ(F(A) − y) ≥ 0. Since C has

a bounded base Θ, thus by Remark 2.2(ii), we know that ϕ ∈ Θst. And by Remark 2.2(i), we
can take a convex neighborhood U of 0Y such that

ϕ(U −Θ) < 0. (4.8)

By ϕ(F(A) − y) ≥ 0, we have

ϕ
(
cl cone

(
F(A) − y

)) ≥ 0. (4.9)

From the above expression and (4.8), we get

cl cone
(
F(A) − y

) ∩ (U −Θ) = ∅. (4.10)
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Figure 3: The set F(A).

Therefore, y ∈ STE(S,Θ). Noting that C has a bounded base Θ and by Lemma 3.1, we have
y ∈ TPE(S,C).

Now, we give the following example to illustrate Theorem 4.2.

Example 4.3. Let X = R, Y = R2 and Z = R. Given C = R2
+, D = R+. Let

F(x) =
{(
x, y

) | y ≥ −x} for any x ∈ X,

G(x) = [−x,−x + 1] for any x ∈ X.
(4.11)

Thus, feasible set of (VP)

A = {x ∈ X | G(x) ∩ (−R+)/= ∅} = [0,+∞). (4.12)

By Definition 4.1, we get

TPE(F(A), C) =
{(
x, y

) | y = −x, x > 0
}
. (4.13)

For any point (x, y) ∈ TPE(F(A), C), there exists ϕ ∈ C+i such that

ϕ
(
F(A) − (

x, y
)) ≥ 0. (4.14)

Indeed, for any (x, y) ∈ F(A) − (x, y), we consider the following three cases.

Case 1. If (x, y) is in the first quadrant, then for any ϕ ∈ C+i such that ϕ((x, y)) ≥ 0.

Case 2. If (x, y) is in the second quadrant, then there exists k ≤ 0 such that y = kx. Let
ϕ = (t1, t2) such that

t1 > 0, t2 > 0, 0 ≤ t1 ≤ −kt2. (4.15)
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Then, we have

t1x + t2y = t1x + t2kx = (t1 + kt2)x ≥ 0. (4.16)

Case 3. If (x, y) in the fourth quadrant, then there exists k ≤ 0 such that y = kx. Let ϕ = (t1, t2)
such that

t1 > 0, t2 > 0, t1 ≥ −kt2. (4.17)

Then, we have

t1x + t2y = t1x + t2kx = (t1 + kt2)x ≥ 0. (4.18)

Therefore, if follows from Cases 1, 2, and 3 that there exists ϕ ∈ C+i such that
ϕ(F(A) − (x, y)) ≥ 0.

From Theorem 4.2, we can get immediately the following corollary.

Corollary 4.4. Let the cone C have a bounded base Θ. For any y0 ∈ F(A) if F − y0 is nearly C-
subconvexlike onA. Then

TPE(VP) =
⋃

ϕ∈C+i

M
(
SPϕ

)
. (4.19)

5. Tightly Proper Efficiency and the Lagrange Multipliers

In this section, we establish two Lagrange multiplier theorems which show that tightly
properly efficient solution of the constrained vector optimization problem (VP), is equivalent
to tightly properly efficient solution of an appropriate unconstrained vector optimization
problem.

Definition 5.1 (see [17]). Let D ⊂ Z be a closed convex pointed cone with intD/= ∅. We say
that (VP) satisfies the generalized Slater constraint qualification, if there exists x′ ∈ X such
that

G
(
x′) ∩ (− intD)/= ∅. (5.1)

Theorem 5.2. Let C have a bounded base Θ and intD/= ∅. Let x ∈ A, y ∈ F(x) and (F − y,G) is
nearly C × D-subconvexlike on X. Furthermore, let (VP) satisfies the generalized Slater constraint
qualification. If x ∈ TPE(VP) and y ∈ TPE(F(A), C), then there exists T ∈ L+(Z, Y) such that

0Y ∈ T(G(x) ∩ (−D)),

y ∈ TPE((F + TG)(X), C).
(5.2)
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Proof. Since C has bounded base Θ, by Lemma 2.13, we have y ∈ TPE(F(A),Θ). Thus, there
is a convex cone K with C \ {0Y} ⊂ intK satisfying

(
F(A) − y

) ∩ (−K) = {0Y}, (5.3)

and there exists an absolutely convex open neighborhood U of 0Y such that

(−K)c ∩ (U −Θ) = ∅. (5.4)

Since (5.3) is equivalent to cone(F(A) + C − y) ∩ (−K) = {0Y}, and from (5.4) we see that

cone
(
F(A) +C − y

) ∩ (U −Θ) = ∅. (5.5)

Moreover, for any x ∈ X \A, we have G(x) ∩ (−D) = ∅. Therefore,

cone
[(
F − y,G

)
(X) + (C,D)

] ∩ (U −Θ,− intD) = ∅. (5.6)

Since (U −Θ,− intD) is open in Y × Z, thus, we get

cl cone
[(
F − y,G

)
(X) + (C,D)

] ∩ (U −Θ,− intD) = ∅. (5.7)

By the assumption that (F − y,G) is nearly C ×D-subconvexlike on X, we have

cl cone
[(
F − y,G

)
(X) + (C,D)

]
(5.8)

is convex. Hence, it follows from the Hahn-Banach separation theorem that there exists
(ϕ, ψ) ∈ (Y ∗, Z∗) \ {(0Y ∗ , 0Z∗)} such that

ϕ
[
cone

(
F(x) − y + C

)]
+ ψ[cone(G(x) +D)] > ϕ(U −Θ) + ψ(− intD), ∀x ∈ X. (5.9)

Thus, we obtain

ϕ
(
F(x) − y

)
+ ψ(G(x)) ≥ 0, ∀x ∈ X, (5.10)

ϕ(U + Θ) + ψ(intD) > 0. (5.11)

Since D is a cone, we get

ϕ(U + Θ) ≥ 0, (5.12)

ψ(intD) ≥ 0. (5.13)
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Since x ∈ A, G(x) ∩ (−D)/= ∅. Choose z ∈ G(x) ∩ (−D). By (5.13), we know that ψ ∈ D+, thus

ψ(z) ≤ 0. (5.14)

Letting x = x and noting that y ∈ F(x), z ∈ G(x) in (5.10), we get

ψ(z) ≥ 0. (5.15)

Thus, ψ(z) = 0, which implies

0 ∈ ψ[G(x) ∩ (−D)]. (5.16)

Now, we claim that ϕ/= 0Y ∗ . If this is not the case, then

ψ ∈ D+ \ {0Z∗}. (5.17)

By the generalized Slater constraint qualification, then there exists x′ ∈ X such that

G
(
x′) ∩ (− intD)/= ∅, (5.18)

and so there exists z′ ∈ G(x′) such that z′ ∈ − intD. Hence, ψ(z′) < 0. But substituting ϕ = 0Y ∗

into (5.10), and by taking x = x′, and z′ ∈ G(x′) in (5.10), we have

ψ
(
z′
) ≥ 0. (5.19)

This contradiction shows that ϕ/= 0Y ∗ . Therefore ϕ ∈ Y ∗ \ {0Y ∗}. From (5.12) and Remark 2.2,
we have ϕ ∈ Θst. And since Θ is a bounded base of C, so ϕ ∈ C+i. Hence, we can choose
c ∈ C \ {0Y} such that ϕ(c) = 1 and define the operator T : Z → Y by

T(z) = ψ(z)c, ∀z ∈ Z. (5.20)

Clearly, T ∈ L+(Z, Y) and by (5.16), we see that

0Y ∈ T[G(x) ∩ (−D)]. (5.21)

Therefore,

y ∈ F(x) ⊂ F(x) + TG(x). (5.22)

From (5.10) and (5.20), we obtain

ϕ
(
F(x) + TG(x) − y

)
= ϕ

(
F(x) − y

)
+ ψ(G(x))ϕ(c)

= ϕ
(
F(x) − y

)
+ ψ(G(x)) ≥ 0, ∀x ∈ X.

(5.23)
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Since (F−y,G) is nearlyC×D-subconvexlike onX, by Lemma 2.13, we have F+TG−y
is nearly C-subconvexlike onX. From (5.22), Theorem 4.2 and the above expression, we have

y ∈ TPE((F + TG)(X), C). (5.24)

Therefore, the proof is completed.

Theorem 5.3. Let C ⊂ Y be a closed convex pointed cone with a bounded base Θ, x ∈ A and
y ∈ F(x). If there exists T ∈ L+(Z, Y) such that 0Y ∈ T(G(x)∩(−D)) and y ∈ TPE((F+TG)(X), C),
then x ∈ TPE(VP) and y ∈ TPE(F(A), C).

Proof. Since C has a bounded base, and y ∈ TPE((F + TG)(X), C), we have y ∈ TPE((F +
TG)(X) + C,C). Thus, there exists a convex cone K with C \ {0Y} ⊂ intK satisfying

[
(F + TG)(X) + C − y

] ∩ (−K) = {0Y}, (5.25)

and there exits a convex neighborhood U of 0Y such that

(−K)c ∩ (U −Θ) = ∅. (5.26)

By 0Y ∈ T(G(x) ∩ (−D)), we have

F(A) + TG(A) +C ⊃ F(A). (5.27)

Thus,

(
F(A) − y

) ∩ (−K) = {0Y},
(−K)c ∩ (U −Θ) = ∅.

(5.28)

Therefore, by the definition of TPE(F(A), C) and TPE(VP), we get x ∈ TPE(VP) and y ∈
TPE(F(A), C), respectively.

6. Tightly Proper Efficiency and Duality

Definition 6.1. The set-valued Lagrangian map L : X × L+(Z, Y) → 2Y for problem (VP) is
defined by

L(x, T) = F(x) + TG(x), ∀x ∈ X, ∀T ∈ L+(Z, Y). (6.1)

Definition 6.2. The set-valued map Φ : L+(Z, Y) → 2Y , defined by

Φ(T) = TPE(L(X, T), C), T ∈ L+(Z, Y). (6.2)
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is called a tightly properly dual map for (VP). We now associate the following Lagrange dual
problem with (VP):

C-max
⋃

T∈L+(Z,Y)

Φ(T). (VD)

Definition 6.3. A point y0 ∈
⋃

T∈L+(Z,Y) Φ(T) is said to be an efficient point of (VD) if

y − y0 /∈ C \ {0Y}, ∀y ∈
⋃

T∈L+(Z,Y)

Φ(T). (6.3)

We now can establish the following dual theorems.

Theorem 6.4 (weak duality). If x ∈ A and y0 ∈
⋃

T∈L+(Z,Y) Φ(T). Then

[
y0 − F(x)

] ∩ (C \ {0Y}) = ∅. (6.4)

Proof. One has

y0 ∈
⋃

T∈L+(Z,Y)

Φ(T). (6.5)

Then, there exists T ∈ L+(Z, Y) such that

y0 ∈ Φ
(
T
)

= TPE

[
⋃

x∈X

(
F(x) + TG(x)

)
, C

]

⊆ min

[
⋃

x∈X

(
F(x) + TG(x)

)
, C

]

.

(6.6)

Hence,

(
y0 − F(x) − TG(x)

)
∩ (C \ {0Y}) = ∅. (6.7)

Particularly,

y0 − y − T(z) /∈ C \ {0Y}, y ∈ F(x), z ∈ G(x). (6.8)
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Noting that

x ∈ A

=⇒ G(x) ∩ (−D)/= ∅
=⇒ ∃z ∈ G(x) s.t. − z ∈ D

=⇒ −T(z) ∈ C,

(6.9)

and taking z = z in (6.8), we have

y0 − y − T(z) /∈ C \ {0Y}, ∀y ∈ F(x). (6.10)

Hence, from −T(z) ∈ C and C + C \ {0Y} ⊂ C \ {0Y}, we get

y0 − y /∈ C \ {0Y}, ∀y ∈ F(x). (6.11)

This completes the proof.

Theorem 6.5 (strong duality). Let C be a closed convex pointed cone with a bounded base Θ in
Y and D be a closed convex pointed cone with intD/= ∅ in Z. Let x ∈ A, y ∈ F(x), (F − y,G)
be nearly C ×D-subconvexlike on X. Furthermore, let (VP) satisfy the generalized Slater constraint
qualification. Then, x ∈ TPE(VP) and y ∈ TPE(F(A), C) if and only if y is an efficient point of
(VD).

Proof. Let x ∈ TPE(VP) and y ∈ TPE(F(A), C), then according to Theorem 5.2, there exists
T ∈ L+(Z, Y) such that 0Y ∈ T(G(x) ∩ −D) and y ∈ TPE((T + FG)(X), C). Hence

y ∈ TPE

[
⋃

x∈X
(F(x) + TG(x)), C

]

= Φ(T) ⊂
⋃

T∈L+(Z,Y)

Φ(T). (6.12)

By Theorem 6.4, we know that y is an efficient point of (VD).
Conversely, Since y is an efficient point of (VD), then y ∈ ⋃

T∈L+(Z,Y) Φ(T). Hence, there
exists T ∈ L+(Z, Y) such that

y ∈ Φ(T) = TPE((F + TG)(X), C). (6.13)

Since C has a bounded base Θ, by Lemma 3.1 and Proposition 3.10, we have

y ∈ TPE((F + TG)(X), C)

= TPE((F + TG)(X) + C,C)

= TPE((F + TG)(X) + C,Θ).

(6.14)
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Hence, there exists a convex coneKwithC\{0Y} ⊂ intK satisfying ((F+TG)(X)+C−y)∩(−K)
and there exists an absolutely open convex neighborhood U of 0Y such that

(−K)c ∩ (U −Θ) = ∅. (6.15)

Hence, we have

cone
(
(F + TG)(X) + C − y

) ∩ (U −Θ) = ∅. (6.16)

Since, U −Θ is open subset of Y , we have

cl cone
(
(F + TG)(X) + C − y

) ∩ (U −Θ) = ∅. (6.17)

Since (F − y,G) is nearly C × D-subconvexlike on X, by Lemma 2.13, we have F + TG − y is
nearly C-subconvexlike on X, which implies that

cl cone
(
(F + TG)(X) +C − y

)
(6.18)

is convex. From (6.17) and by the Hahn-Banach separation theorem, there exists ϕ ∈ Y ∗\{0Y ∗}
such that

ϕ
(
cl cone

(
F(A) +C − y

))
> ϕ(U −Θ). (6.19)

From this, we have

ϕ
(
cone

(
F(A) + C − y

)) ≥ 0, (6.20)

ϕ(U −Θ) < 0. (6.21)

From (6.21), we know that ϕ ∈ Θst. And by Θ is bounded base of C, it implies that C+i. For
any x ∈ A, there exists zx ∈ G(x) ∩ (−D). Since T ∈ L+(Z, Y), we have −T(zx) ∈ C and hence
ϕ(T(zx)) ≤ 0. From this and (6.20), we have

ϕ
(
y − y

) ≥ ϕ
(
y + T(zx) − y

) ≥ 0, ∀x ∈ A, y ∈ F(x), (6.22)

that is ϕ(F(A) − y) ≥ 0. By Theorem 4.2, we have x ∈ TPE(VP) and y ∈ TPE(F(A), C).

7. Tightly Proper Efficiency and Tightly Proper Saddle Point

We now introduce a new concept of tightly proper saddle point for a set-valued Lagrange
map L(X, T) and use it to characterize tightly proper efficiency.
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Definition 7.1. Let y ∈ S ⊂ Y , C is a closed convex pointed cone of Y and Θ ∈ B(C). y ∈
TPM(S,Θ) if there exists a convex cone K with C \ {0Y} ⊂ intK satisfying (S − y) ∩K = {0Y}
and there is a convex neighborhood U of 0Y such that

Kc ∩ (U + Θ) = ∅. (7.1)

y is said to be a tightly properly efficient point with respect to C, written as, y ∈
TPM(S,C) if

y ∈
⋂

Θ∈B(C)
TPM(S,Θ). (7.2)

It is easy to find that y ∈ TPM(S,C) if and only if −y ∈ TPE(−S,C), and ifC is bounded,
then we also have TPM(S,C) = TPM(S,Θ).

Definition 7.2. A pair (x, T) ∈ X × L+(Z, Y) is said to be a tightly proper saddle point of
Lagrangian map L if

L
(
x, T

)
∩ TPE

[
⋃

x∈X
L
(
x, T

)
, C

]

∩ TPM

⎡

⎣
⋃

T∈L+(Z,Y)

L(x, T), C

⎤

⎦/= ∅. (7.3)

We first present an important equivalent characterization for a tightly proper saddle
point of the Lagrange map L.

Lemma 7.3. (x, T) ∈ X ×L+(Z, Y) is said to be a tight proper saddle point of Lagrange map L if only
if there exist y ∈ F(x) and z ∈ G(x) such that

(i) y ∈ TPE[
⋃

x∈X L(x, T), C] ∩ TPM[
⋃

T∈L+(Z,Y) L(x, T), C],

(ii) T(z) = 0Y .

Proof. Necessity. Since (x, T) is a tightly proper saddle point of L, by Definition 7.2 there exist
y ∈ F(x) and z ∈ G(x) such that

y + T(z) ∈ TPE

[
⋃

x∈X
L
(
x, T

)
, C

]

, (7.4)

y + T(z) ∈ TPM

⎡

⎣
⋃

T∈L+(Z,Y)

L(x, T), C

⎤

⎦. (7.5)

From (7.5) and the definition of TPM(S,C), then there exists a convex coneK with C \ {0Y} ⊂
intK satisfying

⎛

⎝
⋃

T∈L+(Z,Y)

L(x, T) −C −
(
y + T(z)

)
⎞

⎠ ∩K = {0Y}, (7.6)
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and there is a convex neighborhood U of 0Y such that

Kc ∩ (U + Θ) = ∅. (7.7)

Since, for every T ∈ L+(Z, Y),

T(z) − T(z) =
[
y + T(z)

] −
[
y + T(z)

]
∈ F(x) + T[G(x)] −

[
y + T(z)

]

= L(x, T) −
[
y + T(z)

]
.

(7.8)

We have

{T(z) : T ∈ L+(Z, Y)} − C − T(z) ⊆
⋃

T∈L+(Z,Y)

L(x, T) − C −
[
y + T(z)

]
. (7.9)

Thus, from (7.6), we have

K ∩
⎡

⎣
⋃

T∈L+(Z,Y)

{T(z)} − C − T(z)

⎤

⎦ = {0Y}. (7.10)

Let f : L(Z, Y) → Y be defined by

f(T) = −T(z). (7.11)

Then, (7.10) can be written as

(−K) ∩
[
f(L+(Z, Y)) + C − f

(
T
)]

= {0Y} (7.12)

By (7.7) and the above expression show that T ∈ L+(Z, Y) is a tightly properly efficient point
of the vector optimization problem

C-min f(T)

s.t. T ∈ L+(Z, Y)
(7.13)

Since f is a linear map, of course, −f is nearly C-subconvexlike on L+(Z, Y). Hence, by
Theorem 4.2, there exists ϕ ∈ C+i such that

ϕ
[
−T(z)

]
= ϕ

[
f
(
T
)]

≤ ϕ
[
f(T)

]
= ϕ[−T(z)], ∀T ∈ L+(Z, Y). (7.14)

Now, we claim that

−z ∈ D. (7.15)
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If this is not true, then since D is a closed convex cone set, by the strong separation theorem
in topological vector space, there exists μ ∈ Z∗ \ {0Z∗} such that

μ(−z) < μ(λd), ∀d ∈ D, ∀λ > 0. (7.16)

In the above expression, taking d = 0z ∈ D gets

μ(z) > 0, (7.17)

while letting λ → +∞ leads to

μ(d) ≥ 0, ∀d ∈ D. (7.18)

Hence,

μ ∈ D+ \ {0Z∗}. (7.19)

Let c∗ ∈ intC be fixed, and define T∗ : Z → Y as

T∗(z) =
[
μ(z)
μ(z)

]
c∗ + T(z). (7.20)

It is evident that T∗ ∈ L(Z, Y) and that

T∗(d) =
[
μ(d)
μ(z)

]
c∗ + T(d) ∈ C +C ⊂ C, ∀d ∈ D. (7.21)

Hence, T∗ ∈ L+(Z, Y). And taking z = z in (7.20), we obtain

T∗(z) − T(z) = c∗. (7.22)

Hence,

ϕ[T∗(z)] − ϕ
[
T(z)

]
= ϕ(c∗) > 0, (7.23)

which contradicts (7.14). Therefore,

−z ∈ D. (7.24)

Thus, −T(z) ∈ C, and since T ∈ L+(Z, Y). If T(z)/= 0Y , then

−T (z) ∈ C \ {0Y}, (7.25)
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hence ϕ[T(z)] < 0, by ϕ ∈ C+i. But, taking T = 0 ∈ L+(Z, Y) in (7.14) leads to

ϕ
(
T(z)

)
≥ 0. (7.26)

This contradiction shows that T(z) = 0Y , that is, condition (ii) holds.
Therefore, by (7.4) and (7.5), we know

y ∈ TPE

[
⋃

x∈X
L
(
x, T

)
, C

]

∩ TPM

⎡

⎣
⋃

T∈L+(Z,Y)

L(x, T), C

⎤

⎦, (7.27)

that is condition (i) holds.
Sufficiency. From y ∈ F(x), z ∈ G(x), and condition (ii), we get

y = y + T(z) ∈ F(x) + T[G(x)] = L
(
x, T

)
. (7.28)

And by condition (i), we obtain

y ∈ L
(
x, T

)
∩ TPE

[
⋃

x∈X
L
(
x, T

)
, C

]

∩ TPM

⎡

⎣
⋃

T∈L+(Z,Y)

L(x, T), C

⎤

⎦. (7.29)

Therefore, (x, T) is a tightly proper saddle point of L, and the proof is completed.

The following saddle-point theorem allows us to express a tightly properly efficient
solution of (VP) as a tightly proper saddle of the set-valued Lagrange map L.

Theorem 7.4. Let F be nearly C-convexlike on A. If for any point y0 ∈ Y such that (F − y0, G) is
nearly (C ×D)-convexlike on X, and (VP) satisfy generalized Slater constraint qualification.

(i) If (x, T) is a tightly proper saddle point of L, then x is a tightly properly efficient solution
of (VP).

(ii) If (x, y) be a tightly properly efficient minimizer of (VP), y ∈ TPM[
⋃

T∈L+(Z,Y) L(x, T), C].
Then there exists T ∈ L+(Z, Y) such that (x, T) is a tightly proper saddle point of Lagrange
map L.

Proof. (i) By the necessity of Lemma 7.3, we have

0Y ∈ T[G(x)], (7.30)

and there exists y ∈ F(x) such that (x, y) is a tightly properly efficient minimizer of the
problem

C-min F(x) + T[G(x)]

s.t. x ∈ X.
(UVP)
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According to Theorem 5.3, (x, y) is a tightly properly efficient minimizer of (VP).
Therefore, x is a tightly properly efficient solution of (VP).

(ii) From the assumption, and by Theorem 5.2, there exists T ∈ L+(Z, Y) such that

y ∈ TPE

[
⋃

x∈X
L
(
x, T

)
, C

]

,

0Y ∈ T[G(x) ∩ (−D)].

(7.31)

Therefore there exists z ∈ G(x) such that T(z) = 0Y . Hence, from Lemma 7.3, it follows that
(x, T) is a tightly proper saddle point of Lagrange map L.

8. Conclusions

In this paper, we have extended the concept of tightly proper efficiency from normed
linear spaces to locally convex topological vector spaces and got the equivalent relations
among tightly proper efficiency, strict efficiency and superefficiency. We have also obtained
a scalarization theorem and two Lagrange multiplier theorems for tightly proper efficiency
in vector optimization involving nearly cone-subconvexlike set-valued maps. Then, we have
introduced a Lagrange dual problem and got some duality results in terms of tightly properly
efficient solutions. To characterize tightly proper efficiency, we have also introduced a new
type of saddle point, which is called the tightly proper saddle point of an appropriate
set-valued Lagrange map, and obtained its necessary and sufficient optimality conditions.
Simultaneously, we have also given some examples to illustrate these concepts and results.
On the other hand, by using the results of the Section 3 in this paper, we know that the above
results hold for superefficiency and strict efficiency in vector optimization involving nearly
cone-convexlike set-valued maps and, by virtue of [12, Theorem 3.11], all the above results
also hold for positive proper efficiency, Hurwicz proper efficiency, global Henig proper
efficiency and global Borwein proper efficiency in vector optimization with set-valued maps
under the conditions that the set-valued F and G is closed convex and the ordering cone
C ⊂ Y has a weakly compact base.
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