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We investigate the growth of solutions of f ′′ + P(z)f ′ +Q(z)f = 0, where P(z) and Q(z) are entire
functions. When P(z) = e−z and Q(z) = A1(z)ea1z + A2(z)ea2z satisfy some conditions, we prove
that every nonzero solution of the above equation has infinite order and hyper-order 1, which
improve the previous results.

1. Introduction and Results

In this paper, we will assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s value distribution theory of meromorphic functions
(e.g., see [1–3]). In addition, we will use the notation σ(f) to denote the order of growth of
meromorphic function f(z), σ2(f) to denote the hyper-order of f(z) (see [3]). σ2(f) is defined
to be

σ2
(
f
)
= lim

r→∞
log log T

(
r, f

)

log r
. (1.1)

We consider the second-order linear differential equation

f ′′ + P(z)f ′ +Q(z)f = 0, (1.2)

where P(z) and Q(z) are entire functions of finite order. It is well known that each solution
of (1.2) is an entire function, and most solutions of (1.2) have infinite order.
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Thus, a natural question is what conditions on P(z) andQ(z)will guarantee that every
solution f(/≡ 0) of (1.2) has infinite order? Ozawa [4], Gundersen [5], Amemiya and Ozawa
[6], and Langley [7] have studied the problem with P(z) = e−z and Q(z) is complex number
or polynomial. For the case that P(z) = e−z, and Q(z) is transcendental entire function,
Gundersen proved the following in [5, Theorem A].

Theorem A. If Q(z) is a transcendental entire function with order σ(Q)/= 1, then every solution
f(/≡ 0) of equation

f ′′ + e−zf ′ +Q(z)f = 0 (1.3)

has infinite order.

Theorem A states that when σ(Q) = 1, (1.3) may have finite-order solutions. We go
deep into the problem: what condition in Q(z) when σ(Q) = 1 will guarantee every solution
f(/≡ 0) of (1.3) has infinite order? And more precise estimation for its rate of growth is a very
important aspect. Chen investigated the problem and obtain the following in [8, Theorem B
and Theorem C].

Theorem B. Let Aj(z)(/≡ 0)(j = 0, 1) be entire functions with σ(Aj) < 1, and let a, b be complex
numbers such that ab /= 0 and a = cb (c > 1). then every solution f(/≡ 0) of the equation

f ′′ +A1e
azf ′ +A0e

bzf = 0 (1.4)

has infinite order.

Theorem C. Let a, b be nonzero complex numbers and a/= b, and let Q(z) be a nonconstant
polynomial or Q(z) = h(z)ebz where h(z) is nonzero polynomial, then every solution f(/≡ 0) of
the equation

f ′′ + eazf ′ +Q(z)f = 0 (1.5)

has infinite order and σ2(f) = 1.

For Theorems B and C, many authors, Wang and Lü [9], Huang, Chen, and Li [10],
and Cheng and Kang [11] have made some improvement. In this paper, we are concerned
with the more general problem, and obtain the following theorem that extend and improve
the previous results.

Theorem 1.1. Let Aj(z) (/≡ 0) (j = 1, 2) be entire functions with σ(Aj) < 1, a1, a2 be complex
numbers such that a1a2 /= 0, and let a1 /=a2 (suppose that |a1| ≤ |a2|). If arga1 /=π or a1 < −1,
then every solution f(/≡ 0) of the equation

f ′′ + e−zf ′ + (A1e
a1z +A2e

a2z)f = 0 (1.6)

has infinite order and σ2(f) = 1.
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2. Remarks and Lemmas for the Proof of Theorem

Lemma 2.1 (see [12]). Let f be a transcendental meromorphic function with σ(f) = σ < ∞,H =
{(k1, j1), (k2, j2), . . . , (kq, jq)} be a finite set of distinct pairs of integers satisfying ki > ji ≥ 0 (i =
1, 2, . . . , q). And let ε > 0 be a given constant. Then,

(i) there exists a set E ⊂ [−(π/2), 3π/2) with linear measure zero, such that, if ψ ∈
[−(π/2), 3π/2) \E, then there is a constant R0 = R0(ψ) > 1, such that for all z satisfying
arg z = ψ and |z| ≥ R0 and for all (k, j) ∈ H, one has

∣
∣
∣∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣∣
∣
≤ |z|(k−j)(σ−1+ε), (2.1)

(ii) there exists a set E ⊂ (1,∞) with finite logarithmic measure, such that for all z satisfying
|z| /∈ E ∪ [0, 1] and for all (k, j) ∈ H, we have

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣
≤ |z|(k−j)(σ−1+ε), (2.2)

(iii) there exists a set E ⊂ (0,∞) with finite linear measure, such that for all z satisfying |z| /∈ E
and for all (k, j) ∈ H, we have

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣
≤ |z|(k−j)(σ+ε). (2.3)

Lemma 2.2 (see [8]). Suppose that P(z) = (α + iβ)zn + · · · (α, β are real numbers, |α| + |β|/= 0)
is a polynomial with degree n ≥ 1, that A(z)(/≡ 0) is an entire function with σ(A) < n. Set g(z) =
A(z)eP(z), z = reiθ, δ(P, θ) = α cosnθ − β sinnθ. Then for any given ε > 0, there exists a set
H1 ⊂ [0, 2π) that has the linear measure zero, such that for any θ ∈ [0, 2π) \ (H1 ∪ H2), there is
R > 0, such that for |z| = r > R, we have

(i) if δ(P, θ) > 0, then

exp{(1 − ε)δ(P, θ)rn} <
∣∣∣g
(
reiθ

)∣∣∣ < exp{(1 + ε)δ(P, θ)rn}, (2.4)

(ii) if δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} <
∣∣∣g
(
reiθ

)∣∣∣ < exp{(1 − ε)δ(P, θ)rn}, (2.5)

whereH2 = {θ ∈ [0, 2π); δ(P, θ) = 0} is a finite set.
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Using Lemma 2.2, we can prove Lemma 2.3.

Lemma 2.3. Suppose that n ≥ 1 is a positive entire number. Let Pj(z) = ajnz
n + · · · (j = 1, 2)

be nonconstant polynomials, where ajq (q = 1, 2, . . . , n) are complex numbers and a1na2n /= 0. Set
z = reiθ, ajn = |ajn|eiθj , θj ∈ [−(π/2), 3π/2), δ(Pj, θ) = |ajn| cos(θj + nθ), then there is a set
H1 ⊂ [−(π/2n), 3π/2n) that has linear measure zero. If θ1 /= θ2, then there exists a ray arg z = θ,
θ ∈ (−(π/2n), π/2n) \ (H1 ∪H2), such that

δ(P1, θ) > 0, δ(P2, θ) < 0, (2.6)

or

δ(P1, θ) < 0, δ(P2, θ) > 0, (2.7)

whereH2 = {θ : θ ∈ [−(π/2n), 3π/2n), δ(Pj , θ) = 0} is a finite set, which has linear measure zero.

Proof. According to the values of θ1 and θ2, we divide our discussion into three cases.

Case 1 (θ1 ∈ (−(π/2), π/2)). (a) If θ2 ∈ (−(π/2), π/2), let α1 = min{(π/2)−θ1, θ1+π/2}, α2 =
min{(π/2) − θ2, θ2 + π/2}, Then there are three cases: (i) α1 = α2; (ii) α1 < α2; (iii) α1 > α2.

(i) α1 = α2. By θ1 /= θ2, we know that θ1 = −θ2 /= 0.
Suppose that θ1 > 0, then take θ = (1/n)((π/2) − θ1 + t), t is any constant in (0, θ1).
Since H1 ∪ H2 has linear measure zero, there exists t ∈ (0, θ1) such that θ =

(1/n)((π/2) − θ1 + t) ∈ (0, π/2n) \ (H1 ∪ H2). Thus nθ = (π/2) − θ1 + t ∈ (0, π/2). By
θ1 = −θ2 and θ1 > 0 that is θ1 ∈ (0, π/2), we have

θ1 + nθ =
π

2
+ t ∈

(π
2
, π

)
, θ2 + nθ =

π

2
− 2θ1 + t ∈

(
−π
2
,
π

2

)
. (2.8)

Therefore,

δ(P1, θ) = |a1n| cos(θ1 + nθ) < 0, δ(P2, θ) = |a2n| cos(θ2 + nθ) > 0. (2.9)

When θ1 < 0, then θ2 > 0, we can prove it by using similar argument action as in the
above proof.

(ii) α1 < α2, then θ1 /= 0. Suppose that θ1 > 0, then θ1 > θ2, 0 < θ1 − θ2 < π . Let
θ0 = min{θ1, θ1 − θ2}, and take θ = (1/n)((π/2) − θ1 + t), and t is any constant in (0, θ0).

Since H1 ∪ H2 has a linear measure zero, there exists t ∈ (0, θ0) such that θ =
(1/n)((π/2) − θ1 + t) ∈ (0, π/2n) \ (H1 ∪H2),

θ1 + nθ =
π

2
+ t ∈

(π
2
, π

)
, θ2 + nθ =

π

2
− (θ1 − θ2) + t ∈

(
−π
2
,
π

2

)
. (2.10)

Therefore

δ(P1, θ) = |a1n| cos(θ1 + nθ) < 0, δ(P2, θ) = |a2n| cos(θ2 + nθ) > 0. (2.11)
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Suppose that θ1 < 0, then θ1 < θ2, 0 < θ2 − θ1 < π . Let θ0 = min{−θ1, θ2 − θ1}, and take
θ = (1/n)(−(π/2) − θ1 − t), and t is any constant in (0, θ0).

Since H1 ∪ H2 has linear measure zero, there exists t ∈ (0, θ0) such that θ =
(1/n)(−(π/2) − θ1 − t) ∈ (−π/2n, 0) \ (H1 ∪H2),

θ1 + nθ = −π
2
− t ∈

(
−π,−π

2

)
, θ2 + nθ = −π

2
+ (θ2 − θ1) − t ∈

(
−π
2
,
π

2

)
. (2.12)

Therefore,

δ(P1, θ) = |a1n| cos(θ1 + nθ) < 0, δ(P2, θ) = |a2n| cos(θ2 + nθ) > 0. (2.13)

(iii) α1 > α2, then θ2 /= 0. Using similar method as in proof of (ii), we know that there
exists θ ∈ (−(π/2n), π/2n) \ (H1 ∪H2) such that δ(P1, θ) > 0, δ(P2, θ) < 0.

(b) When θ2 ∈ (π/2, 3π/2), we can prove it by using the same argument action as in
(a).

(c)When θ2 ∈ {π/2,−(π/2)}, we just prove the case that θ2 = π/2 (when θ2 = −(π/2),
we can prove it by using the same reasoning).

Let θ0 = min{π/2, (π/2) − θ1}, take θ = t/n, t is any constant in (0, θ0).
Since H1 ∪ H2 has a linear measure zero, there exists t ∈ (0, θ0), such that θ = t/n ∈

(0, π/2n) \ (H1 ∪H2). Then

θ2 + nθ = θ2 + t ∈
(π
2
, π

)
. (2.14)

When θ1 ∈ (−(π/2), 0), t ∈ (0, π/2), thus, −π/2 < θ1 + nθ = θ1 + t < π/2.
When θ1 ∈ [0, π/2), t ∈ (0, (π/2)−θ1), thus, 0 < θ1+nθ = θ1+ t < θ1+(π/2)−θ1 = π/2.
Therefore

θ1 + nθ = θ1 + t ∈
(
−π
2
,
π

2

)
,

δ(P1, θ) = |a1n| cos(θ1 + nθ) > 0, δ(P2, θ) = |a2n| cos(θ2 + nθ) < 0.
(2.15)

Case 2. When θ1 ∈ (π/2, 3π/2), or θ1 ∈ {π/2,−(π/2)} and θ2 /∈ {π/2,−π/2}, using a proof
similar to Case 1, we can get the conclusion.

Case 3 (θ1 ∈ {π/2,−π/2} and θ2 ∈ {π/2,−π/2}). By θ1 /= θ2, there are only two cases: θ1 =
π/2, θ2 = −π/2; or θ1 = −π/2, θ2 = π/2.

If θ1 = π/2, θ2 = −π/2. Take θ = t/n, and t is any constant in (0, π/2).
Since H1 ∪ H2 has linear measure zero, there exists t ∈ (0, π/2) such that θ = t/n ∈

(0, π/2n) \ (H1 ∪H2). Using a proof similar to Case 1(c), we can prove it.
When θ1 = −π/2, θ2 = π/2, we can prove it by using the same reasoning

Remark 2.4. Using the similar reasoning of Lemma 2.3, we can obtain that, in Lemma 2.3, if
θ ∈ (−π/2n, π/2n) \ (H1 ∪H2) is replaced by θ ∈ (π/2n, 3π/2n) \ (H1 ∪H2), then it has the
same result.
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Lemma 2.5 (see [8]). Let A,B be entire functions with finite order. If f(z) is a solution of the
equation

f ′′ +Af ′ + Bf = 0 (2.16)

then σ2(f) ≤ max{σ(A), σ(B)}.

Lemma 2.6 (see [12]). Let f be a transcendental meromorphic function, and let α > 1 be a given
constant, Then there exists a set E ⊂ (1,+∞) with finite logarithmic measure and a constant B > 0
that depends only on α and i, j ( 0 ≤ i < j ≤ 2), such that for all z satisfying |z| = r /∈ [0, 1] ∪ E,

∣
∣∣
∣
∣
f (j)(z)
f (i)(z)

∣
∣∣
∣
∣
≤ B

(
T
(
αr, f

)

r
logαr log T

(
αr, f

)
)j−i

. (2.17)

Remark 2.7. In Lemma 2.6, when α = 2, i = 0, we have

∣∣∣∣∣
f (j)(z)
f(z)

∣∣∣∣∣
≤ B

(
T
(
2r, f

)
log T

(
2r, f

))j ≤ B
[
T
(
2r, f

)]j+1
, j = 1, 2. (2.18)

Lemma 2.8 (see [13]). Suppose that g : (0,+∞) → R and h : (0,+∞) → R are nondecreasing
functions, such that g(r) ≤ h(r), r /∈ E, where E is a set with at most finite measure, then for any
constant α > 1, there exists r0 > 0 such that g(r) ≤ h(αr) for all r > r0.

3. Proof of Theorem 1.1

Suppose that f(/≡ 0) is a solution of (1.6), then, f is an entire function.

First Step

We prove that σ(f) = ∞. Suppose, to the contrary, that σ(f) = σ < ∞. By Lemma 2.1, for
any given ε (0 < ε < (|a2| − |a1|)/(|a2| + |a1|)), there exists a set E1 ⊂ [−(π/2), 3π/2) of linear
measure zero, such that if θ ∈ [−π/2, 3π/2) \ E1, then, there is a constant R0 = R0(θ) > 1,
such that for all z satisfying arg z = θ and |z| ≥ R0, we have

∣∣∣∣
f ′′(z)
f(z)

∣∣∣∣ ≤ |z|2(σ−1+ε),
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣ ≤ |z|σ−1+ε. (3.1)

Let z = reiθ, a1 = |a1|eiθ1 , a2 = |a2|eiθ2 , θ1, θ2 ∈ [−(π/2), 3π/2).

Case 1 (arga1 /=π , which is θ1 /=π). (i) Suppose that θ1 /= θ2. By Lemmas 2.2 and 2.3, for the
above ε, there is a ray arg z = θ, such that θ ∈ (−(π/2), π/2) \ (E1 ∪H1 ∪H2) (whereH1 and
H2 are defined as in Lemma 2.3, and E1∪H1∪H2 is of the linear measure zero), and satisfying

δ(a1z, θ) > 0, δ(a2z, θ) < 0, (3.2)
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or

δ(a1z, θ) < 0, δ(a2z, θ) > 0. (3.3)

When δ(a1z, θ) > 0, δ(a2z, θ) < 0, for sufficiently large r, we have

|A1e
a1z| ≥ exp{(1 − ε)δ(a1z, θ)r}, |A2e

a2z| ≤ exp{(1 − ε)δ(a2z, θ)r} ≤ 1. (3.4)

Hence

|A1e
a1z +A2e

a2z| ≥ |A1e
a1z| − |A2e

a2z| ≥ exp{(1 − ε)δ(a1z, θ)r} − 1. (3.5)

By (1.6), we obtain

∣∣∣∣
f ′′(z)
f(z)

∣∣∣∣ +
∣∣e−z

∣∣
∣∣∣∣
f ′(z)
f(z)

∣∣∣∣ ≥ |A1e
a1z +A2e

a2z|. (3.6)

Since θ ∈ (−(π/2), π/2), we know that cos θ > 0, then e−r cos θ < 1. Substituting (3.1) and (3.5)
into (3.6), we get

r2(σ−1+ε) + e−r cos θrσ−1+ε ≥ exp{(1 − ε)δ(a1z, θ)r} − 1,

2r2(σ−1+ε) ≥ exp{(1 − ε)δ(a1z, θ)r} − 1.
(3.7)

By δ(a1z, θ) > 0, we know that (3.7) is a contradiction.
When δ(a1z, θ) < 0, δ(a2z, θ) > 0, using a proof similar to the above, we can also get a

contradiction.
(ii) Suppose that θ1 = θ2. By Lemma 2.2, for the above ε, there is a ray arg z = θ such

that θ ∈ (−(π/2), π/2)\(E1∪H1∪H2) and δ(a1z, θ) > 0. Since |a1| ≤ |a2|, a1 /=a2, and θ1 = θ2,
then |a1| < |a2|, thus δ(a2z, θ) > δ(a1z, θ) > 0. For sufficiently large r, we have

|A1e
a1z| ≤ exp{(1 + ε)δ(a1z, θ)r}, |A2e

a2z| ≥ exp{(1 − ε)δ(a2z, θ)r}. (3.8)

Hence,

|A1e
a1z +A2e

a2z| ≥ |A2e
a2z| − |A1e

a1z| ≥ exp{(1 − ε)δ(a2z, θ)r} − exp{(1 + ε)δ(a1z, θ)r}
≥ M1 exp{(1 + ε)δ(a1z, θ)r},

(3.9)

where M1 = exp{[(1 − ε)δ(a2z, θ) − (1 + ε)δ(a1z, θ)]r} − 1.
Since 0 < ε < (|a2| − |a1|)/(|a2| + |a1|), we see that (1 − ε)δ(a2z, θ) − (1 + ε)δ(a1z, θ) > 0,

then exp{[(1 − ε)δ(a2z, θ) − (1 + ε)δ(a1z, θ)]r} > 1,M1 > 0.
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Since θ ∈ (−(π/2), π/2), we know that cos θ > 0, then e−r cos θ < 1. Substituting (3.1)
and (3.9) into (3.6), we obtain

r2(σ−1+ε) + e−r cos θrσ−1+ε ≥ M1 exp{(1 + ε)δ(a1z, θ)r},

2r2(σ−1+ε) ≥ M1 exp{(1 + ε)δ(a1z, θ)r}.
(3.10)

Since δ(a1z, θ) > 0, we know that (3.10) is a contradiction.

Case 2 (a1 < −1, which is θ1 = π). (i) Suppose that θ1 /= θ2, then θ2 /=π . By Lemma 2.2, for the
above ε, there is a ray arg z = θ such that θ ∈ (−(π/2), π/2)\(E1∪H1∪H2) and δ(a2z, θ) > 0.
Because cos θ > 0, δ(a1z, θ) = |a1| cos(θ1 + θ) = −|a1| cos θ < 0. For sufficiently large r, we
have

|A1e
a1z| ≤ exp{(1 − ε)δ(a1z, θ)r} ≤ 1, |A2e

a2z| ≥ exp{(1 − ε)δ(a2z, θ)r}. (3.11)

Hence

|A1e
a1z +A2e

a2z| ≥ |A2e
a2z| − |A1e

a1z| ≥ exp{(1 − ε)δ(a2z, θ)r} − 1. (3.12)

Using the same reasoning as in Case 1(i), we can get a contradiction.
(ii) Suppose that θ1 = θ2 = π . By Lemma 2.2, for the above ε, there is a ray arg z = θ

such that θ ∈ (π/2, 3π/2)\(E1∪H1∪H2), then cos θ < 0, δ(a1z, θ) = −|a1| cos θ > 0, δ(a2z, θ) =
−|a2| cos θ > 0, Since |a1| ≤ |a2|, a1 /=a2 and θ1 = θ2, then |a1| < |a2|. Thus, δ(a1z, θ) < δ(a2z, θ),
for sufficiently large r, we get that (3.8) and (3.9) hold.

Since a1 < −1, cos θ < 0, then δ(a1z, θ) = −|a1| cos θ > − cos θ > 0.
Using the same reasoning as in Case 1(ii), we can get a contradiction.
Concluding the above proof, we obtain σ(f) = ∞.

Second Step

We prove that σ2(f) = 1.
By Lemma 2.5 and max{σ(e−z), σ(A1e

a1z +A2e
a2z)} = 1, then σ2(f) ≤ 1.

By Lemma 2.6 and Remark 2.7, we know that there exists a set E2 ⊂ (1,+∞)with finite
logarithmic measure and a constant B > 0, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2,
we get that (2.18) holds.

For Cases 1 and 2(i) in first step, we have proved that there is a ray arg z = θ satisfying
θ ∈ (−π/2, π/2) \ (E1 ∪H1 ∪H2), for sufficiently large r, we get that (3.5) or (3.9) or (3.12)
hold, that is,

|A1e
a1z +A2e

a2z| ≥ exp{h1r}, (3.13)

where h1 > 0 is a constant.
Since θ ∈ (−(π/2), π/2) \ (E1 ∪ H1 ∪ H2), then cos θ > 0, e−r cos θ < 1. By (2.18), (3.6),

and (3.13), we obtain

exp{h1r} ≤ B
[
T
(
2r, f

)]3 + e−r cos θB
[
T
(
2r, f

)]2 ≤ 2B
[
T
(
2r, f

)]3
. (3.14)
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By h1 > 0, (3.14) and Lemma 2.8, we know that there exists r0, when r > r0, we have σ2(f) ≥ 1,
then σ2(f) = 1.

For Case 2(ii) in first step, we have proved that there is a ray arg z = θ satisfying
θ ∈ (π/2, 3π/2) \ (E1 ∪H1 ∪H2), for sufficiently large r, we get (3.9) hold, and we also get
that cos θ < 0, δ(a1z, θ) > − cos θ > 0.

By (2.18), (3.6), and (3.9), we obtain

M1 exp{(1 + ε)δ(a1z, θ)r} ≤ B
[
T
(
2r, f

)]3 + e−r cos θB
[
T
(
2r, f

)]2
,

M1 exp{(1 + ε)δ(a1z, θ)r} ≤ 2e−r cos θB
[
T
(
2r, f

)]3
.

(3.15)

By δ(a1z, θ) > − cos θ > 0,M1 > 0 and (3.15) and Lemma 2.8, we know that there exists r0,
when r > r0, we have σ2(f) ≥ 1, then σ2(f) = 1.

Concluding the above proof, we obtain σ2(f) = 1.
Theorem 1.1 is thus proved.
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