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The aim of this paper is to introduce and study some new double sequence spaces with respect to
an Orlicz function, and also some properties of the resulting sequence spaces were examined.

1. Introduction

We recall that the concept of a 2-normed space was first given in the works of Gähler ([1, 2])
as an interesting nonlinear generalization of a normed linear space which was subsequently
studied by many authors (see, [3, 4]). Recently, a lot of activities have started to study
summability, sequence spaces, and related topics in these nonlinear spaces (see, e.g., [5–
9]). In particular, Savaş [10] combined Orlicz function and ideal convergence to define some
sequence spaces using 2-norm.

In this paper, we introduce and study some new double-sequence spaces, whose
elements are form n-normed spaces, using an Orlicz function, which may be considered as
an extension of various sequence spaces to n-normed spaces. We begin with recalling some
notations and backgrounds.

Recall in [11] that an Orlicz function M : [0,∞) → [0,∞) is continuous, convex, and
nondecreasing function such that M(0) = 0 and M(x) > 0 for x > 0, and M(x) → ∞ as
x → ∞.

Subsequently, Orlicz function was used to define sequence spaces by Parashar and
Choudhary [12] and others. AnOrlicz functionM can always be represented in the following
integral form:M(x) =

∫x
0 p(t)dt, where p is the known kernel ofM, right differential for t ≥ 0,

p(0) = 0, p(t) > 0 for t > 0, p is nondecreasing, and p(t) → ∞ as t → ∞.



2 Journal of Inequalities and Applications

If convexity of Orlicz function M is replaced by M(x + y) ≤ M(x) +M(y), then this
function is called Modulus function, which was presented and discussed by Ruckle [13] and
Maddox [14].

Remark 1.1. If M is a convex function and M(0) = 0, then M(λx) ≤ λM(x) for all λ with
0 < λ < 1.

Let n ∈ � and X be real vector space of dimension d, where n ≤ d. An n-norm on X is
a function ‖·, . . . , ·‖ : X ×X × · · · ×X → � which satisfies the following four conditions:

(i) ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly dependent,

(ii) ‖x1, x2, . . . , xn‖ are invariant under permutation,

(iii) ‖αx1, x2, . . . , xn‖ = |α|‖x1, x2, . . . , xn‖, α ∈ �,

(iv) ‖x + x′, x2, . . . , xn‖ ≤ ‖x, x2, . . . , xn‖ + ‖x′, x2, . . . , xn‖.
The pair (X, ‖·, . . . , ·‖) is then called an n-normed space [3].
Let X = �d (d ≤ n) be equipped with the n-norm, then ‖x1, x2, . . . , xn−1, xn‖S := the

volume of the n-dimensional parallelepiped spanned by the vectors, x1, x2, . . . , xn−1, xn which
may be given explicitly by the formula

‖x1, x2, . . . , xn−1, xn‖S =

∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣

〈x1, x2〉 · · · 〈x1, xn〉
.

. · · ·

.

〈xn, x1〉 · · · 〈xn, xn〉

∣∣∣
∣∣∣
∣∣∣
∣∣∣
∣∣

1/2

, (1.1)

where 〈·, ·〉 denotes inner product. Let (X, ‖·, . . . , ·‖) be an n-normed space of dimension d ≥
n and {a1, a2, . . . , an} a linearly independent set in X. Then, the function ‖·, ·‖∞ on Xn−1 is
defined by

‖x1, x2, . . . , xn−1, xn‖∞ := max{‖x1, x2, . . . , xn−1, ai‖ : i = 1, 2, . . . , n}, (1.2)

is defines an (n − 1) norm on X with respect to {a1, a2, . . . , an} (see, [15]).

Definition 1.2 (see [7]). A sequence (xk) in n-normed space (X, ‖·, . . . , ·‖) is aid to be
convergent to an x in X (in the n-norm) if

lim
k→∞

‖x1, x2, . . . , xn−1, xk − x‖ = 0, (1.3)

for every x1, x2, . . . , xn−1 ∈ X.

Definition 1.3 (see [16]). LetX be a linear space. Then, a map g : X → � is called a paranorm
(on X) if it is satisfies the following conditions for all x, y ∈ X and λ scalar:

(i) g(θ) = 0 (θ = (0, 0, . . . , 0 . . .) is zero of the space),
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(ii) g(x) = g(−x),

(iii) g(x + y) ≤ g(x) + g(y),

(iv) |λn −λ| → 0 (n → ∞) and g(xn −x) → 0 (n → ∞) imply g(λnxn −λx) → 0 (n →
∞).

2. Main Results

Let (X, ‖·, . . . , ·‖) be any n-normed space, and let S′′(n−X) denote X-valued sequence spaces.
Clearly S′′(n −X) is a linear space under addition and scalar multiplication.

Definition 2.1. LetM be an Orlicz function and (X, ‖·, . . . , ·‖) any n-normed space. Further, let
p = (pk,l) be a bounded sequence of positive real numbers. Now, we define the following new
double sequence space as follows:

l′′
(
M,p, ‖·, . . . , ·‖) :=

{

x ∈ S′′(n −X) :
∞,∞∑

k,l=1

[
M

(∥∥∥
∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥∥∥
∥

)]pk,l
< ∞, ρ > 0

}

,

(2.1)

for each z1, z2, . . . , zn−1 ∈ X.

The following inequalities will be used throughout the paper. Let p = (pk,l) be a double
sequence of positive real numbers with 0 < pk,l ≤ supk,lpk,l = H , and let D = max{1, 2H−1}.
Then, for the factorable sequences {ak} and {bk} in the complex plane, we have as in Maddox
[16]

|ak,l + bk,l|pk,l ≤ D
(|ak,l|pk,l + |bk,l|pk,l

)
. (2.2)

Theorem 2.2. l′′(M,p, ‖·, . . . , ·‖) sequences space is a linear space.

Proof. Now, assume that x, y ∈ l′′ (M,p, ‖·, . . . , ·‖) and α, β ∈ � . Then,

∞,∞∑

k,l=1

[
M

(∥∥∥
∥
xk,l

ρ1
, z1, z2, . . . , zn−1

∥∥∥
∥

)]pk,l
< ∞ for some ρ1 > 0,

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l

ρ2
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
< ∞ for some ρ2 > 0.

(2.3)
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Since ‖·, . . . , ·‖ is a n-norm on X, and M is an Orlicz function, we get

∞,∞∑

k,l=1,1

[

M

(∥∥∥
∥∥

αxk,l + βyk,l

max(|α|ρ1,
∣
∣β
∣
∣ρ2)

, z1, z2, . . . , zn−1

∥∥∥
∥∥

)]pk,l

≤ D
∞,∞∑

k,l=1,1

[
|α|

(|α|ρ1 +
∣∣β
∣∣ρ2

)M
(∥∥
∥∥
xk,l

ρ1
, z1, z2, . . . , zn−1

∥∥
∥∥

)]pk,l

+D
∞∑

k,l=1,1

[ ∣
∣β
∣
∣

(|α|ρ1 +
∣∣β
∣∣ρ2

)M
(∥∥∥
∥
yk,l

ρ2
, z1, z2, . . . , zn−1

∥∥∥
∥

)]pk,l

≤ DF
∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l

ρ1
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l

+DF
∞∑

k,l=1,1

[
M

(∥∥
∥∥
yk,l

ρ2
, z1, z2, . . . , zn−1

∥∥
∥∥

)]pk,l
,

(2.4)

where

F = max

⎡

⎣1,

(
|α|

(|α|ρ1 +
∣
∣β
∣
∣ρ2

)

)H

,

( ∣∣β
∣∣

(|α|ρ1 +
∣
∣β
∣
∣ρ2

)

)H
⎤

⎦, (2.5)

and this completes the proof.

Theorem 2.3. l′′(M,p, ‖·, . . . , ·‖) space is a paranormed space with the paranorm defined by g :
l′′(M,p, ‖·, . . . , ·‖) → �

g(x) = inf

⎧
⎨

⎩
ρpk,l/H :

( ∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
)1/M∗

< ∞
⎫
⎬

⎭
, (2.6)

where 0 < pk,l ≤ sup pk,l = H ,M∗ = max(1,H).

Proof. (i) Clearly, g(θ) = 0 and (ii) g(−x) = g(x). (iii) Let xk,l, yk,l ∈ l′′(M,p, ‖·, . . . , ·‖), then
there exists ρ1, ρ2 > 0 such that

∞,∞∑

k,l=1,1

[
M

(∥∥∥
∥
xk,l

ρ1
, z1, z2, . . . , zn−1

∥∥∥
∥

)]pk,l
< ∞,

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
yk,l

ρ2
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
< ∞.

(2.7)
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So, we have

M

(∥∥
∥∥
xk,l + yk,l

ρ1 + ρ2
, z1, z2, . . . , zn−1

∥∥
∥∥

)

≤ M

(∥∥∥
∥

xk,l

ρ1 + ρ2
, z1, z2, . . . , zn−1

∥∥∥
∥ +

∥∥∥
∥

yk,l

ρ1 + ρ2
, z1, z2, . . . , zn−1

∥∥∥
∥

)

≤ ρ1

ρ1 + ρ2
M

(∥
∥∥∥
xk,l

ρ1
, z1, z2, . . . , zn−1

∥
∥∥∥

)

+
ρ1

ρ1 + ρ2
M

(∥∥
∥∥
yk,l

ρ2
, z1, z2, . . . , zn−1

∥∥
∥∥

)
,

(2.8)

and thus

g
(
x + y

)
= inf

⎧
⎨

⎩
(
ρ1 + ρ2

)pk,l/H :

( ∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l + yk,l

ρ1 + ρ2
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
)1/M∗⎫⎬

⎭

≤ inf

⎧
⎨

⎩
(
ρ1
)pk,l/H :

( ∞∑

k,l=1,1

[
M

(∥∥
∥∥
xk,l

ρ1
, z1, z2, . . . , zn−1

∥∥
∥∥

)]pk,l
)1/M∗⎫⎬

⎭

+ inf

⎧
⎨

⎩
(
ρ2
)pk,l/H :

( ∞∑

k=1

[
M

(∥∥∥∥
yk,l

ρ2
, z1, z2, . . . , zn−1

∥∥∥∥

)]pk,l
)1/M∗⎫⎬

⎭
.

(2.9)

(iv) Now, let λ → 0 and g(xn − x) → 0 (n → ∞). Since

g(λx) = inf

⎧
⎨

⎩

(
ρ

|λ|
)pk,l/H

:

( ∞∑

k,l=1,1

[
M

(∥∥
∥∥
λxk,l

ρ
, z1, z2, . . . , zn−1

∥∥
∥∥

)]pk,l)1/M∗

< ∞
⎫
⎬

⎭
.

(2.10)

This gives us g(λxn) → 0 (n → ∞).

Theorem 2.4. If 0 < pk,l < qk,l < ∞ for each k and l, then l′′(M,p, ‖·, . . . , ·‖) ⊆ l′′(M,q, ‖·, . . . , ·‖).

Proof. If x ∈ l′′(M,p, ‖·, . . . , ·‖), then there exists some ρ > 0 such that

∞,∞∑

k,l=1,1

[
M

(∥∥∥
∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥∥∥
∥

)]pk,l
< ∞. (2.11)

This implies that

M

(∥∥∥
∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥∥∥
∥

)
< 1, (2.12)
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for sufficiently large values of k and l. Since M is nondecreasing, we are granted

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]qk,l
≤

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
< ∞.

(2.13)

Thus, x ∈ l′′(M,q, ‖·, . . . , ·‖). This completes the proof.

The following result is a consequence of the above theorem.

Corollary 2.5. (i) If 0 < pk,l < 1 for each k and l, then

l′′
(
M,p, ‖·, . . . , ·‖) ⊆ l′′(M, ‖·, . . . , ·‖), (2.14)

(ii) If pk,l ≥ 1 for each k and l, then

l′′(M, ‖·, . . . , ·‖) ⊆ l′′
(
M,p, ‖·, . . . , ·‖). (2.15)

Theorem 2.6. u = (uk,l) ∈ l′′∞ ⇒ ux ∈ l′′(M,p, ‖·, . . . , ·‖), where l′′∞ is the double space of bounded
sequences and ux = (uk,lxk,l).

Proof. u = (uk,l) ∈ l′′∞. Then, there exists an A > 1 such that |uk,l| ≤ A for each k, l. We want to
show (uk,lxk,l) ∈ l′′(M,p, ‖·, . . . , ·‖). But

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
uk,lxk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥
∥∥∥

)]pk,l

=
∞,∞∑

k,l=1,1

[
M

(
|uk,l|

∥∥∥
∥
xk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥∥∥
∥

)]pk,l

≤ (KA)H
∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥
∥∥∥

)]pk,l
,

(2.16)

and this completes the proof.

Theorem 2.7. LetM1 and M2 be Orlicz function. Then, we have

l′′
(
M1, p, ‖·, . . . , ·‖

)⋂
l′′
(
M2, p, ‖·, . . . , ·‖

) ⊆ l′′
(
M1 +M2, p, ‖·, . . . , ·‖

)
. (2.17)
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Proof. We have

[
(M1 +M2)

(∥∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l

=
[
M1

(∥∥∥
∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥∥∥
∥

)
+M2

(∥∥∥
∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥∥∥
∥

)]pk,l

≤ D

[
M1

(∥∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
+D

[
M2

(∥∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
.

(2.18)

Let x ∈ l′′(M1, p, ‖·, . . . , ·‖)
⋂
l′′(M2, p, ‖·, . . . , ·‖); when adding the above inequality from k, l =

0, 0 to∞,∞we get x ∈ l”(M1 +M2, p, ‖·, . . . , ·‖) and this completes the proof.

Definition 2.8 (see [10]). Let X be a sequence space. Then, X is called solid if (αkxk) ∈ X
whenever (xk) ∈ X for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ �.

Definition 2.9. Let X be a sequence space. Then, X is called monotone if it contains the
canonical preimages of all its step spaces (see, [17]).

Theorem 2.10. The sequence space l′′(M,p, ‖·, . . . , ·‖) is solid.

Proof. Let (xk,l) ∈ l′′(M,p, ‖·, . . . , ·‖); that is,

∞,∞∑

k,l=1,1

[
M

(∥∥
∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥∥
∥∥

)]pk,l
< ∞. (2.19)

Let (αk,l) be double sequence of scalars such that |αk,l| ≤ 1 for all k, l ∈ � × �. Then, the result
follows from the following inequality:

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
αk,lxk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
≤

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
xk,l

ρ
, z1, z2, . . . , zn−1

∥
∥∥∥

)]pk,l
, (2.20)

and this completes the proof.

We have the following result in view of Remark 1.1 and Theorem 2.10.

Corollary 2.11. The sequence space l′′(M,p, ‖·, . . . , ·‖) is monotone.

Definition 2.12 (see [18]). Let A = (am,n,k,l) denote a four-dimensional summability method
that maps the complex double sequences x into the double-sequence Ax, where the mnth
term to Ax is as follows:

(Ax)m,n =
∞,∞∑

k,l=1,1

am,n,k,lxk,l. (2.21)

Such transformation is said to be nonnegative if am,n,k,l is nonnegative for all m,n, k,
and l.
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Definition 2.13. LetA = (am,n,k,l) be a nonnegative matrix. LetM be an Orlicz function and pk,l
a factorable double sequence of strictly positive real numbers. Then, we define the following
sequence spaces:

ω′′
0

(
M,A, p, ‖·, . . . , ·‖)

=

{

x ∈ S′′(n − 1) : lim
m,n→∞,∞

∞,∞∑

k,l=1,1

[
M

(∥∥
∥∥
am,n,k,lxk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥∥
∥∥

)]pk,l
= 0

}

.

(2.22)

for each z1, z2, . . . , zn−1 ∈ X. If x − le ∈ ω′′
0(M,A, p, ‖·, . . . , ·‖), then we say x is ω′′

0(M,A,
p, ‖·, . . . , ·‖) summable to l, where e = (1, 1, . . .).

If we takeM(x) = x and pk,l = 1 for all (k, l), then we have

ω′′
0

(
A, p, ‖·, . . . , ·‖) =

{

x ∈ S′′(n − 1) : lim
m,n→∞

∞,∞∑

k,l=1,1

‖am,n,k,lxk,l, z1, z2, . . . , zn−2, zn−1‖ = 0

}

.

(2.23)

Theorem 2.14. ω′′
0(M,A, p, ‖·, . . . , ·‖) is linear spaces.

Proof. This can be proved by using the techniques similar to those used in Theorem 2.2.

Theorem 2.15. (1) If 0 < inf pk,l ≤ pk,l < 1, then

ω′′
0

(
M,A, p, ‖·, . . . , ·‖) ⊂ ω′′

0(M,A, ‖·, . . . , ·‖). (2.24)

(2) If 1 ≤ pk,l ≤ sup pk,l < ∞, then

ω′′
0(M,A, ‖·, . . . , ·‖) ⊂ ω′′

0
(
M,A, p, ‖·, . . . , ·‖). (2.25)

Proof. (1) Let x ∈ ω′′
0(M,A, p, ‖·, . . . , ·‖); since 0 < inf pk,l ≤ 1, we have

∞,∞∑

k,l=1,1

[
M

(∥∥
∥∥
am,n,k,lxk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥∥
∥∥

)]

≤
∞,∞∑

k,l=1

[
M

(∥∥∥
∥
am,n,k,lxk

ρ
, z1, z2, . . . , zn−2, zn−1

∥∥∥
∥

)]pk,l
,

(2.26)

and hence x ∈ ω′′
0(M,A, ‖·, . . . , ·‖).

(2) Let pk,l ≥ 1 for each (k, l) and supk,lpk,l < ∞. Let x ∈ ω′′
0(M,A, ‖·, . . . , ·‖).

Then, for each 0 < ε < 1, there exists a positive integer � such that

∞,∞∑

k,l=1,1

[
M

(∥
∥∥∥
am,n,k,lxk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥
∥∥∥

)]
≤ ε < 1, (2.27)
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for all m,n ≥ �. This implies that

∞,∞∑

k,l=1,1

[
M

(∥∥∥
∥
am,n,k,lxk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥∥∥
∥

)]pk,l

≤
∞∑

k,l=1

[
M

(∥∥
∥∥
am,n,k,lxk,l

ρ
, z1, z2, . . . , zn−2, zn−1

∥∥
∥∥

)]
.

(2.28)

Thus, x ∈ ω′′
0(M,A, p, ‖·, . . . , ·‖), and this completes the proof.

Acknowledgments

The author wishes to thank the referees for their careful reading of the paper and for their
helpful suggestions.

References
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