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The object is to give an overview of the study of Schur-convexity of various means and
functions and to contribute to the subject with some new results. First, Schur-convexity of the
generalized integral and weighted integral quasiarithmetic mean is studied. Relation to some
already published results is established, and some applications of the extended result are given.
Furthermore, Schur-convexity of functions connected to the Hermite-Hadamard inequality is
investigated. Finally, some results on convexity and Schur-convexity involving divided difference
are considered.

1. Introduction

The property of Schur-convexity and Schur-concavity has invoked the interest of many
researchers and numerous papers have been dedicated to the investigation of it. The object
of this paper is to present an overview of the results related to the study of Schur-convexity
of various means and functions, in particular, those connected with the Hermite-Hadamard
inequality. Moreover, we contribute to the subject with some new results.

First, let us recall the definition of Schur-convexity. It generalizes the definition of the
convex and concave function via the notion of majorization.

Definition 1.1. Function F : A ⊆ �n → � is said to be Schur-convex on A if

F(x1, x2, . . . , xn) ≤ F
(
y1, y2, . . . , yn

)
, (1.1)



2 Journal of Inequalities and Applications

for every x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ A such that x ≺ y, that is, such that

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n − 1,
n∑

i=1

x[i] =
n∑

i=1

y[i], (1.2)

where x[i] denotes the ith largest component in x.
Function F is said to be Schur-concave on A if −F is Schur-convex.

Note that every function that is convex and symmetric is also Schur-convex.
One of the references which will be of particular interest in this paper is [1]. The

authors were inspired by some inequalities concerning gamma and digamma function and
proved the following result for the integral arithmetic mean.

Theorem A1. Let f be a continuous function on an interval I with a nonempty interior. Then,

F
(
x, y

)
=

⎧
⎪⎨

⎪⎩

1
y − x

∫y

x

f(t)dt, x, y ∈ I, x /=y,

f(x), x = y ∈ I

(1.3)

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I.

Few years later, Wulbert, in [2], proved that the integral arithmetic mean F defined
in (1.3) is convex on I2 if f is convex on I. Zhang and Chu, in [3], rediscovered (without
referring to and citing Wulbert’s result) that the necessary and sufficient condition for the
convexity of the integral arithmetic mean F is for f to be convex on I. Note that the necessity
is obvious. Namely, if F is convex, then it is also Schur-convex since it is symmetric. Theorem
A1 then implies the convexity of function f .

Later, in [4], the Schur-convexity of theweighted integral arithmetic meanwas proved.

Theorem A2. Let f be a continuous function on I ⊆ � and let p be a positive continuous weight on
I. Then, the function

Fp

(
x, y

)
=

⎧
⎪⎨

⎪⎩

1
∫y
x p(t)dt

∫y

x

p(t)f(t)dt, x, y ∈ I, x /=y,

f(x), x = y

(1.4)

is Schur-convex (Schur-concave) on I2 if and only if the inequality

∫y
x p(t)f(t)dt
∫y
x
p(t)dt

≤ p(x)f(x) + p
(
y
)
f
(
y
)

p(x) + p
(
y
) (1.5)

holds (reverses) for all x, y in I.

In the same reference, the authors left an open problem: under which conditions does
(1.5) hold?

The monotonicity of the function Fp defined in (1.4) was studied in [5].
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Theorem A3. Let f be a continuous function on I ⊆ � and let p be a positive continuous weight
on I. Then, the function Fp(x, y) defined in (1.4) is increasing (decreasing) on I2 if f is increasing
(decreasing) on I.

In the following sections, Schur-convexity of the generalized integral and weighted
integral quasiarithmetic mean is studied. Relation to some already published results is
established. Further, a new proof of sufficiency in Theorem A1, which is also a new proof
of Wulbert’s result from [2], that is, Zhang and Chu’s result from [3], is presented. Some
applications of this extended result are given. Furthermore, Schur-convexity of various
functions connected to the Hermite-Hadamard inequality is investigated. Finally, some
results on convexity and Schur-convexity involving divided difference are considered.

To complete the Introduction, we state three very interesting lemmas related to Schur-
convexity. They are needed later for the proofs of our results. All three can be found in both
[6, 7]. The first one gives a useful characterization of Schur-convexity.

Lemma A1. Let I ⊂ � and let f : In → � be a continuous symmetric function. If f is differentiable
on In, then f is Schur-convex on In if and only if

(
xi − xj

)
(

∂f

∂xi
− ∂f

∂xj

)

≥ 0, (1.6)

for all xi, xj ∈ I, i /= j, i, j = 1, 2, . . . , n. Function f is Schur concave if and only if the reversed
inequality sign holds.

Lemma A2. Let Φ : �n → �, g : I ⊂ � → � and Ψ : In → � be defined as Ψ(x) =
Φ(g(x1), . . . , g(xn)), where x = (x1, . . . , xn).

(1) If g is convex (concave) and Φ is increasing and Schur-convex (Schur-concave), then Ψ is
Schur-convex (Schur-concave).

(2) If g is concave (convex) and Φ is decreasing and Schur-convex (Schur-concave), then Ψ is
Schur-convex (Schur-concave).

Lemma A3. Let Ψi : A ⊂ �n → �, i = 1, . . . , k, h : �k → � and Λ : A → � be defined as
Λ(x) = h(Ψ1(x), . . . ,Ψk(x)), where x = (x1, . . . , xn).

(1) If each of Ψi is Schur-convex and h is increasing (decreasing), then Λ is Schur-convex
(Schur-concave).

(2) If each of Ψi is Schur-concave and h is increasing (decreasing), then Λ is Schur-concave
(Schur-convex).

2. Generalizations

Let p be a real positive Lebesgue integrable function on [a, b], k a real Lebesgue integrable
function on [a, b], and f a real continuous strictly monotone function defined on J , the range
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of k. The generalized weighted quasiarithmetic mean of function k with respect to weight
function p is given by

Mf

(
p, k; a, b

)
= f−1

⎛

⎝ 1
∫b
a p(t)dt

∫b

a

p(t)f(k(t))dt

⎞

⎠. (2.1)

For a special choice of functions p, f, k, we can obtain various integral means. For
example,

(i) for p(x) = 1 on [a, b], we get the classical quasiarithmetic integral mean of a
function k

Mf(1, k; a, b) = f−1
(

1
b − a

∫b

a

f(k(t))dt

)

, (2.2)

(ii) for k(x) = x = id(x) on [a, b], we get the classical weighted quasiarithmetic integral
mean

Mf

(
p, id; a, b

)
= f−1

⎛

⎝ 1
∫b
a p(t)dt

∫b

a

p(t)f(t)dt

⎞

⎠, (2.3)

(iii) for f(x) = x = id(x) on J , we get the weighted arithmetic integral mean

Mid

(
p, k; a, b

)
=

1
∫b
a
p(t)dt

∫b

a

p(t)k(t)dt, (2.4)

(iv) for f(x) = xr on J , we obtain the weighted power integral mean of order r

M[r](p, k; a, b
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝ 1
∫b
a
p(t)dt

∫b

a

p(t)kr(t)dt

⎞

⎠

1/r

, r /= 0,

exp

⎛

⎝ 1
∫b
a p(t)dt

∫b

a

p(t) ln k(t)dt

⎞

⎠, r = 0.

(2.5)

The next result discovers the property of Schur-convexity of the generalized integral
quasiarithmetic means.

Theorem 2.1. Let k be a real Lebesgue integrable function defined on the interval I ⊂ �, with range
J . Let f be a real continuous strictly monotone function on J . Then, for the generalized integral
quasiarithmetic mean of function k defined as

Mf

(
k;x, y

)
= f−1

(
1

y − x

∫y

x

(
f ◦ k)(t)dt

)
,

(
x, y

) ∈ I2, (2.6)
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the following hold:

(i) Mf (k;x, y) is Schur-convex on I2

if f ◦ k is convex on I and f is increasing on J
or if f ◦ k is concave on I and f is decreasing on J ,

(ii) Mf (k;x, y) is Schur-concave on I2

if f ◦ k is convex on I and f is decreasing on J
or if f ◦ k is concave on I and f is increasing on J .

Proof. Applying Theorem A1 for function f ◦ k yields that

Φ
(
x, y

)
=

1
y − x

∫y

x

(
f ◦ k)(t)dt (2.7)

is Schur-convex (Schur-concave) if and only if f ◦ k is convex (concave). Now, from Lemma
A3 applied for Mf(k;x, y) = f−1(Φ(x, y)), the statement follows.

Remark 2.2. Applying this theorem for f(t) = tr−1 and k(t) = t = id(t) shows that the
generalized logarithmic mean defined for x, y > 0 as

Lr

(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
yr − xr

r
(
y − x

)

)1/(r−1)
, r ∈ � \ {0, 1}, x /=y,

1
e

(
xx

yy

)1/(x−y)
, r = 1, x /=y,

y − x

logy − log x
, r = 0, x /=y,

x, r ∈ �, x = y

(2.8)

is Schur-convex for r > 2 and Schur-concave for r < 2. This was also obtained in [1] as a
consequence of Theorem A1.

Theorem 2.3. Let f be a real continuous strictly monotone function on I ⊂ � and g be a differentiable
and strictly increasing function on I. Then, for the generalized weighted integral quasiarithmetic mean
defined by

Mf

(
g ′; id;x, y

)
= f−1

(
1

∫y
x
g ′(t)dt

∫y

x

g ′(t)f(t)dt

)

,
(
x, y

) ∈ I2, (2.9)

the following hold:

(i) Mf (g ′; id;x, y) is Schur-convex on I2

if f is increasing, and g and f ◦ g−1 are convex
or if f is decreasing and g is convex and f ◦ g−1 is concave,

(ii) Mf (g ′; id;x, y) is Schur-concave on I2

if f is decreasing and g is concave and f ◦ g−1 is convex or
if f is increasing, and g and f ◦ g−1 are concave.
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Proof. Applying TheoremA1 and Lemma A3 (for p ≡ 1) for function f ◦g−1, we conclude that

Φ
(
x, y

)
=

1
y − x

∫y

x

(
f ◦ g−1

)
(u)du (2.10)

is increasing (decreasing) and Schur-convex (Schur-concave) on I2 if f ◦ g−1 is increasing
(decreasing) and convex (concave) on I.

Using Lemma A2, we now deduce that

Ψ
(
x, y

)
= Φ

(
g(x), g

(
y
))

=
1

g
(
y
) − g(x)

∫g(y)

g(x)

(
f ◦ g−1

)
(u)du (2.11)

is

(a) Schur-convex if g is convex and f◦g−1 is convex and f is increasing or if g is concave
and f ◦ g−1 is convex and f is decreasing,

(b) Schur-concave if g is concave and f ◦ g−1 is concave and f is increasing or if g is
convex and f ◦ g−1 is concave and f is decreasing.

Using substitution u = g(t), we can rewrite

Ψ
(
x, y

)
=

1
g
(
y
) − g(x)

∫g(y)

g(x)

(
f ◦ g−1

)
(u)du =

1
∫y
x g ′(t)dt

∫y

x

g ′(t)f(t)dt. (2.12)

Finally, we apply Lemma A3 to Mf(g ′; id;x, y) = f−1(Ψ(x, y)) in order to conclude
that Mf(g ′; id;x, y) is

(a
′
) Schur-convex if Ψ(x, y) is Schur-convex and f−1 is increasing or if Ψ(x, y) is Schur-
concave and f−1 is decreasing,

(b
′
) Schur-concave ifΨ(x, y) is Schur-convex and f−1 is decreasing or ifΨ(x, y) is Schur-
concave and f−1 is increasing.

Combining (a), (b), (a
′
), and (b

′
) completes the proof.

In [8], a new symmetric mean was defined for two strictly monotone functions f and
g on I ⊆ � as

N
(
f, g;x, y

)
= f−1

(∫1

0

(
f ◦ g−1

)(
sg(x) + (1 − s)g

(
y
))
ds

)

,
(
x, y

) ∈ I2. (2.13)

If we change the variable u = sg(x) + (1 − s)g(y), we have

N
(
f, g;x, y

)
= f−1

(
1

g
(
y
) − g(x)

∫g(y)

g(x)

(
f ◦ g−1

)
(u)du

)

. (2.14)
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Further, by substitution u = g(t), we obtain

N
(
f, g;x, y

)
= f−1

(
1

∫y
x g ′(t)dt

∫y

x

f(t)g ′(t)dt

)

. (2.15)

Note that under an additional assumption that g is strictly increasing, we have
N(f, g;x, y) = Mf(g ′; id;x, y). Thus, using the same idea as in the proof of Theorem 2.3,
an analogous result can easily be given for the meanN(f, g;x, y).

Theorem 2.4. Let f and g be real continuous strictly monotone functions on I ⊂ �. Then, for the
mean defined in (2.13), the following hold:

(i) N(f, g;x, y) is Schur-convex on I2

if f is increasing and g is increasing and convex and f ◦ g−1 is convex
or if f is increasing and g is decreasing and concave and f ◦ g−1 is convex
or if f is decreasing and g is decreasing and concave and f ◦ g−1 is concave
or if f is decreasing and g is increasing and convex and f ◦ g−1 is concave,

(ii) N(f, g;x, y) is Schur-concave on I2

if f is decreasing and g is decreasing and convex and f ◦ g−1 is convex
or if f is decreasing and g is increasing and concave and f ◦ g−1 is convex
or if f is increasing and g is increasing and concave and f ◦ g−1 is concave
or if f is increasing and g is decreasing and convex and f ◦ g−1 is concave.

2.1. Application of Theorem A1 for the Extended Mean Values

For x, y > 0 and r, s ∈ �, extended mean values were defined in [9] by Stolarsky as follows:

E
(
r, s;x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r

s
· y

s − xs

yr − xr

)1/(s−r)
, rs(r − s)

(
x − y

)
/= 0,

(
1
r
· yr − xr

log y − logx

)1/r

, s = 0, r
(
x − y

)
/= 0,

1
e1/r

(
xxr

yyr

)1/(xr−yr)

, s = r, r
(
x − y

)
/= 0,

√
xy, s = r = 0, x /=y,

x, x = y.

(2.16)

As a special case, the identric mean Ir of order r and the logarithmic mean Lr of order
r are recaptured. Namely, Ir(x, y) = E(r, r;x, y) and Lr(x, y) = E(r, 1;x, y).

On the other hand, note that the generalized weighted quasiarithmetic mean defined
in (2.1) is a generalization of the extended means. Namely, E(r, s; a, b) = Mf(xr−1, id; a, b) for
f(t) = ts−r .

Many properties of extended mean values have been considered in [10]. It was shown
that E(r, s;x, y) are continuous on {(r, s;x, y) : r, s ∈ �, x, y > 0} and symmetric with respect
to both r and s, and x and y.
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Schur-convexity of the extended mean values E(r, s;x, y) with respect to (r, s) and
(x, y) was considered in [4, 5, 11].

Sándor in [12] (and also Qi et al. in [11]) proved the Schur-convexity of the
extended mean values E(r, s;x, y) with respect to (r, s), using Theorem A1 and the integral
representation lnE(r, s;x, y) = (1/(s − r))

∫s
r
ln It(x, y)dt.

Shi et al. in [5], using Theorem A1 and Lemma A3 obtained the following condition
for the Schur-convexity of the extended mean values E(r, s;x, y) with respect to (x, y).

Theorem A4. For fixed (r, s),

(i) if 2 < 2r < s or 2 ≤ 2s ≤ r, then the extended mean values E(r, s;x, y) are Schur-convex
with respect to (x, y) ∈ (0,+∞) × (0,+∞),

(ii) if (r, s) ∈ {r < s ≤ 2r, 0 < r ≤ 1} ∪ {s < r ≤ 2s, 0 < s ≤ 1} ∪ {0 < s < r ≤ 1} ∪ {0 <
r < s ≤ 1} ∪ {s ≤ 2r < 0} ∪ {r ≤ 2s < 0}, then the extended mean values E(r, s;x, y) are
Schur-concave with respect to (x, y) ∈ (0,+∞) × (0,+∞).

Remark 2.5. As a special case forf(t) = ts−r and g(t) = tr in Theorem 2.3, we recapture the
result from Theorem A4 for the extended mean values

E
(
r, s;x, y

)
= Mf

(
g ′; id;x, y

)
=

(
1

∫y
x rtr−1dt

∫y

x

rtr−1ts−rdt

)1/(s−r)

=

(
1

yr − xr

∫yr

xr

(
t1/r

)s−r
dt

)1/(s−r)
.

(2.17)

Chu and Zhang in [13] established the necessary and sufficient conditions for the
extended mean values E(r, s;x, y) to be Schur-convex (Schur-concave)with respect to (x, y),
for fixed (r, s).

Theorem A5. For fixed (r, s) ∈ �2 ,
(i) the extended mean values E(r, s;x, y) are Schur-convex with respect to (x, y) ∈ (0,∞) ×

(0,∞) if and only if (r, s) ∈ {s ≥ 1, r ≥ 1, s + r ≥ 3},
(ii) the extended mean values E(r, s;x, y) are Schur-concave with respect to (x, y) ∈ (0,∞) ×

(0,∞) if and only if (r, s) ∈ {r ≤ 1, s + r ≤ 3} ∪ {s ≤ 1, s + r ≤ 3}.

We remark that the above result does not cover the case r = s, that is, the case of
the identric mean Ir(x, y) of order r. Monotonicity and Schur-concavity of the identric mean
Ir(x, y) with respect to (x, y) and for fixed r was discussed in [14], using the hyperbolic
composite function.

Theorem A6. For fixed r ∈ �,
(i) Ir(x, y) is increasing with respect to (x, y) ∈ (0,∞) × (0,∞),

(ii) if 0 < r ≤ 1, then Ir(x, y) is Schur-concave with respect to (x, y) ∈ (0,∞) × (0,∞).

3. Convexity

The following result is an extension of Wulbert’s result from [2].
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Theorem 3.1. Let f be a continuous function on an interval I with a nonempty interior. If f is convex
on I, then the integral arithmetic mean F defined in (1.3) is convex on I2.

Furthermore, for xi, yi ∈ I, i = 1, . . . , n and nonnegative real weights wi, i = 1, . . . , n such
that

∑n
i=1 wi = 1, the following hold:

1
y − x

∫y

x

f(t)dt ≤
n∑

i=1

wi
1

yi − xi

∫yi

xi

f(t)dt, (3.1)

f

(
x + y

2

)
≤ 1
y − x

∫y

x

f(t)dt ≤
n∑

i=1

wi
1

yi − xi

∫yi

xi

f(t)dt ≤
n∑

i=1

wi

f(xi) + f
(
yi

)

2
, (3.2)

where x =
∑n

i=1 wixi and y =
∑n

i=1 wiyi.

Proof. Using the discrete Jensen inequality for the convex function f , we have the following
conclusion:

n∑

i=1

wiF
(
xi, yi

)
=

n∑

i=1

wi

∫1

0
f
(
yis + xi(1 − s)

)
ds

=
∫1

0

n∑

i=1

wif
(
yis + xi(1 − s)

)
ds

≥
∫1

0
f

(
n∑

i=1

wi

(
yis + xi(1 − s)

)
)

ds

=
∫1

0
f

(

s
n∑

i=1

wiyi + (1 − s)
n∑

i=1

wixi

)

= F
(
x, y

)
.

(3.3)

So, function F is convex on I2.
Using the Hermite-Hadamard inequality for the convex function f , we can extend

inequality (3.1) on the left and on the right hand side as follows:

f

(
x + y

2

)
≤ 1
y − x

∫y

x

f(t)dt ≤
n∑

i=1

wi
1

yi − xi

∫yi

xi

f(t)dt ≤
n∑

i=1

wi

f(xi) + f
(
yi

)

2
. (3.4)

Corollary 3.2. Generalized logarithmic mean Lr(x, y) defined by (2.16) is convex for r > 2 and
concave for r < 2.

Proof. Apply Theorem 3.1 for f(t) = tr−1.
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Remark 3.3. Theorem 3.1 is a generalization of the discrete Jensen inequality. For xi = yi, i =
1, . . . , n, the inequality

n∑

i=1

wiF
(
xi, yi

) ≥ F
(
x, y

)
(3.5)

recaptures the Jensen inequality

n∑

i=1

wif(xi) ≥ f

(
n∑

i=1

wixi

)

. (3.6)

Remark 3.4. The inequality (3.1) is strict if f is a strictly convex function unless x1 = x2 = · · · =
xn = y1 = y2 = · · · = yn.

3.1. Applications

We recall the following definitions and remarks (see, e.g., [15]).

Definition 3.5. A function f : (a, b) → � is exponentially convex if it is continuous and

n∑

i,j=1

ξiξjf
(
xi + xj

) ≥ 0, (3.7)

for every n ∈ N and every ξi ∈ �, i = 1, . . . , n such that xi + xj ∈ (a, b), 1 ≤ i, j ≤ n.

Definition 3.6. A function f : I → �+ , where I is an interval in �, is said to be log convex
if log f is convex, or equivalently, if for all x, y ∈ I and all α ∈ [0, 1], we have

f
(
αx + (1 − α)y

) ≤ fα(x)f1−α(y
)
. (3.8)

Remark 3.7. If f : (a, b) → �+ is exponentially convex, then f is a log-convex function.

Consider a family of functions φr : �+ → �, r ∈ � from [15], defined as

φr(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tr

r(r − 1)
, r /= 0, 1,

− log t, r = 0,

t log t, r = 1.

(3.9)

Now, we will give some applications of (3.1).
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Theorem 3.8. Let x =
∑n

i=1 wixi, y =
∑n

i=1 wiyi, let wi, i = 1, . . . , n be nonnegative real weights
such that

∑n
i=1 wi = 1 and xi, yi ∈ I. Let us define function

T(r) =
n∑

i=1

wi
1

yi − xi

∫yi

xi

φr(t)dt − 1
y − x

∫y

x

φr(t)dt, (3.10)

where φr is given by (3.9). Then, the following hold:

(i) the function r �→ T(r) is continuous on �,

(ii) for each n ∈ � and r1, . . . , rn ∈ � matrix [T((ri + rj)/2)]ni,j=1 is positive semidefinite.
Particularly,

det
[
T

(
ri + rj

2

)]n

i,j=1
≥ 0 , (3.11)

(iii) the function r �→ T(r) is exponentially convex on �,

(iv) if T(r) > 0, the function r �→ T(r) is log-convex on �,

(v) for ri, i = 1, 2, 3 such that r1 < r2 < r3, one has

(T(r2))r3−r1 ≤ (T(r1))r3−r2(T(r3))r2−r1 . (3.12)

Proof. Analogous to the proof of Theorem 2.2 from [15].

Following the steps of the proofs of Theorems 2.4 and 2.5 given in [15], we can prove
the following two mean value theorems.

Theorem 3.9. Let I be any compact interval, x =
∑n

i=1 wixi, y =
∑n

i=1 wiyi, where wi, i = 1, . . . , n
are nonnegative real weights such that

∑n
i=1 wi = 1 and xi, yi ∈ I. If f ∈ C2(I), then there exists ξ ∈ I

such that

f ′′(ζ)
6

[
n∑

i=1

wi

(
x2
i + xiyi + y2

i

)
−
(
y2 + xy + x2

)]

=
n∑

i=1

wi
1

yi − xi

∫yi

xi

f(t)dt − 1
y − x

∫y

x

f(t)dt.

(3.13)

Theorem 3.10. Let I be any compact interval and x, y as in Theorem 3.9. If f1, f2 ∈ C2(I) such that
f ′′
2 (t) does not vanish for any value of t ∈ I, then there exists ξ ∈ I such that

f ′′
1 (ξ)

f ′′
2 (ξ)

=

∑n
i=1 wi

(
1/

(
yi − xi

)) ∫yi

xi
f1(t)dt −

(
1/

(
y − x

)) ∫y
x
f1(t)dt

∑n
i=1 wi

(
1/

(
yi − xi

)) ∫yi

xi
f2(t)dt −

(
1/

(
y − x

)) ∫y
x
f2(t)dt

, (3.14)

provided that denominator on right-hand side is nonzero.
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Remark 3.11. Let x =
∑n

i=1 wixi, y =
∑n

i=1 wiyi, wherewi, i = 1, . . . , n are nonnegative real weights
such that

∑n
i=1 wi = 1 and xi, yi in I. If the inverse of f ′′

1/f
′′
2 exists, then various kinds of means can

be defined by (3.14). Namely,

ξ =

(
f ′′
1

f ′′
2

)−1⎛

⎝
∑n

i=1 wi

(
1/

(
yi − xi

)) ∫yi

xi
f1(t)dt −

(
1/

(
y − x

)) ∫y
x
f1(t)dt

∑n
i=1 wi

(
1/

(
yi − xi

)) ∫yi

xi
f2(t)dt −

(
1/

(
y − x

)) ∫y
x
f2(t)dt

⎞

⎠. (3.15)

Moreover, we can define three-parameter means as in [15]

Ms
r,p

(
wi;xs

i , y
s
i ;n

)
=

(
Ts(r)
Ts

(
p
)

)1/(r−p)
, (3.16)

where, including all the limit cases,

Ts(r) =
s3

r3 − rs2

[
n∑

i=1

wi

xr+s
i − yr+s

i

xs
i − ys

i

−
(
Ms

wi
(xi)

)r+s − (
Ms

wi

(
yi

))r+s
(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s

]

, r3 − rs2 /= 0, s /= 0;

Ts(−s) = log

⎛

⎝(Ms
wi (xi))

s−(Ms
wi (yi))

s
√√
√Ms

wi
(xi)

Ms
wi

(
yi

)
n∏

i=1

(
xi

yi

)wi/(xs
i −ys

i )
⎞

⎠

s/2

, s /= 0;

Ts(0) = log

⎛

⎜
⎝(Ms

wi (xi))
s−(Ms

wi (yi))
s

√√√
√Ms

wi
(xi)(M

s
wi
(xi))

s

Ms
wi

(
yi

)(Ms
wi
(yi))

s

n∏

i=1

⎛

⎝x
xs
i

i

y
ys
i

i

⎞

⎠

wi/(ys
i −xs

i )
⎞

⎟
⎠

s

, s /= 0;

Ts(s) = log

⎛

⎜
⎝(Ms

wi (xi))
s−(Ms

wi (yi))
s

√√√√
√

Ms
wi
(xi)(M

s
wi
(xi))2s

Ms
wi
(yi)

(Ms
wi
(yi))2s

n∏

i=1

⎛

⎝x
x2s
i

i

y
y2s
i

i

⎞

⎠

wi/(2(ys
i −xs

i ))
⎞

⎟
⎠

s/2

− (Ms
w(xi))2s −

(
Ms

w

(
yi

))2s

4
+

n∑

i=1

wi

x2s
i − y2s

i

4
, s /= 0,

T0(r) =
1
r3

[
n∑

i=1

wi

xr
i − yr

i

log xi − log yi
−

(
M0

w(xi)
)r − (

M0
w(yi)

)r

log
(
M0

w(xi)
) − log

(
M0

w

(
yi

))

]

, r /= 0,

T0(0) =
1
6

[
n∑

i=1

wi
log3xi − log3yi

log xi − log yi
−

(
logM0

w(xi)
)3 − (

logM0
w

(
yi

))3

log
(
M0

w(xi)
) − log

(
M0

w

(
yi

))

]

(3.17)

and the weighted power mean of xi is denoted as

Ms
wi
(xi) =

⎧
⎪⎨

⎪⎩

(∑n

i=1
wix

s
i

)1/s
, s /= 0,

∏n

i=1
xwi

i , s = 0.
(3.18)
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All the limiting cases of (3.16) are given as follows:

Ms
r,r

(
wi;xs

i , y
s
i ;n

)

= exp

⎛

⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

s − 2r
r2 − rs

+

(
Ms

wi
(xi)

)r+s log
(
Ms

wi
(xi)

) − (
Ms

wi

(
yi

))r+s log
(
Ms

wi

(
yi

))

(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s

−
n∑

i=1

wi

yr+s
i logys

i − xr+s
i logxs

i

ys
i − xs

i
(
Ms

wi
(xi)

)r+s − (
Ms

wi

(
yi

))r+s
(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s −
n∑

i=1

wi

yr+s
i − xr+s

i

ys
i − xs

i

⎞

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

,

Ms
−s,−s

(
wi;xs

i , y
s
i ;n

)

= exp

⎛

⎜⎜
⎜⎜⎜
⎝

3
2s

+

log2(Ms
wi
(xi)

) − log2
(
Ms

wi

(
yi

))

(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s −
n∑

i=1

wi

log2xs
i − log2ys

i

xs
i − ys

i

log
(
Ms

wi
(xi)

) − log
(
Ms

wi

(
yi

))

(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s −
n∑

i=1

wi

logxs
i − log ys

i

xs
i − ys

i

⎞

⎟⎟
⎟⎟⎟
⎠

,

Ms
0,0

(
wi;xs

i , y
s
i ;n

)

= exp

⎛

⎜
⎜⎜⎜
⎜
⎝

1
s
+

log2(Ms
wi
(xi)

) − log2(Ms
wi

(
yi

))

(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s −
n∑

i=1

wi

ys
i log

2ys
i − xs

i log
2xs

i

ys
i − xs

i

log
(
Ms

wi
(xi)

) − log
(
Ms

wi

(
yi

))

(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s −
n∑

i=1

wi

ys
i log y

s
i − xs

i logx
s
i

ys
i − xs

i

⎞

⎟
⎟⎟⎟
⎟
⎠

,

Ms
s,s

(
wi;xs

i , y
s
i ;n

)

= exp

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

−1
s
+

(
Ms

wi
(xi)

)2slog2(Ms
wi
(xi)

) − (
Ms

wi

(
yi

))2slog2(Ms
wi

(
yi

))

(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s

−
n∑

i=1

wi

y2s
i log2ys

i − x2s
i log2xs

i

ys
i − xs

i
(
Ms

wi
(xi)

)2s log
(
Ms

wi
(xi)

) − (
Ms

wi

(
yi

))2s log
(
Ms

wi

(
yi

))

(
Ms

wi
(xi)

)s − (
Ms

wi

(
yi

))s

−
n∑

i=1

wi

y2s
i log ys

i − x2s
i logxs

i

ys
i − xs

i

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎠

,
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M0
r,r

(
wi; log(xi), log

(
yi

)
;n

)

= exp

⎛

⎜
⎜⎜⎜
⎜⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜
⎝

−2
r
+

(
M0

wi
(xi)

)r log
(
M0

wi
(xi)

) − (
M0

wi

(
yi

))r log
(
M0

wi

(
yi

))

log
(
M0

wi
(xi)

) − log
(
M0

wi

(
yi

))

−
n∑

i=1

wi

xr
i log xi − yr

i logyi

log xi − log yi
(
M0

wi
(xi)

)r − (
M0

wi

(
yi

))r

log
(
M0

wi
(xi)

) − log
(
M0

wi

(
yi

)) −
n∑

i=1

wi

xr
i − yr

i

log xi − log yi

⎞

⎟
⎟⎟⎟
⎟⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟
⎠

,

M0
0,0

(
wi; log(xi), log

(
yi

)
;n

)

= exp

⎛

⎜⎜⎜
⎜⎜
⎝

1
3

log3(M0
wi
(xi)

) − log3
(
M0

wi

(
yi

))

log
(
M0

wi
(xi)

) − log
(
M0

wi

(
yi

)) −
n∑

i=1

wi

(
logxi

)3 − (
logyi

)3

log xi − log yi

log
(
M0

wi
(xi)

)
+ log

(
M0

wi

(
yi

)) −
n∑

i=1

wi

(
logxi

)2 − (
logyi

)2

log xi − log yi

⎞

⎟⎟⎟
⎟⎟
⎠

.

(3.19)

Theorem 3.12. Let x =
∑n

i=1 wixi, y =
∑n

i=1 wiyi, where wi, i = 1, . . . , n are nonnegative real
weights such that

∑n
i=1 wi = 1 and xi, yi ∈ I. If r, p, u, v ∈ � are such that r ≤ u, p ≤ v, then the

following inequality is valid:

Ms
r,p

(
wi;xi, yi;n

) ≤ Ms
u,v

(
wi;xi, yi;n

)
. (3.20)

Proof. It follows the steps of the proof of Theorem 4.2 given in [15].

Remark 3.13. As a special case for xi = yi, i = 1, . . . , n, we recapture the discrete version of the results
obtained in [16].

4. Hermite-Hadamard Inequality

Let us recall the Hermite-Hadamard inequality: if f : I → � is a convex function on I and
a, b ∈ I such that a < b, then the following double inequality holds:

f

(
a + b

2

)
≤ 1
b − a

∫b

a

f(t)dt ≤ f(a) + f(b)
2

. (4.1)

In [17], it was shown that f is convex if and only if at least one of the inequalities in (4.1) is
valid.

An interesting fact is that the original proof of TheoremA1was given using the second
Hermite-Hadamard inequality and the first one follows from the same theorem.
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A very interesting inequality closely connected with the Hermite-Hadamard inequal-
ity was given in [18]. Namely, it was shown by a simple geometric argument that for a convex
function f , the following is valid:

0 ≤ 1
b − a

∫b

a

f(t)dt − f

(
a + b

2

)
≤ f(a) + f(b)

2
− 1
b − a

∫b

a

f(t)dt. (4.2)

The same inequality was rediscovered later in [19] through an elementary analytic proof.

4.1. Application of Theorem A1 for a Function Connected with
Hadamard Inequality

Dragomir et al. in [20] (see also [21, page 108]) considered a function L : [0, 1] → �,
connected to Hadamard’s inequality, given by

L(t) =
1

2(b − a)

∫b

a

[
f(ta + (1 − t)x) + f(tb + (1 − t)x)

]
dx, (4.3)

where f : I ⊆ � → � and a, b ∈ I with a < b, and showed convexity of L if f is convex
function on I.

Yang and Hong, in [22] (see also [21, page 147]) considered a similar function. Shi, in
[23], found a similar result as Theorem A1 for the function L.

Theorem A7. Let I ⊆ � be an interval with a nonempty interior and f be a continuous function on
I. For function PL(a, b) defined on I2 as

PL(a, b) =

⎧
⎨

⎩

L(t), a, b ∈ I, a /= b,

f(a), a = b,
(4.4)

the following hold:

(i) for 1/2 ≤ t ≤ 1, if f is convex on I, then PL is Schur-convex on I2,

(ii) for 0 ≤ t ≤ 1/2, if f is concave on I, then PL is Schur-concave on I2.

In [24], we obtained Schur-convexity of the C̆ebišev functional. In note [25], our first
aim was to give another similar result to Theorem A1.

Theorem A8. Let I ⊆ � be an interval with a nonempty interior. Let f be a continuous function on
I and α a continuous function on [0, 1]. Let Lα : [0, 1] → � be a function defined by

Lα(t) =
1

b − a

∫b

a

[
f(α(t)a + (1 − α(t))x) + f(α(t)b + (1 − α(t))x)

]
dx. (4.5)
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For a function Pα(a, b) defined on I2 as

Pα(a, b) =

⎧
⎨

⎩

Lα(t), a, b ∈ I, a /= b,

f(a), a = b,
(4.6)

the following hold:

(i) for α such that mint∈Iα(t) = 1/2, maxt∈Iα(t) = 1, if f is convex on I, then Pα is Schur-
convex on I2,

(ii) for α such that mint∈Iα(t) = 0, maxt∈Iα(t) = 1/2, if f is concave on I, then Pα is Schur-
concave on I2.

Another function defined by a double integral in connection with the Hermite-
Hadamard inequalities is considered in [26]

G(t) =
1

(b − a)2

∫∫b

a

f
(
tx + (1 − t)y

)
dx dy. (4.7)

Shi, in [23], found a similar result as Theorem A1 for this function G(t).

Theorem A9. Let I ⊆ � be an interval with a nonempty interior, f a continuous function on I, and
0 ≤ t ≤ 1. If f is convex (concave) on I, the functionQ(a, b) defined on I2 as

Q(a, b) =

⎧
⎨

⎩

G(t), a, b ∈ I, a /= b,

f(a), a = b
(4.8)

is Schur-convex (Schur-concave) on I2.

4.2. Schur-Convexity of Hermite-Hadamard Differences

In [27], the property of Schur-convexity of the difference between the middle part and the
left-hand side of the Hermite-Hadamard inequality (4.1), and the difference between the
right-hand side and the middle part of the same inequality, was investigated. The following
theorems were proved.

Theorem A10. Suppose I is an open interval and f : I → � is a continuous function. Function

L
(
x, y

)
=

⎧
⎪⎨

⎪⎩

1
y − x

∫y

x

f(t)dt − f

(
x + y

2

)
, x, y ∈ I, x /=y,

0, x = y ∈ I

(4.9)

is Schur-convex (concave) on I2 if and only if f is convex (concave) on I.
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Theorem A11. Suppose I is an open interval and f : I → � is a continuous function. Function

R
(
x, y

)
=

⎧
⎪⎨

⎪⎩

f(x) + f
(
y
)

2
− 1
y − x

∫y

x

f(t)dt, x, y ∈ I, x /=y,

0, x = y ∈ I

(4.10)

is Schur-convex (concave) on I2 if and only if f is convex (concave) on I.

First, we state a simple consequence of Theorems A1, A10, and A11.

Corollary 4.1. Let f : I ⊆ � → � be a continuous function. Then, the following statements are
equivalent:

(i) f is convex (concave),

(ii) F is Schur-convex (Schur-concave),

(iii) L is Schur-convex (Schur-concave),

(iv) R is Schur-convex (Schur-concave),

where F is defined as in (1.4), L as in (4.9) and R as in (4.10).

Remark 4.2. It is not difficult to verify that

∂F

∂x
− ∂F

∂y
=

∂L

∂x
− ∂L

∂y
, (4.11)

which, after applying Lemma A1, is another proof of (ii)⇔(iii) in Corollary 4.1.

In [28], the following identity was derived: if f : I ⊆ � → � is such that f (n−1) is
absolutely continuous for some n ≥ 2, a, b ∈ I, a < b and x ∈ [a, b], then

1
b − a

∫b

a

f(t)dt = f(x) +
n−2∑

i=0

f (i+1)(x)
(b − x)i+2 − (a − x)i+2

(b − a)(i + 2)!

+
1

n!(b − a)

(∫x

a

(a − t)nf (n)(t)dt +
∫b

x

(b − t)nf (n)(t)dt

)

.

(4.12)

Applying identity (4.12) for n = 2, then choosing, respectively, x = a and x = b, adding
up two thus obtained identities, and finally dividing by two procures

1
b − a

∫b

a

f(t)dt − f(a) + f(b)
2

+
b − a

4
[
f ′(b) − f ′(a)

]
=

1
4(b − a)

∫b

a

[
(b − t)2 + (a − t)2

]
f ′′(t)dt.

(4.13)

Identity (4.13) enables us to give a new proof of sufficiency in Theorem A11.
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Proof of sufficiency in Theorem A11. We have

(
y − x

)
(
∂R

∂y
− ∂R

∂x

)
=

2
y − x

∫y

x

f(t)dt − [
f
(
y
)
+ f(x)

]
+
1
2
(
y − x

)[
f ′(y

) − f ′(x)
]
.

(4.14)

Using (4.13), we see that in fact

(
y − x

)(∂R

∂y
− ∂R

∂x

)
=

1
2
(
y − x

)
∫y

x

[(
y − t

)2 + (x − t)2
]
f ′′(t)dt. (4.15)

Since by assumption f is convex (concave), Lemma A1 yields that R is Schur-convex (Schur-
concave).

Remark 4.3. Note that with an additional assumption that f ∈ C2(I), since(27)is valid for
all x, y ∈ I, from (4.15) necessity in Theorem A11 follows as well.

Identity similar to (4.13) can be found in [29]: if f : [a, b] → � is twice differentiable,
then the following identity is valid:

1
b − a

∫b

a

f(t)dt − f(a) + f(b)
2

+
b − a

8
[
f ′(b) − f ′(a)

]
=

1
2(b − a)

∫b

a

(
t − a + b

2

)2

f ′′(t)dt.

(4.16)

With the help of identity (4.16), we can present the following.

Theorem 4.4. If f : I ⊆ � → � is a convex (concave) function, then the function

P
(
x, y

)
=

⎧
⎪⎨

⎪⎩

f(x) + f
(
y
)

4
+
1
2
f

(
x + y

2

)
− 1
y − x

∫y

x

f(t)dt, x, y ∈ I, x /=y,

0, x = y ∈ I

(4.17)

is Schur-convex (Schur-concave).
If f ∈ C2(I) and P is Schur-convex (Schur-concave), then f is convex (concave).

Proof. Using (4.16), we deduce

(
y − x

)
(
∂P

∂y
− ∂P

∂x

)
=

2
y − x

∫y

x

f(t)dt − [
f
(
y
)
+ f(x)

]
+
y − x

4
[
f ′(y

) − f ′(x)
]

=
1

y − x

∫y

x

(
t − x + y

2

)2

f ′′(t)dt.

(4.18)

If f is convex (concave), from Lemma A1, it follows that P is Schur-convex (Schur-concave).
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Now, assume in addition that f ∈ C2(I). Applying the integral mean value theorem
yields that there exists ξ ∈ (x, y) such that

(
y − x

)
(
∂P

∂y
− ∂P

∂x

)
= f ′′(ξ)

1
y − x

∫y

x

(
t − x + y

2

)2

dt =

(
y − x

)2

12
f ′′(ξ), (4.19)

and this is valid for all x, y ∈ I. Since by assumption P is Schur-convex (Schur-concave), from
Lemma A1, it follows that f is convex (concave).

Remark 4.5. If P(x, y) is Schur-convex, since ((x + y)/2, (x + y)/2) ≺ (x, y), one has

P

(
x + y

2
,
x + y

2

)
≤ P

(
x, y

)

⇐⇒ 0 ≤ f(x) + f
(
y
)

4
+
1
2
f

(
x + y

2

)
− 1
y − x

∫y

x

f(t)dt

⇐⇒ 1
y − x

∫y

x

f(t)dt − f

(
x + y

2

)
≤ f(x) + f

(
y
)

2
− 1
y − x

∫y

x

f(t)dt,

(4.20)

which is exactly (4.2). Since in Theorem 4.4 we have shown that P is Schur-convex if f is
convex, this is in fact a new proof of (4.2).

5. Convexity and Schur-Convexity of Divided Differences

In this final section, we turn our attention towards divided differences. Let us first recall the
definition.

Definition 5.1. Let f : [a, b] → �. A nth-order divided difference of f at distinct
points x0, . . . , xn ∈ [a, b] is defined recursively by

[xi]f = f(xi), i = 0, . . . , n,

[x0, . . . , xn]f =
[x1, . . . , xn]f − [x0, . . . , xn−1]f

xn − x0
.

(5.1)

Notion closely related to divided differences is n-convexity.

Definition 5.2. A function f : [a, b] → � is said to be n-convex on [a, b], n ≥ 0, if and only if
for all choices of n + 1 distinct points in [a, b],

[x0, . . . , xn]f ≥ 0. (5.2)

If the inequality is reversed, then f is said to be n-concave on [a, b].

For more details on divided differences and n-convexity, see [7].
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In [30], Zwick proved the following theorem.

Theorem A12. Let f be (n + 2)-convex on (a, b). Then, the function

G(x) = [x, x + h1, . . . , x + hn]f (5.3)

is a convex function of x for all x and all h1, . . . , hn such that x + hi ∈ (a, b), i = 1, . . . , n.
Therefore, for pi > 0 and xi ∈ I, i = 1, . . . , m, where I is the domain of G, Jensen’s inequality

yields

1
Pm

m∑

i=1

pi[xi, xi + h1, . . . , xi + hn]f ≥ [x, x + h1, . . . , x + hn]f, (5.4)

where x = 1/Pm
∑m

i=1 pixi.

This theorem is a generalization of a result from [31], where only 3-convex functions
were considered. An additional generalization was given by Farwig and Zwick in [32].

Theorem A13. Let f be (n + 2)-convex on (a, b). Then,

G(x) = [x0, . . . , xn]f (5.5)

is a convex function of the vector x = (x0, . . . , xn). Consequently,

[
m∑

i=0

aix
i
0, . . . ,

m∑

i=0

aix
i
n

]

f ≤
m∑

i=0

ai

[
xi
0, . . . , x

i
n

]
f (5.6)

holds for all ai ≥ 0 such that
∑m

i=0 ai = 1, which is a generalization of (5.4).

Note that the divided difference is a permutation symmetric function. Thus, the
following theorem follows from Theorem A13 and a result on majorization inequalities. It
was obtained in [33] by Pečaric’ and Zwick.

Theorem A14. Let f be an (n + 2)-convex function on (a, b). If (x, y) ∈ (a, b)n+1 and x � y, then

[x0, . . . , xn]f ≥ [
y0, . . . , yn

]
f, (5.7)

that is, function G defined in (5.5) is Schur-convex.

Many more results involving divided differences were obtained, among others the
multivariate analogues, all of which can be found in [7].

About a decade later, Merkle in [34] presented the following.
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Theorem A15. Let f be differentiable on I ⊆ � and f ′ continuous on I. Define

D
(
x, y

)
=

⎧
⎪⎨

⎪⎩

f
(
y
) − f(x)
y − x

, x, y ∈ I, x /=y,

f ′(x), x = y ∈ I.

(5.8)

Then, the conditions (A)–(E) are equivalent and the conditions (A)–(E
′
) are equivalent, where

(A) f ′ is convex on I,

(B) f ′((x + y)/2) ≤ D(x, y) for all x, y ∈ I,

(C) D(x, y) ≤ (f ′(x) + f ′(y))/2 for all x, y ∈ I,

(D) D is convex on I2,

(E) D is Schur-convex on I2

and

(A
′
) f ′ is concave on I,

(B
′
) f ′((x + y)/2) ≥ D(x, y) for all x, y ∈ I,

(C
′
) D(x, y) ≥ (f ′(x) + f ′(y))/2 for all x, y ∈ I,

(D
′
) D is concave on I2,

(E
′
) D is Schur-concave on I2.

First, note that function D defined in (5.8) is the 1st-order divided difference of
function f . Also,

D
(
x, y

)
=

1
y − x

∫y

x

f ′(t)dt. (5.9)

Thus, it becomes clear that the statements (A)⇔(E) and (A
′
)⇔(E

′
) are in fact an alternative

statement of Theorem A1. Furthermore, implications (A)⇒(E) and (A
′
)⇒(E

′
) are a special

case of Theorem A14, while (A)⇒(D) and (A
′
)⇒(D

′
) are a special case of Theorem A13.

Moreover, note that (B) and (C), that is, (B
′
) and (C

′
), are in fact the Hermite-

Hadamard inequalities and we have already commented on their relation with Theorem
A1—one side is used in the proof and the other is a consequence of the theorem.

Implications (D)⇒(E) and (D
′
)⇒(E

′
) are trivial, since D is symmetric.

Furthermore, the statements (A)⇔(D) and (A
′
)⇔(D

′
) are an alternative statement of

Zhang and Chu’s result from [3] and the necessity part recaptures Wulbert’s result from [2]
and the result from our Theorem 3.1.
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5.1. Applications of Schur-Convexity of Divided Differences

In [35], Yang introduced the following mean: let f : �+ × �+ → �+ be a symmetric and
positively homogeneous function (i.e., such that for λ > 0, f(λx, λy) = λf(x, y)), satisfying
f(1, 1) = 1. For p, q ∈ �, the two-parameter family generated by f is defined as

Hf

(
p, q;x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
f
(
xp, yp

)

f
(
xq, yq

)

)1/(p−q)
, p /= q,

exp
(

d

dp
log f

(
xp, yp

))
, p = q /= 0,

√
xy, p = q = 0.

(5.10)

Note that the extended mean vales E(r, s;x, y) and the Gini means

G
(
r, s;x, y

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
xr + yr

xs + ys

)1/(r−s)
, r /= s,

exp
(
xr logx + yr logy

xr + yr

)
, r = s

(5.11)

are obtained as special cases of this new mean. In [36], necessary conditions under which
Gini means (5.11) are Schur-convex and Schur-concave were given. In the short note [37],
Witkowski completed this result with the proof of sufficiency of those conditions.

In a series of papers, Yang investigated various properties of the mean Hf , such
as monotonicity and logarithmic convexity. In [38], Witkowski continued his research
by extending his results, giving simplified proofs and other conditions equivalent to
monotonicity and convexity of Hf . In order to do this, he introduced the function: f̂(t) =
log f(exp(t), 1), so as to presentHf in the form

Hf

(
p, q;x, y

)
= y exp

f̂
(
p log

(
x/y

)) − f̂
(
q log

(
x/y

))

p − q
. (5.12)

Using this form and Theorem A15, he proved the following.

Theorem A16. The following conditions are equivalent:

(a) for all p, q ≥ 0 and all x, y > 0, logHf is convex (concave) in p and q,

(b) for all p, q ≥ 0 and all x, y > 0, logHf is Schur-convex (Schur-concave) in p and q,

(c) f̂ ′(t) is convex (concave) for t ≥ 0,

(d) for all p, q ≤ 0 and all x, y > 0, logHf is concave (convex) in p and q,

(e) for all p, q ≤ 0 and all x, y > 0, logHf is Schur-concave (Schur-convex) in p and q,

(f) f̂ ′(t) is concave (convex) for t ≤ 0.
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If f is positively homogeneous, then so are Hf for every (r, s) and so the four-
parameter family can be created by

Ff

(
p, q; r, s;x, y

)
= HHf (r,s)

(
p, q;x, y

)
. (5.13)

Since

�Hf(r, s)(t) =
f̂(rt) − f̂(st)

r − s
, (5.14)

Witkowski was able to apply all the results obtained for the two-parameter means, in
particular Theorem A16, for this new family of means. The one of special interest to us is
the following.

Theorem A17. If r + s > 0, the following conditions are equivalent:

(a) for all p, q ≥ 0 and all x, y > 0, logFf is convex (concave) in p and q,

(b) for all p, q ≥ 0 and all x, y > 0, logFf is Schur-convex (Schur-concave) in p and q,

(c) t3f̂ ′′′(t) increases (decreases) for t ≥ 0,

(d) for all p, q ≤ 0 and all x, y > 0, logFf is concave (convex) in p and q,

(e) for all p, q ≤ 0 and all x, y > 0, logFf is Schur-concave (Schur-convex) in p and q,

(f) t3f̂ ′′′(t) decreases (increases) for t ≤ 0.

If r + s < 0, then the conditions (c) and (f) reverse.

Note that the same four-parameter family of means was the object of interest to Yang
in [39]. He gave conditions under which Ff are increasing (decreasing) and logarithmically
convex (logarithmically concave). Necessary and sufficient conditions forFf to be increasing
(decreasing)were, however, given in [38].
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[33] J. E. Pečarić and D. Zwick, “n-convexity andmajorization,” The Rocky Mountain Journal of Mathematics,
vol. 19, no. 1, pp. 303–311, 1989.

[34] M. Merkle, “Conditions for convexity of a derivative and some applications to the gamma function,”
Aequationes Mathematicae, vol. 55, no. 3, pp. 273–280, 1998.

[35] Z.-H. Yang, “On the log-convexity of two-parameter homogeneous functions,” Mathematical
Inequalities & Applications, vol. 10, no. 3, pp. 499–516, 2007.

[36] H.-N. Shi, Y.-M. Jiang, and W.-D. Jiang, “Schur-convexity and Schur-geometrically concavity of Gini
means,” Computers & Mathematics with Applications, vol. 57, no. 2, pp. 266–274, 2009.

[37] A.Witkowski, “On Schur-nonconvexity of Gini means,” RGMIA Research Report Collection, vol. 12, no.
2, article 10, 2009.

[38] A. Witkowski, “On two- and four-parameter families,” RGMIA Research Report Collection, vol. 12, no.
1, article 3, 2009.

[39] Z.-H. Yang, “On the monotonicity and log-convexity of a four-parameter homogeneous mean,”
Journal of Inequalities and Applications, vol. 2008, Article ID 149286, 12 pages, 2008.


	1. Introduction
	2. Generalizations
	2.1. Application of Theorem A1 for the Extended Mean Values

	3. Convexity
	3.1. Applications

	4. Hermite-Hadamard Inequality
	4.1. Application of Theorem A1 for a Function Connected with Hadamard Inequality
	4.2. Schur-Convexity of Hermite-Hadamard Differences

	5. Convexity and Schur-Convexity of Divided Differences
	5.1. Applications of Schur-Convexity of Divided Differences

	Acknowledgments
	References

