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We give here an almost sure central limit theorem for product of sums of strongly mixing positive
random variables.

1. Introduction and Results

In recent decades, there has been a lot of work on the almost sure central limit theorem
(ASCLT), we can refer to Brosamler [1], Schatte [2], Lacey and Philipp [3], and Peligrad
and Shao [4].

Khurelbaatar and Rempala [5] gave an ASCLT for product of partial sums of i.i.d.
random variables as follows.

Theorem 1.1. Let {Xn, n ≥ 1} be a sequence of i.i.d. positive random variables with EX1 = μ > 0
and Var(X1) = σ2. Denote γ = σ/μ the coefficient of variation. Then for any real x

lim
n→∞

1
lnn

n∑

k=1

1
k
I

⎛

⎝
(∏k

i=1Si

k!μk

)1/γ
√
k

≤ x

⎞

⎠ = F(x) a.s., (1.1)

where Sn =
∑n

k=1 Xk, I(∗) is the indicator function, F(·) is the distribution function of the random
variable eN, and N is a standard normal variable.

Recently, Jin [6] had proved that (1.1) holds under appropriate conditions for strongly
mixing positive random variables and gave an ASCLT for product of partial sums of strongly
mixing as follows.
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Theorem 1.2. Let {Xn, n ≥ 1} be a sequence of identically distributed positive strongly mixing
random variable with EX1 = μ > 0 and Var(X1) = σ2, dk = 1/k, Dn =

∑n
k=1 dk. Denote by

γ = σ/μ the coefficient of variation, σ2
n = Var(

∑n
k=1((Sk − kμ)/kσ)) and B2

n = Var(Sn). Assume

E|X1|2+δ < ∞ for some δ > 0, lim
n→∞

B2
n

n
= σ2

0 > 0,

α(n) = O
(
n−r) for some r > 1 +

2
δ
, inf

n∈N
σ2
n

n
> 0.

(1.2)

Then for any real x

lim
n→∞
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The sequence {dk, k ≥ 1} in (1.3) is calledweight. Under the conditions of Theorem 1.2,
it is easy to see that (1.3) holds for every sequence d∗

k
with 0 ≤ d∗

k
≤ dk andD∗

n =
∑

k≤n d
∗
k
→ ∞

[7]. Clearly, the larger the weight sequence (dk) is, the stronger is the result (1.3).
In the following sections, let dk = e(ln k)

α

/k, 0 ≤ α < 1/2, Dn =
∑n

k=1 dk, “	” denote the
inequality “≤” up to some universal constant.

We first give an ASCLT for strongly mixing positive random variables.

Theorem 1.3. Let {Xn, n ≥ 1} be a sequence of identically distributed positive strongly mixing
random variable with EX1 = μ > 0 and Var(X1) = σ2, dk and Dn as mentioned above. Denote
by γ = σ/μ the coefficient of variation, σ2

n = Var(
∑n

k=1((Sk − kμ)/kσ)) and B2
n = Var(Sn). Assume

that

E|X1|2+δ < ∞ for some δ > 0, (1.4)

α(n) = O
(
n−r) for some r > 1 +

2
δ
, (1.5)

lim
n→∞

B2
n

n
= σ2

0 > 0, (1.6)

inf
n∈N

σ2
n

n
> 0. (1.7)

Then for any real x

lim
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≤ x
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⎠ = F(x) a.s. (1.8)

In order to prove Theorem 1.3 we first establish ASCLT for certain triangular arrays of
random variables. In the sequel we shall use the following notation. Let bk,n =

∑n
i=k(1/i) and

s2k,n =
∑k

i=1 b
2
i,n for k ≤ n with bk,n = 0 if k > n. Yk = (Xk − μ)/σ, k ≤ 1, S̃n =

∑n
k=1 Yk and

Sn,n =
∑n

k=1 bk,nYk.
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In this setting we establish an ASCLT for the triangular array (bk,nYk).

Theorem 1.4. Under the conditions of Theorem 1.3, for any real x

lim
n→∞

1
Dn

n∑

k=1

dkI

{
Sk,k

σk
≤ x

}
= Φ(x) a.s., (1.9)

where Φ(x) is the standard normal distribution function.

2. The Proofs

2.1. Lemmas

To prove theorems, we need the following lemmas.

Lemma 2.1 (see [8]). Let {Xn, n ≥ 1} be a sequence of strongly mixing random variables with zero
mean, and let {ak,n, 1 ≤ k ≤ n, n ≥ 1} be a triangular array of real numbers. Assume that

sup
n

n∑

k=1

a2
k,n < ∞, max

1≤k≤n
|ak,n| −→ 0 as n −→ ∞. (2.1)

If for a certain δ > 0, {|Xk|2+δ} is uniformly integrable, infk Var(Xk) > 0,

∞∑

n=1

n2/δα(n) < ∞, Var

(
n∑

n=1

ak,nXk

)
= 1, (2.2)

then

n∑

k=1

ak,nXk
d−−−→ N(0, 1). (2.3)

Lemma 2.2 (see [9]). Let dk = e(ln k)
α

/k, 0 ≤ α < 1/2, Dn =
∑n

k=1 dk; then

Dn ∼ C(lnn)1−α exp
{
(lnn)α

}
, (2.4)

where C = 1/α as 0 < α < 1/2, C = 1 as α = 0.

Lemma 2.3 (see [8]). Let {Xn, n ≥ 1} be a strongly mixing sequence of random variables such that
supnE|Xn|2+δ < ∞ for a certain δ > 0 and every n ≥ 1. Then there is a numerical constant c(δ)
depending only on δ such that for every n > 1 one has

sup
j

n+j∑

i=j+1

∣∣Cov
(
Xi,Xj

)∣∣ ≤ c(δ)

(
n∑

i=1

i2/δα(i)

)δ/(2+δ)

sup
k

‖Xk‖22+δ, (2.5)

where ‖Xk‖p = E(|Xk|p)1/p, p > 1.
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Lemma 2.4 (see [9]). Let {ξk, k ≥ 1} be a sequence of random variables, uniformly bounded below
and with finite variances, and let {dk, k ≥ 1} be a sequence of positive number. Let for n ≥ 1, Dn =∑n

k=1 dk and Tn = (1/Dn)
∑n

k=1 dkξk. Assume that

Dn −→ ∞ Dn+1

Dn
−→ 1, (2.6)

as n → ∞. If for some ε > 0, C and all n

ET2
n ≤ C

(
ln−1−εDn

)
, (2.7)

then

Tn
a.s.−−−−→ 0 as n −→ ∞. (2.8)

Lemma 2.5 (see [10]). Let {Xn, n ≥ 1} be a strongly mixing sequence of random variables with zero
mean and supnE|Xn|2+δ < ∞ for a certain δ > 0. Assume that (1.5) and (1.6) hold. Then

lim sup
n→∞

|Sn|√
2σ2

0n ln lnn
= 1 a.s. (2.9)

2.2. Proof of Theorem 1.4

From the definition of strongly mixing we know that {Yk, k ≥ 1} remain to be a sequence of
identically distributed strongly mixing random variable with zero mean and unit variance.
Let ak,n = bk,n/σn; note that

n∑

k=1

b2k,n = b1,n + 2
n∑

k=2

k−1∑

i=1

1
k
= b1,n + 2

n∑
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k − 1
k

= 2n − b1,n, n ≥ 1, (2.10)

and via (1.7)we have
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n
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	 lnn√
n

−→ 0, n −→ ∞.

(2.11)

From the definition of Yk and (1.4)we have that {|Yk|2+δ} is uniformly integrable; note
that

inf
k

Var(Yk) = EY 2
1 = 1 > 0, Var

(
n∑

k=1

ak,nYk

)
=

Var
(∑n

k=1 bk,nYk

)

σ2
n

= 1, (2.12)
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and applying (1.5)

∞∑

n=1

n2/δα(n) 	
∞∑

n=1

n−r+2/δ < ∞. (2.13)

Consequently using Lemma 2.1, we can obtain

Sn,n

σn

d−−−→ N(0, 1) as n −→ ∞, (2.14)

which is equivalent to

Ef

(
Sn,n

σn

)
−→ Ef(N) as n −→ ∞ (2.15)

for any bounded Lipschitz-continuous function f ; applying Toeplitz Lemma

1
Dn

n∑

k=1

dkEf

(
Sk,k

σk

)
−→ Ef(N) as n −→ ∞. (2.16)

We notice that (1.9) is equivalent to

lim
n→∞

1
Dn

n∑

k=1

dkf

(
Sk,k

σk

)
= Φ(x) a.s. (2.17)

for all bounded Lipschitz continuous f ; it therefore remains to prove that

Tn � 1
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(
f
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σk
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− Ef

(
Sk,k
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))
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Let ξk = f(Sk,k/σk) − Ef(Sk,k/σk),

E
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k=1

dkξk

)2

≤ E

(
2

∑

1≤k≤l≤n
dkdlξkξl

)
	

∑
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∑
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l>2k

dkdl|E(ξkξl)|

� T1,n + T2,n.

(2.19)

From Lemma 2.2, we obtain for some constant C1

e(lnn)
α ∼ C1Dn(lnDn)

1−1/α. (2.20)
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Using (2.20) and property of f , we have

T1,n 	 e(lnn)
α

n∑

k=1

dk

2k∑

l=k

1
l
	 Dne(lnn)

α 	 D2
n(lnDn)
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We estimate now T2,n. For l > 2k,

Sl,l − S2k,2k = (b1,lY1 + b2,lY2 + · · · + bl,lYl) − (b1,2kY1 + b2,2kY2 + · · · + b2k,2kY2k)
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and the properties of strongly mixing sequence imply
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Applying Lemma 2.3 and (2.10),
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Consequently, via the properties of f , the Jensen inequality, and (1.7),
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(
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l
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,
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where 0 < β < 1/2. Hence for l > 2k we have

|Eξkξl| 	 α(k) +
(
k
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)β
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Consequently, we conclude from the above inequalities that
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k

l
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(2.28)

Applying (1.5) and Lemma 2.2 we can obtain for any η > 0
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n∑
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dkdlα(k) 	 (lnDn)
−1−η
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k=1

dk

n∑

l=1

dl = D2
n(lnDn)
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Notice that
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(l/k)≥(lnDn)
2/β
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k

l
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l
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n(lnDn)
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Let n0 = max{l : k ≤ l ≤ n, (l/k) < (lnDn)
2/β}, then

T2,n,2,2 ≤
n∑

k=1

n0∑

l=2k

dkdl ≤ e(lnn)
α

n∑

k=1

dk

n0∑

l=2k

1
l
	 e(lnn)

α
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	 e(lnn)
α

Dn ln lnDn 	 D2
nln

1−1/αDn ln lnDn.

(2.32)

By (2.21), (2.29), (2.31), and (2.32), for some ε > 0 such that

ET2
n =

1
D2

n

E

(
n∑
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dkξk

)2

	 (lnDn)
−1−ε, (2.33)

applying Lemma 2.4, we have

Tn
a.s.−−−−→ 0. (2.34)

2.3. Proof of Theorem 1.3

Let Ck = Sk/μk; we have

1
γσn

n∑

k=1

(Ck − 1) =
1

γσn

n∑

k=1

(
Sk

μk
− 1

)
=

1
σn
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bk,nYk =
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σn
. (2.35)

We see that (1.9) is equivalent to

lim
n→∞

1
Dn
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k=1
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(
1

γσk

k∑

i=1

(Ci − 1) ≤ x

)
= Φ(x), a.s. ∀x. (2.36)

Note that in order to prove (1.8) it is sufficient to show that

lim
n→∞

1
Dn

n∑

k=1

dkI

(
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γσk
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)
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From Lemma 2.5, for sufficiently large k, we have

|Ck − 1| = O

((
ln(ln k)

k

)1/2
)
. (2.38)

Since ln(1 + x) = x +O(x2) for |x| < 1/2, thus
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ln(ln k)
k

	 lnn ln(lnn) a.s. (2.39)
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Hence for any ε > 0 and for sufficiently large n, we have

I

(
1

γσn

n∑

k=1

(Ck − 1) ≤ x − ε

)
≤ I

(
1

γσn

n∑

k=1

lnCk ≤ x

)
≤ I

(
1

γσn

n∑

k=1

(Ck − 1) ≤ x + ε

)
(2.40)

and thus (2.36) implies (2.37).
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[7] I. Berkes and E. Csáki, “A universal result in almost sure central limit theory,” Stochastic Processes and
Their Applications, vol. 94, no. 1, pp. 105–134, 2001.

[8] M. Peligrad and S. Utev, “Central limit theorem for linear processes,” The Annals of Probability, vol. 25,
no. 1, pp. 443–456, 1997.

[9] F. Jonsson, Almost Sure Central Limit Theory, Uppsala University: Department of Mathematics, 2007.
[10] L. Chuan-Rong and L. Zheng-Yan, Limit Theory for Mixing Dependent Random Variabiles, Science Press,

Beijing, China, 1997.


	1. Introduction and Results
	2. The Proofs
	2.1. Lemmas
	2.2. Proof of Theorem 1.4
	2.3. Proof of Theorem 1.3

	Acknowledgment
	References

