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We give an analogue of the Bessel inequality and we state a simple formulation of the Griiss
type inequality in inner product C*-modules, which is a refinement of it. We obtain some further
generalization of the Griiss type inequalities in inner product modules over proper H*-algebras
and unital Banach *-algebras for C*-seminorms and positive linear functionals.

1. Introduction

A proper H*-algebra is a complex Banach #-algebra (4, || - ||) where the underlying Banach
space is a Hilbert space with respect to the inner product (:,-) satisfying the properties
(ab,c) = (b,a*c) and (ba,c) = (b,ca*) forall a,b,c € #4. A C*-algebra is a complex Banach
x-algebra (&4, ] - ||) such that ||a*a| = l|all* for every a € 4. If &4 is a proper H*-algebra or a
C*-algebra and a € & is such that «#a = 0 or as# = 0, then a = 0.

For a proper H*-algebra <4, the trace class associated with &/ is 7(¢#) = {ab : a,b €
#}. For every positive a € 7(<#) there exists the square root of a, that is, a unique positive
a2 € o such that (a'/2)’ = a, the square root of a*a is denoted by |a|. There are a positive
linear functional tr on 7(<#) and a norm 7 on 7(<#), related to the norm of A by the equality
tr(a*a) = 7(a*a) = ||a||* for every a € 4.

Let o be a proper H*-algebra or a C*-algebra. A semi-inner product module over <#
is a right module X over & together with a generalized semi-inner product, that is with a
mapping (:,-) on X x X, which is 7(<#)-valued if <4 is a proper H*-algebra, or «#-valued if «#
is a C*-algebra, having the following properties:
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(D) (x,y+z)=(x,y)+(x,z)forallx,y,z€ X,
(ii

(ii

(x,ya) =(x,y)aforx,yeX,ac 4,

)
)
) (x,y)" = (y,x) forall x,y € X,
)

(iv) (x,x) >0 for x € X.

We will say that X is a semi-inner product H*-module if ¢4 is a proper H*-algebra and
that X is a semi-inner product C*-module if & is a C*-algebra.
If, in addition,

(v) (x,x) =0 implies x =0,

then X is called an inner product module over /. The absolute value of x € X is defined as
the square root of (x, x) and it is denoted by |x|.

Let o be a x-algebra. A seminorm y on & is a real-valued function on « such that for
abeHand A € C:y(a) >0, y(Aa) = [AMy(a), y(a+b) < y(a) +y(b). A seminorm y on & is
called a C*-seminorm if it satisfies the C*-condition: y(a*a) = (y(a))2 (a € &#). By Sebestyen’s
theorem [1, Theorem 38.1] every C*-seminorm y on a *-algebra # is submultiplicative, that
is, y(ab) < y(a)y(b) (a,b € &#4), and by [2, Section 39, Lemma 2(i)] y(a) = y(a*). For every
a € o4, the spectral radius of a is defined to be r(a) = sup{|A| : X € o4(a)}.

The Ptdk function p on *-algebra  is defined to be p : # — [0,), where
pla) = (r(a*a))l/ 2. This function has important roles in Banach x-algebras, for example, on
Cr-algebras, p is equal to the norm and on Hermitian Banach x-algebras p is the greatest
C*-seminorm. By utilizing properties of the spectral radius and the Ptdk function, Ptak [3]
showed in 1970 that an elegant theory for Banach #-algebras arises from the inequality
r(a) < p(a).

This inequality characterizes Hermitian (and symmetric) Banach x-algebras, and
further characterizations of C*-algebras follow as a result of Ptak theory.

Let <4 be a *-algebra. We define «+#* by

At = {Zaiak:nEN, akGJforkzl,Z,...,n}, (1.1)
k=1

and call the elements of «#* positive.

The set «#* of positive elements is obviously a convex cone (i.e., it is closed under
convex combinations and multiplication by positive constants). Hence we call «#* the positive
cone. By definition, zero belongs to «#*. It is also clear that each positive element is Hermitian.

We recall that a Banach *-algebra (<4, || - ||) is said to be an A*-algebra provided there
exists on </ a second norm | - |, not necessarily complete, which is a C*-norm. The second
norm will be called an auxiliary norm.

Definition 1.1. Let </ be a *-algebra. A semi-inner product +#-module (or semi-inner product
x»-module) is a complex vector space which is also a right «#-module X with a sesquilinear
semi-inner product (-,-) : X x X — &, fulfilling

(x,ya) = (x,y)a (right linearity)

(1.2)
(x,x) € A" (positivity)
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for x,y € X, a € #. Furthermore, if X satisfies the strict positivity condition
x=0 if (x,x) =0, (strict positivity) (1.3)

then X is called an inner product +#-module (or inner product *-module).

Let y be a seminorm or a positive linear functional on «# and I'(x) = (y((x, x)))l/ Z(xe
X). If T is a seminorm on a semi-inner product «##/-module X, then (X, I) is said to be a semi-
Hilbert «#-module.

If I is a norm on an inner product «#-module X, then (X, I') is said to be a pre-Hilbert
#-module.

A pre-Hilbert «4-module which is complete with respect to its norm is called a Hilbert
A#-module.

Since (x + y,x + y) and (x + iy, x + iy) are self adjoint, therefore we get the following
Corollary.

Corollary 1.2. If X is a semi-inner product *-module, then the following symmetry condition holds:
(x,y)" =(y,x) for x,y € X (symmetry). (1.4)

Example 1.3. (a) Let o be a *-algebra and y a positive linear functional or a C*-seminorm
on 4. It is known that (¢4, y) is a semi-Hilbert «##/-module over itself with the inner product
defined by (a,b) := a*b, in this case I' = y.

(b) Let «# be a Hermitian Banach *-algebra and p be the Ptdk function on 4. If X is
a semi-inner product «##-module and P(x) = (,(J((x,x)))l/2 (x € X), then (X, P) is a semi-
Hilbert ##-module.

(c) Let o4 be a A*-algebra and | - | be the auxiliary norm on . If X is an inner product
#-module and |x| = |(x, x)|"/2 (x € X), then (X, | - |) is a pre-Hilbert &#-module.

(d) Let «# be a H*-algebra and X (a semi-inner product) an inner product «#-module.
Since tr is a positive linear functional on 7(+#) and for every x € X we have tr({x, x)) = |||x| 1%
therefore (X, ||| - |||) is a (semi-Hilbert) pre-Hilbert &#-module.

In the present paper, we give an analogue of the Bessel inequality (2.7) and we
obtain some further generalization and a simple form for the Griiss type inequalities in inner
product modules over C*-algebras, proper H*-algebras, and unital Banach *-algebras.

2. Schwarz and Bessel Inequality

If X is a semi-inner product C*-module, then the following Schwarz inequality holds:

1) 17 < Dy (xy €X). (2.1)

(e.g. [4, Lemma 15.1.3]).
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If X is a semi-inner product H*-module, then there are two forms of the Schwarz
inequality: for every x,y € X

tr ((x,y))? < tr((x,x)) tr((y,y)) (the weak Schwarz inequality), (2.2)

t((x,y))* <tr((x,x)) tr({y,y)) (the strong Schwarz inequality). (2.3)

First Saworotnow in [5] proved the strong Schwarz inequality, but the direct proof of that for
a semi-inner product H*-module can be found in [6].

Now let o4 be a x-algebra, ¢ a positive linear functional on </ and let X be a semi-inner
#-module. We can define a sesquilinear form on X x X by o(x,y) = ¢({x,y)); the Schwarz
inequality for o implies that

lo((x, yN)|* < o, ) (v, 1)) (2.4)

In [7, Proposition 1, Remark 1] the authors present two other forms of the Schwarz inequality
in semi-inner «#-module X, one for positive linear functional ¢ on <4:

p((x, y)(x,y)) <o(x,x)r((y,v)), (2.5)

and another one for C*-seminorm y on «:

y((xy))? <y x)y (v, y)). 2.6)

The classical Bessel inequality states that if {e;};c; is a family of orthonormal vectors in
a Hilbert space (H, (-, -)), then

Dl{x el <lxl* (x€H). (2.7)

i€l
Furthermore, some results concerning upper bounds for the expression

Ix? = Y x, e (x € H) (2.8)

iel

and for the expression related to the Griiss-type inequality

(x,y) - (e ey)| (xyeH) (2.9)

iel

have been proved in [8]. A version of the Bessel inequality for inner product H*-modules
and inner product C*-modules can be found in [9], also there is a version of it for Hilbert
C*-modules in [10, Theorem 3.1]. We provide here an analogue of the Bessel inequality for
inner product *-modules.
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Lemma 2.1. Let o be a x-algebra, let X be an inner product HA-module, and let {ey, ..., e,} be a finite
set of orthogonal elements in X such that (e;,e;) (i =1,...,n) are idempotent. Then

n

(x,x) = > (x,ei)(ei,x) > 0. (2.10)

i=1
Proof. By [11, Lemma 1] or a straightforward calculation shows that

0< <x - iei(ei,x), X — iei(ei,x)>
i=1 i=1

n

= (x,x) —Z<xr€i><€i,x> —Z<xr€i><€i1x> +Z<xr€i><€i,€i><€i,x>
i=1 i=1

—_

(2.11)

M=

= <x/x> -

(x,ei)(ei, x) = D (x,e) (e, x) + D (x,e)(ei,x)
i=1 i=1

1

I
—_

=(x,x) = D (x,e){e;,x).

M-

I
—_

1

3. Griiss Type Inequalities

Before stating the main results, let us fix the rest of our notation. We assume, unless stated

otherwise, throughout this section that </ is a unital Banach *-algebra. Also if X is a semi-

inner product «##/-module and y is a C*-seminorm on <4, we put I'(x) = ()f((Jc,x)))l/2 (x €

X), and if ¢ is a positive linear functional on &, we put ®(x) = ((,o(<x,x>))1/2 (x € X).

Let {ei,...,e,} be a finite set of orthogonal elements in X such that (e;,e;) (i = 1,...,n) be

idempotent, we set Gy, := (x,y) — 2L (x, e;)(e;, y) and Gy = (x,x) — i, (x, e;) (ej, X).
Dragomir in [8, Lemma 4] shows that in a Hilbert space H, the condition

n n
Re<2aiei - X, X - Zﬁiei> >0, (3.1)
i=1 i=1
is equivalent to the condition

n . .
‘e <al +’Bl>ei

Z 2

i=1

where x,e1,...,e, € Hand ay,...,a,, p1,..., Bn € C. But for semi-inner product «#/-modules
we have the following lemma, which is a generalization of [7, Lemma 1].

1 n 1/2
=32 (;II“i - ﬁi||2> : (3.2)
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Lemma 3.1. Let X be a semi-inner product A-moduleand ay, ..., a,,b1,..., by €A X, Yy1,...,Yn €
X. Then

n n
Re<Zyiai—x,x—Zyibi> >0 (3.3)
i=1 i=1

if and only if

<x - gyi<ai ; bi),x - zn:yl<%h>> < }LG:(ai - b)) (yi, yi)(ai - by). (3.4)

Proof. Follows from the equalities:

Re<§n:ylai —-X,x - zn:yibi>
i1 i1

< ;k i 1 - * *
= (%vx} - EZ(ai (i, yi)bi + b} (yi, yi) ai)
i=1

i=1 (35)
~(x, x>+Z<x w)
= %Z(ai = b)" (i, yi) (ai = by)
i=1
1 a; + b; - a; + b;
(v Fu(52) - $u(*3))
0

Remark 3.2. By making use of the previous Lemma 3.1, we may conclude the following state-
ments.

(i) Let X be an inner product C*-module and let {e, ..., e, } be a finite set of orthogonal
elements in X such that (e;, e;) (i = 1,...,n) are idempotent, then inequality (3.3)
implies that

1 172 1/2
5§<lear b||> lI{ei e l= <Z|Ia1 b||> . (36)

i=1

x-S 22)

i=1
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(ii) Let X be an inner product «##-module and {ey, ..., e,} be a finite set of orthogonal
elements in X such that (e;,e;) (i = 1,...,n) are idempotent. If y is a C*-seminorm
on & then inequality (3.3) implies that

L /a;+b; 1/ 12 1/a 1/2
r<x_§ei< ’2 l)>s§<§y(ai—bi)2> F(ei)§§<§y(a,-—bi)2> , (3.7)

and if ¢ is a positive linear functional on & from inequality (3.3) and [2, Section 37
Lemma 6(iii)], we get

2
n ; b 1 *
< -2 ("3 >> iékam b)"(ei ei)(ai = b))

= (3.8)

| —

< 3 (@i =) (@ - b)r((e e)).
i=1

(iii) Let </ be a proper H*-algebra, let X be an inner product «#/-module, and let
{e1,..., ey} be afinite set of orthogonal elements in X such that (e;, e;) (i=1,...,n)
are idempotent. Since for every a € H, tr(a*a) = ||a||* inequality (3.3) is valid only
if

n

/2
=S (252 'H_2<Znal b||> | (39)
=1

We are able now to state our first main result.

Theorem 3.3. Let X be an inner product C*-module and let {ey, ..., e,} be a finite set of orthogonal
elements in X such that {(e;,e;) (i =1,...,n) are idempotent. If ay,...,a,, b1,...,b, € A4, 1, sare
real numbers and x,y € X such that

— Zeiai <r, Hy - Ze,-bi (3.10)
i=1 i=1
hold, then one has the inequality
|Gayll <75 =/ = IGally/2 = Gy - (31D)

Proof. By [11, Lemma 2] or, a straightforward calculation shows that for every ay, ..., a, € +#

Gx = (x,x) - i(x,eﬁ(ei,ﬂ = <x - En:eiai,x— En:eiai>
i=1 i=1 i=1

(3.12)

- <Zei(ai - <3i1x>)rzei(ai - <€i,x>)>-
i=1 i=1
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Therefore
Gy < <x - ieiai,x - ieiai>. (3.13)
i=1 i=1
Analogously, for every by, ..., b, € #, we have
Gy < <y - zn:eibi,y - zn:eibi>. (3.14)
i=1 i=1

The equalities (3.10), (3.13), and (3.14) imply that

2
n
Gl < [|x = Deiaif| <72, (3.15)
i=1
n 2
Gyl < |ly - Debi|| <5 (3.16)
i=1

Since
Gy = <x—Zei<ei,x>,y—Zei<ei,y>>, (3.17)
i=1 i=1

therefore the Schwarz’s inequality (2.1) holds, that is,
Gy II* < IGHIGy I (3.18)

Finally, using the elementary inequality for real numbers

(m? =) (p* - 4) < (mp - nq)? (3.19)
on
m=r, n=\rP-IGdl, p=s,  qg=1/s2-1G,l, (3.20)
we get
Gl <1GaNIG | < (s == 1G5 - G ) @21

O
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Remark 3.4. (i) Let X be an inner product C*-module and let {e,...,e,} be a finite set of
orthogonal elements in X such that (e;,e;) (i =1,...,n) areidempotent. If a;, b;, ¢;, d; € # (i =

1,...,n) and x, y € X are such that
1/2
<lea1 bill > ,

x‘ie‘(a 2 >
<§;||ci - diuz)m

NIH

(3.22)

I\.)IH

i=1
(54
i=1

and if we put r = (1/2)(3%, lai - bil?)"/?, and s = (1/2)(Z0, llc; — dil)"/?, then, by (3.15)
and (3.16), we have

e Zez<a1+b> 2

These and (3.11) imply that

2
<& (3.23)

2
Gl < <7, IGyll <

_i€i<ci;di)

i=1

IGayll <75 = 4/72 = [Gxll\/5? ~ Gy

1/2
1 n
Z(leal bIIZZIIcl d||>
2 1/2
1 2 G <al~+b,-)
- - ai—bi = [|X = €
<4§|| || 275 (2

N\ 172
1 2 1 Ci+d1'
x<1i:1||c1—d1|| [y e ("5 >

1/2
1
Z<Znal bnzchl d||> = rs.

Therefore, (3.11) is a refinement and a simple formulation of [9, Theorem 4.1.]
(ii) If fori=1,...,n, we set

a; = ai(ej, e;), bi = pi(ei, ei),

Ci =/\i<€i,€i>, d; =#i<ei;ei>/

(3.25)

then similarly (3.11) is a refinement and a simple form of [9, Corollary 4.3].
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Corollary 3.5. Let o be a Banach x-algebra, let X be an inner product HA-module, and let {eq, ..., e,}
be a finite set of orthogonal elements in X such that (e;,e;) (i =1,...,n) areidempotent. If ai, ... ay,
bi,...,by, € A, r,sare real numbers and x,y € X such that

T(x - Zeial) <r, F(y - Zeibi> <s (3.26)
i—1 i=1

hold, then one has the inequality

Y(Gxy) < 75— /r2 —y(Gx)\/s? ~ (Gy). (3.27)
Proof. Using the schwarz’s inequality (2.6), we have
¥(Gxy)? < 7(G)Y(Gy). (3.28)

The assumptions (3.26) and the elementary inequality for real numbers (3.19) will provide
the desired result (3.27). O

Example 3.6. Let o be a Hermitian Banach *-algebra and let p be the Ptédk function on . If X
is a semi-inner product ##-module and P(x) = (p({x, x)))l/ 2 (x € X) with the properties that

P<x - Zeiai> <r, P<y - Zeibl) <s, (3.29)
i=1 i=1

then we have

p(Gry) <75 —\Jr2 = p(Go)\/s2 ~ p(Gy). (3.30)

That is interesting in its own right.

Corollary 3.7. Let &4 be a proper H*-algebra, let X be an inner product HA-module, and let
{e1, ..., en) bea finite set of orthogonal elements in X such that (e;,e;) (i =1,...,n) are idempotent.
Ifay,a,,b1,...,by €A, 1,5 are real numbers and x,y € X such that

<s (3.31)

n
X — Zeiai
i=1

n
<r, H ‘y - Dleibi
i-1

hold, then one has the inequality

7(Guy) < 15— \Jr2 ~ tr(Go)1/s? - tr(G,). (3.32)
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Proof. Using the strong Schwarz’s inequality (2.3), we have
T(Gry)’ < tr(Gy) tr(Gy). (3.33)

The assumptions (3.31) and the elementary inequality for real numbers (3.19) will provide
(3.32). O

The following companion of the Griiss inequality for positive linear functionals holds.

Theorem 3.8. Let X be an inner product S#-module, let ¢ be a positive linear functional on <4, and let
{e1, ..., en} bea finite set of orthogonal elements in X such that (e;,e;) (i =1,...,n) are idempotent.
Ifay,...an, by,...,by € A, 1, s arereal numbers and x,y € X such that

(I)<x - Ze,-al) <r, (I)<y - Zeibi> <s (3.34)
i=1 i=1

hold, then one has the inequality

|p(Gry)| S 75~ Zn:‘b(eiai —ei(ei, x))D(ebi - ei(ei, y)). (3.35)

i=1

Proof. By taking ¢ on both sides of (3.12), we have

n 2 n
p(Gy) = <I)<x - Zeiai> - Z(I)(eiai —ei(e;,x))?
i=1 i=1

(3.36)
<r? = > ®(eia; - eifer, x)).
i=1
Analogously
n 2 n
2
‘P(Gy) = (D<y - Zez‘bi> - Z(D(eibi -ei(ei,y))
- o (3.37)

<s® - Z(D(eibi - €i<€i/]/>)2-
i=1

Now, using Aczél’s inequality for real numbers, that is, we recall that

n n n 2
<a2 _ Za12> <b2 — Zb12> < <ab - Za,-b,-> , (3.38)
i=1 i=1 i=1
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and the Schwarz’s inequality for positive linear functionals, that is,

‘P(Gx,y>2 < (P(Gx)(P(Gy); (3.39)

we deduce (3.35). O

4. Some Related Results

Theorem 4.1. Let X be an inner product C*-module and let {e, ..., e} be a finite set of orthogonal
elements in X such that (e;,e;) (i=1,...,n) are idempotent. Let x,y € X and if we define

T = inf{

n
X — Ze,-ai
i=1

(ay,...,a,) EJ"},

4.1)
S0 = inf{ 'y— Zeiai (ay,...,a,) € J"},
i=1
then we have
Gyl < roso = /7% = Gll\/s3 - [1Gy I (42)
Proof. For every ay,...,a,, bi,..., b, € #4,by (3.13) and (3.14), we have
n 2 n 2
||Gx|| <|lx - Zeiai ’ ”Gy” < y- Zeibi (43)
i=1 i=1
Therefore
Gl <73, |IGyll < s (4.4)
Now, using the elementary inequality for real numbers
<m2 - n2> (pz - q2> < (mp -ngq)’ (4.5)

on

m=ry, n=\ri-Gl, p=s0, q=1/s5-|IGyll, (4.6)
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we get

2
IGesll* UGG < (mso =73 - IG5 -Gl ) 4
O

Corollary 4.2. Let o be a Banach =-algebra, let X be an inner product HA-module, and let {ey, ..., e,}
be a finite set of orthogonal elements in X such that (e;, e;) (i =1,...,n) areidempotent. Let x,y € X
and put

~

1o = inf{F<x - Zeiai> (ar,...,a,) €A
i=1

(4.8)
n
S0 = inf{F<y—Zeia,-> s(ar,...,a,) €AY,
i=1
then
¥(Gxy) < 1050 — \/1’5 —1(G)\/s3 -y (Gy). (4.9)

Corollary 4.3. Let o# be a proper H*-algebra, let X be an inner product <#-module, and let
{e1, ..., en} bea finite set of orthogonal elements in X such that (e;,e;) (i =1,...,n) are idempotent.
Let x,y € X and if we consider

n
1o = inf{ <x—Zeiai> (ay,...,a,) € J”},
i1

(4.10)
Sp = inf{ (y— Ze,-ai> (ay,...,a,) € J"},
i=1
then
7(Guy) < 1050~ \J12 — tr(Gy)\ /52~ tr(G, ). (4.11)

From a different perspective, we can state the following result as well.

Theorem 4.4. Let X be an inner product C*-module and let {e, ..., e,} be a finite set of orthogonal
elements in X such that (e;,e;) (i =1,...,n) areidempotent. If ay,...a, € A, r € R, L € (0,1) and
x,y € X such that

Ax+(1-Ny - >ea <, (4.12)

i=1
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then we have the inequality

! r2. (4.13)

1
”Re(cxry)” < 4 : A(1-1)

Proof. We know that for any a,b € X and A € (0,1) one has

Re(a,b) = %((a,b)+<b,a)) < (Aa+ (1= A)b,Aa+ (1-\)b). (4.14)

_ 1
410(1-1)
Puta=x->",eie;,x),b=y—- XL ei(e,y), and since

Gry = <x - Zez'<€i,x>,y - Z€i<€i,y>> = (a,b) (4.15)
i=1 i=1

using (4.14), we have
g (

- 1 2
IRe(Ge)|I = IReGa, b)) < g =35 M+ (1~ Dbl
1 " ?
—_ - - i{e; - 4.16
< PSYCR) Ax+ (1-M)y i:Zlel<el,)Lx+ (1-1)y) (4.16)
1 2
= a1 all™
Now, inequality (4.13) follows from inequalities (3.15) and (4.16). O

The following companion of the Griiss inequality for positive linear functionals holds.

Theorem 4.5. Let X be an inner product #A-module, let ¢ be a positive linear functional on 4, and let
{e1, ..., en} bea finite set of orthogonal elements in X such that (e;,e;) (i =1,...,n) are idempotent.
Ifay,...an €A, reR, A€ (0,1) and x,y € X are such that

(I)<)Lx +(1-Vy- ieim) <r, (4.17)

i=1
then we have the inequality

lp(Re(Gxy))| < 31 . ﬁ <r2 - Z(D(eiai —ei{ei, \x+ (1- A)y>)2>. (4.18)
i-1
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Proof. The inequality (4.14) for a = x — >,/ ei(ei, x), b=y — 3., ei(e;, y) implies that

1
|9 (Re(Gry))| = lp(Re((a, b)) € g @Ua+ (1 - )b)?
2
1 ]
SIa- A)‘D<” +(1-y- ;er‘(eirix +(1- A)y>> (4.19)

= m‘/’(ckﬂ(l—k)y) .

By making use of inequality (3.12) for Ax + (1 — 1)y instead of x and taking ¢ on both sides,
we have

i=1 i=1

n 2 n
¢(Gix+(1-1)y) = <I)<)Lx +(1-Vy- Zeiai> - Z(I)(eiai —ei{ei, Ax+ (1 - )L)y»z
(4.20)

<r? = Y D(eia; - eifes, dx + (1- Vy))”.

i=1
From (4.19) and (4.20), we easily deduce (4.18). O

Remark 4.6. (i) The constant 1 coefficient of rs in (3.11) is sharp, in the sense that it cannot be
replaced by a smaller quantity. If the submodule of H generated by ey, ..., e, is not equal to
X, then there exists t € X such thatt# >/, ei(e;, t). Weputz =t->", ei(e;, t), then0#z € X
and forany j € {1,2,...,n}, we have

(z,e5) =t e) —Z<f/€j><€ir€j>
i=1 (4.21)

= (t,e;) - (t,ej)(ej e;) = 0.
For every € > 0, if we put

SZ
= +
||z|| Te Z Y = Tzl +e

=1

6

M-

1l
—_

Eibi, (422)

1

then

Gy = xEIye Z(xs, e]><e],y€>

(” ” ) < Z>+Za (ei,ei)b; — Za <€7’67><67/e]>bi (4.23)
z

rs
- _(z2),

(llzll +€)
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therefore

Gxe/ e .
Grewe|l = 0 ” > ——— ||zl (4.24)

Now if ¢ is a constant such that 0 < ¢ < 1, then there is a € > 0 such that ||z]*/(||z] + €)* > ¢;
therefore

IGx.y.ll > crs. (4.25)

(ii) Similarly, the constant 1 coefficient of rs in (3.32) is best possible, it is sufficient
instead of (4.22) to put

+ Zelal, + Ze ib;. (4.26)

”lzl ||+€ i=1 ”|z| ||+€ i=1

(iii) If there is a nonzero element z in X such that z L {ey,...,e,} and I'(z) #0 (resp.
@(z) #0) then the constant 1 coefficient of rs in (3.27) (resp. (3.35)) is best possible. Also
similarly, the inequalities in Theorem 4.1, Corollaries 4.2 and 4.3, and Theorems 4.4 and 4.5
are sharp. However, the details are omitted.
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