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The relation between Riesz potential and heat kernel on the Heisenberg group is studied. More-
over, the Hardy-Littlewood-Sobolev inequality is established.

1. Introduction

The classical Riesz potential Iα is defined on Rn by

Iα
(
f
)
= (−Δ)−α/2

(
f
)
, 0 < α < n, (1.1)

where Δ is the Laplacian operator. By virtue of the equations

(
(−Δ)−α/2f

)
(̂x) = (2π |x|)−αf̂(x),

(|·|−n+α)̂(y) = γ(α)(2π)−α
∣∣y

∣∣−α,

(1.2)

where γ(α) = πn/22αΓ(α/2)/Γ(n/2 − α/2), one can get the explicit expression of Riesz
potential

Iα
(
f
)
(x) =

1
γ(α)

∫

Rn

f
(
y
)

∣∣x − y
∣∣n−α

dy. (1.3)

In addition, one has the following Hardy-Littlewood-Sobolev theorem (see [1]).
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Theorem 1.1. Let 1 < α < n, 1 ≤ p < q < ∞, 1/q = 1/p − α/n. One has the following.

(a) If p > 1, then ‖Iα(f)‖q ≤ Ap,q‖f‖p;
(b) if f ∈ L1(Rn), then for all λ > 0,

m
{
x ∈ Rn :

∣
∣Iα

(
f
)∣∣ > λ

} ≤
(

A
∥
∥f

∥
∥
1

λ

)q

. (1.4)

In recent years many interesting works about the Riesz potential have been done by
many authors. Thangavelu and Xu [2] discussed the Riesz potential for the Dunkl transform.
Garofalo and Tyson [3] proved superposition principle Riesz potentials of nonnegative
continuous function on Lie groups of Heisenberg type. Huang and Liu [4] studied the Hardy-
Littlewood-Sobolev inequality of this operator on the Laguerre hypergroup. For more results
about the Riesz potential, we refer the readers to see [5–9].

It is a remarkable fact that the Heisenberg group, denoted byHn, arises in two aspects.
On the one hand, it can be realized as the boundary of the unit ball in several complex
variables. On the other hand, an important aspect of the study of the Heisenberg group is
the background of physics, namely, the mathematical ideas connected with the fundamental
notions of quantum mechanics. In other words, there is its genesis in the context of quantum
mechanics which emphasizes its symplectic role in the theory of theta functions and related
parts of analysis. Due to this reason, many interesting works were devoted to the theory of
harmonic analysis on Hn in [10–15] and the references therein.

In present paper, we consider the Riesz potential associated with the Heisenberg
group. We will show a connection between the Riesz potential and the heat kernel, and then
get the Hardy-Littlewood-Sobolev inequality.

2. Preliminaries

The Heisenberg group Hn is a Lie group with the underlying manifold Cn × R, the multi-
plication law is

(z, t)
(
z′, t′

)
=
(
z + z′, t + t′ +

1
2
Im zz′

)
, (2.1)

where zz′ =
∑n

j=1 zjz
′
j . The dilation of Hn is defined by δa(z, t) = (az, a2t) with a > 0. For

(z, t) ∈ Hn, the homogeneous norm of (z, t) is given by

(|z, t|) =
∣∣∣(z, t)−1

∣∣∣ =
(
|z|4 + |t|2

)1/4
. (2.2)

Note that |δa(z, t)| = (|az|4 + |a2t|2)1/4 = a|(z, t)|. In addition, | · | satisfies the quasi-triangle
inequality

∣∣(z, t)
(
z′, t′

)∣∣ ≤ |(z, t)| +
∣∣(z′, t′

)∣∣. (2.3)
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The ball of radius r centered at (z, t) is given by

Br(z, t) =
{(

z′, t′
) ∈ Hn :

∣
∣
∣(z, t)−1

(
z′, t′

)∣∣
∣ < r

}
. (2.4)

For 1 ≤ p ≤ ∞, let Lp(Hn) be the space of measurable functions f on Hn, such that

∥
∥f

∥
∥
p =

(∫

Hn

∣
∣f(z, t)

∣
∣pdz dt

)1/p

< ∞, if p ∈ [1,∞),

∥
∥f

∥
∥
∞ = ess sup

(z,t)∈Hn

∣
∣f(z, t)

∣
∣ < ∞, if p = ∞.

(2.5)

Let πλ(z, t) (z = x + iy, λ ∈ R∗ = R/{0}) be the Schrödinger representations which
acts on ϕ ∈ L2(Rn) by

πλ(z, t)ϕ(ζ) = eiλteiλ(x·ζ+(1/2)x·y)ϕ
(
ζ + y

)
, (2.6)

where x · y =
∑n

j=1 xjyj . Suppose that f is a Schwartz function onHn, that is, f ∈ S(Hn). The
Fourier transform of f is defined by

f̂(λ) =
∫

Hn

f(z, t)πλ(z, t)dzdt. (2.7)

This means that, for each ϕ, ψ ∈ L2(Rn),

(
f̂(λ)ϕ, ψ

)
=
∫

Hn

f(z, t)
(
πλ(z, t)ϕ, ψ

)
dzdt, (2.8)

where (, ) denotes the inner product.
Let us write πλ(z, t) = eiλtπλ(z)with πλ(z) = πλ(z, 0) and define

fλ(z) =
∫∞

−∞
f(z, t)eiλtdt. (2.9)

Then (2.7) can be written as

f̂(λ) =
∫

Cn

fλ(z)πλ(z)dz. (2.10)

If we set

Wλ

(
g
)
=
∫

Cn

g(z)πλ(z)dz, (2.11)
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then f̂(λ) = Wλ(fλ). Let dμ(λ) = (2π)−n−1|λ|ndλ; one has the inversion of Fourier transform

f(z, t) =
∫∞

−∞
tr
(
π∗
λ(z, t)f̂(λ)

)
dμ(λ), (2.12)

where π∗
λ
(z, t) denotes the adjoint of πλ(z, t).

The convolution of f and g is defined by

f ∗ g(z, t) =
∫

Hn

f((z, t)(−w,−s))g(w, s)dwds. (2.13)

It is clear that ̂f ∗ g(λ) = f̂(λ)ĝ(λ). In addition, we have the generalized Yong inequality

∥∥f ∗ g∥∥r ≤
∥∥f

∥∥
p

∥∥g
∥∥
q, (2.14)

where (1/r) = (1/p) + (1/q) − 1. More details about the harmonic analysis on Heisenberg
group can be found in [14–16].

Let T be a mapping from Lp(Hn) to Lq(Hn), 1 ≤ p, q ≤ ∞. Then T is of type (p, q) if

‖T(f)‖Lq(Hn) ≤ A‖f‖Lp(Hn), f ∈ Lp(Hn), (2.15)

where A does not depend on f . Similarly, T is of weak type (p, q) if

m
{
(z, t) ∈ Hn :

∣∣T
(
f
)
(z, t)

∣∣ > λ
} ≤

(
A
∥∥f

∥∥
p

λ

)q

, when q < ∞, (2.16)

where A does not depend on f or λ (λ > 0).
Let Sn be the unit sphere inHn and Σn−1 the unit Euclidean sphere in Rn. Suppose that

f is a measurable function on Hn, and we have (see [10])

∫

Hn

f(z, t)dzdt =
∫∞

−∞

∫

Σ2n−1

∫∞

0
f
(
ρζ, t

)
ρ2n−1dρ dζ dt. (2.17)

We set ρ2 = r2 cos θ, t = r2 sin θ, then

∫

Hn

f(z, t)dzdt =
∫

Σ2n−1

∫π/2

−π/2

∫∞

0
f
(
r(cos θ)1/2ζ, r2 sin θ

)
(cos θ)n−1r2n+1dr dθ dζ. (2.18)

Hence

∫

Sn

f dσ =
∫

Σ2n−1

∫ (π/2)

−π/2
f
(
(cos θ)1/2ζ, sin θ

)
(cos θ)n−1dθ dζ. (2.19)



Journal of Inequalities and Applications 5

A direct calculation shows that the area of Sn is

σ(Sn) =
4πn+1/2Γ(1/2)

Γ(n)Γ((n + 1)/2)
. (2.20)

In addition, we have the volume of unit ball inHn

m(Bn) =
2πn+1/2Γ(1/2)

(n + 1)Γ(n)Γ((n + 1)/2)
, (2.21)

and thus the volume of Br(z, t)

m(Br(z, t)) = r2n+2m(Bn). (2.22)

For a radial function f , we have

∫

Hn

f(z, t)dzdt = σ(Sn)
∫∞

0
f(r)r2n+1dr. (2.23)

The Hardy-Littlewood maximal operator M is defined on Hn by

Mf(z, t) = sup
r>0

1
m(Br)

∫

Br

∣∣f((z, t)(−w,−s))∣∣dwds, (2.24)

which is of type (p, p) for 1 < p ≤ ∞ and is of weak type (1,1) (see [17, 18]).

3. The Sublaplacian and the Heat Kernel on the Heisenberg Group

As it is known, the following vector fields

Xj =
∂

∂xj
− 1
2
yj

∂

∂t
, j = 1, 2, . . . , n,

Yj =
∂

∂yj
+
1
2
xj

∂

∂t
, j = 1, 2, . . . , n,

T =
∂

∂t

(3.1)

form a basis for the Lie algebra of left-invariant vector fields on Hn. The sublaplacian is
defined by

L = −
n∑

j=1

(
X2

j + Y 2
j

)
, (3.2)



6 Journal of Inequalities and Applications

which also has another explicit form

L = −Δz − 1
4
|z|2∂2t +N∂t, (3.3)

where Δz is the standard Laplacian on Cn and

N =
n∑

j=1

(

xj
∂

∂yj
− yj

∂

∂xj

)

. (3.4)

For the Schrödinger representations πλ one easily calculates that

π∗
λ

(
Xj

)
ϕ(ζ) = iλζjϕ(ζ), π∗

λ

(
Yj

)
ϕ(ζ) =

∂

∂ζj
ϕ(ζ). (3.5)

So that π∗
λ(L) = −Δ + λ2|ζ|2 = H(λ).

Let hk(t) (k ∈ Z+ = {0, 1, 2, . . .}) be the normalized Hermite functions given by

hk(t) =
(
2k
√
πk!

)−(1/2)
Hk(t)e−(1/2)t

2
, (3.6)

where Hk(t) = (−1)k(dk/dtk){e−t2}et2 . For α = (α1, α2, . . . , αn) ∈ Zn
+ and ζ ∈ Rn, we define

Φα(ζ) =
n∏

j=1

hαj

(
ζj
)
. (3.7)

Then {Φα} forms an orthonormal basis for L2(Rn).
We set Φλ

α(ζ) = |λ|n/4Φα(|λ|1/2ζ) and denote

H(λ)Φλ
α = (2|α| + n)|λ|Φλ

α. (3.8)

Therefore,

L
(
πλ(z, t)Φλ

α,Φ
β
α

)
= (2|α| + n)|λ|

(
πλ(z, t)Φλ

α,Φ
β
α

)
. (3.9)

Moreover, one has

L̂f(λ) = f̂(λ)H(λ). (3.10)

Now let L(eiλtf(z)) = eiλtLλf(z), then Lλ has the form

Lλ = −Δz +
1
4
λ2|z|2 + iλN. (3.11)
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From (3.9)we know that the functions

Φλ
α,β(z) = (2π)−(n/2)|λ|n/2

(
πλ(z)Φλ

α,Φ
λ
β

)
(3.12)

are eigenfunctions of the operator Lλ:

LλΦλ
α,β(z) = (2|α| + n)|λ|Φλ

α,β(z). (3.13)

Let ϕn−1
k

(z) be the Laguerre functions defined on Cn by

ϕn−1
k (z) = Ln−1

k

(
1
2
|z|2

)
e−|z|

2/4 (3.14)

and set ϕn−1
k,λ (z) = ϕn−1

k (
√
λz) for λ ∈ R∗. Then from [19, (2.3.26)] we have

|λ|n/2
∑

|α|=k
Φλ

α,α(z) = (2π)−n/2ϕn−1
k,λ (z). (3.15)

In view of this equation we have the following.

Proposition 3.1. One has

Wλ

(
ϕn−1
k,λ

)
= (2π)n|λ|−nPk(λ), (3.16)

where Pk(λ) stands for the projection of L2(Rn) onto the kth eigenspace ofH(λ), that is,

Pk(λ)ϕ =
∑

|α|=k

(
ϕ,Φλ

α

)
Φλ

α. (3.17)

Now we consider the heat equation associated to the sublaplacian

∂sF(z, t; s) = −LF(z, t; s) (3.18)

with the initial condition F(z, t; 0) = f(z, t). In fact, the function qs given by

qs(z, t) = cn

∫∞

−∞
e−iλt

(
λ

sinhλs

)n

e−(1/4)(λ cothλs)|z|
2
dλ (3.19)

is just the solution of the heat equation and satisfies

F(z, t; s) =
(
e−sLf

)
(z, t) = qs ∗ f(z, t). (3.20)
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Moreover, we have the Fourier transform of qs(z, t) (see [18, page 86])

q̂s(λ) = (2π)−n|λ|n
∞∑

k=0

e−(2k+n)|λ|sWλ

(
ϕn−1
k,λ

)
. (3.21)

4. Riesz Potential on the Heisenberg Group

In Section 1 we have recalled some properties about the Riesz potential on Rn; now we are
going to discuss the Riesz potential on the Heisenberg group.

Definition 4.1. For 0 < γ < 2n + 2, the Riesz potential Iγ is defined on S(Hn) by

Iγf(z, t) = L−γ/2f(z, t). (4.1)

From above definition and (3.10) it is easy to see that

Îγ f(λ) = f̂(λ)H(λ)−(γ/2). (4.2)

If γ, τ > 0, γ + τ < 2n + 2, then we have

(
Iγ
(
Iτf

))
(̂λ) =

(
Iτf

)
(̂λ)H(λ)−(γ/2)

= f̂(λ)H(λ)−(γ+τ)/2

=
(
Iγ+τf

)
(̂λ),

(4.3)

which suggests that Iγ(Iτf) = Iγ+τf . Especially, for 2 ≤ γ < 2n + 2, one has

L(
Iγf

)
= Iγ

(Lf
)
= Iγ−2f. (4.4)

At present we do not prepare to gain the expression of Iγ analogues to (1.3) because
it is hard to calculate the Fourier transform of |(z, t)|. But the following theorem will give us
another expression of Iγ , which provides a bridge to discuss the boundedness of the Riesz
potential.

Theorem 4.2. Let qs(z, t) be the heat kernel onHn. For 0 < γ < 2n + 2, one has for f ∈ S(Hn)

Iγf(z, t) =
∫∞

0
Γ
(γ
2

)−1
sγ/2−1qs(·)ds ∗ f(z, t). (4.5)
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Proof. By (3.17), (3.21), and Proposition 3.1 we have

(
f̂(λ)

∫∞

0
Γ
(γ
2

)−1
sγ/2−1q̂s(λ)dsΦλ

α,Φ
λ
β

)

=

(

f̂(λ)
∫∞

0
Γ
(γ
2

)−1
sγ/2−1(2π)−n|λ|n

∞∑

k=0

e−(2k+n)|λ|sWλ

(
ϕn−1
k,λ

)
dsΦλ

α,Φ
λ
β

)

=

(

f̂(λ)
∞∑

k=0

∫∞

0
Γ
(γ
2

)−1
sγ/2−1e−(2k+n)|λ|sds Pk(λ)Φλ

α,Φ
λ
β

)

=

(

f̂(λ)
∞∑

k=0

((2k + n)|λ|s)−γ/2Pk(λ)Φλ
α,Φ

λ
β

)

=
(
f̂(λ)H(λ)−γ/2Φλ

α,Φ
λ
β

)

=
(
Îγ f(λ)Φλ

α,Φ
λ
β

)
.

(4.6)

Then we get the desired result.

Lemma 4.3. The heat kernel qs(z, t) satisfies the estimate

qs(z, t) ≤ Cs−n−1e(A/s)|(z,t)|1/2 (4.7)

with some positive constants C and A.

Proof. Since (|z|4 + |t|2)1/2 ≤ |z|2 + |t|, then by [19, Proposition 2.8.2]we obtain this lemma.

The following theorem is an immediate consequence of Theorem 4.2 and Lemma 4.3.

Theorem 4.4. The Riesz potential Iγ satisfies the estimate

∣∣Iγf(z, t)
∣∣ ≤ C

∣∣f
∣∣ ∗ |(w, s)|γ−(2n+2)(z, t), (4.8)

where C is a positive constant.

Using Theorems 4.2 and 4.4, we get the Hardy-Littlewood-Sobolev theorem on the
Heisenberg group.

Theorem 4.5. Let 0 < γ < 2n + 2, 1 ≤ p < q < ∞, and 1/p = 1/q + γ/(2n + 2). For f ∈ Lp(Hn),
one has the following.

(a) If p > 1, then Iγ is of type (p, q).

(b) If p = 1, then Iγ is of weak type (1, q).

Proof. Let M be the maximal operator defined by (2.24). We claim that

∣∣f
∣∣ ∗ |(·)|γ−(2n+2)(z, t) ≤ c

(
Mf(z, t)

)p/q∥∥f
∥∥1−p/q
p . (4.9)
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Let BR be the ball of radius R centered at (0,0), and let χBR be its characteristic function. We
set

|(w, s)|γ−(2n+2) = g1 + g2 (4.10)

with g1(w, s) = |(w, s)|γ−(2n+2)χBR(w, s). Obviously, g1 > 0 is radial and decreasing, then we
can write

g1 =
N∑

j=1

ajχBj , (4.11)

where aj > 0 and Bj is the ball centered at origin. By (2.23) and (2.24) we have

∣∣f
∣∣ ∗ g1(z, t) =

∫

Hn

∣∣f((z, t)(−w,−s))∣∣
N∑

j=1

ajχBj (w, s)dwds

=
N∑

j=1

aj

m
(
Bj

)

m
(
Bj

)
∫

Bj

∣∣f((z, t)(−w,−s))∣∣dwds

≤
N∑

j=1

ajm
(
Bj

)
Mf(z, t)

= σ(Sn)
∫R

0
rγ−(2n+2)r2n+1drMf(z, t)

= c1R
γMf(z, t).

(4.12)

Let p′ be the conjugate exponent of p. Since 1/p − 1/q = γ/(2n + 2), we have

∥∥g2
∥∥
p′ =

(
σ(Sn)

∫∞

R

r[γ−(2n+2)]p
′
r2n+1dr

)1/p′

= c2R
−(2n+2)/q.

(4.13)

Then by Hölder’s inequality we get

∣∣f
∣∣ ∗ g2(z, t) ≤ c2R

−(2n+2)/q∥∥f
∥∥
p. (4.14)

Therefore,

(∣∣f
∣∣ ∗ |(w, s)|γ−(2n+2)

)
(z, t) ≤ c1R

γMf(z, t) + c2R
−(2n+2)/q∥∥f

∥∥
p. (4.15)
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We choose R such that

c1R
γMf(z, t) = c2R

−(2n+2)/q∥∥f
∥
∥
p. (4.16)

That is, R = c3(Mf(z, t)/‖f‖p)−p/(2n+2). Substituting this in the above then gives (4.9).
Now if p > 1, we obtain (a) by the virtue of the type (p, p) of the maximal operatorM.

If p = 1 and q = (2n + 2)/(2n + 2 − γ), we have

∫

{(z,t)∈Hn:|Iγ f(z,t)|>λ}
dzdt ≤

∫

{(z,t):c(Mf(z,t))1/q‖f‖1−1/q1 >λ}
dzdt

≤
∫

{(z,t):Mf(z,t)>(λ/c)q‖f‖1−q1 }
dzdt

≤
( c

λ

∥∥f
∥∥
1

)q
.

(4.17)

This proves our main theorem.

Theorem 4.6. Let 0 < γ < 2n + 2 and 1 ≤ p < q < ∞. For f ∈ Lp(Hn), one has the following.

(a) If p = 1, then the condition 1/q + γ/(2n + 2) = 1 is necessary and sufficient for the weak
type (1, q) of Iγ .

(b) If 1 < p < q < ∞, then the condition 1/p = 1/q + γ/(2n + 2) is necessary and sufficient
for the type (p, q) of Iγ .

Proof. The sufficiency follows from Theorem 4.5. We now begin to prove the necessity.
Suppose that f ∈ S(Hn), and let fa(z, t) = f(δa(z, t)). Note that

qa2s(z, t) = a−(2n+2)qs(δa−1(z, t)). (4.18)

Then by (4.9)we get

Iγfa(z, t) =
∫

Hn

∫∞

0
Γ
(γ
2

)−1
sγ/2−1qs

(
z′, t′

)
dsf

((−z′,−t′)
(
az, a2t

))
dz′dt′

=
∫

Hn

∫∞

0
Γ
(γ
2

)−1(
a−2s

)γ/2−1
qa−2s

(
z′, t′

)
da2sf

(
δa

((
−a−1z′,−a−2t′

)
(z, t)

))
dz′dt′

=
∫

Hn

∫∞

0
Γ
(γ
2

)−1
a−γsγ/2−1qs

(
δa−1

(
z′, t′

))
dsf

(
δa

((
δa−1

(
z′, t′

))
(z, t)

))
da−1z′da−2t′

= a−γ(Iγf
)
a
(z, t).

(4.19)
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Thus for 1 ≤ q < ∞, we have

∥
∥Iγfa

∥
∥
q
= a−γ−(2n+2)/q∥∥Iγf

∥
∥
q

m
{
(z, t) ∈ Hn :

∣
∣Iγfa(z, t)

∣
∣ > λ

}1/q = a−γ−(2n+2)/qm
{
(z, t) ∈ Hn :

∣
∣Iγf(z, t)

∣
∣ > λ

}1/q
.

(4.20)

Case 1 (p = 1). It follows from the hypothesis that

m
{
(z, t) ∈ Hn :

∣
∣Iγf(z, t)

∣
∣ > λ

}
= aqγ+2n+2m

{
(z, t) ∈ Hn :

∣
∣Iγfa(z, t)

∣
∣ > λ

}

≤ aqγ+2n+2

(
A
∥
∥fa

∥
∥
1

λ

)q

= aqγ+(2n+2)−q(2n+2)
(

A
∥
∥f

∥
∥
1

λ

)q

.

(4.21)

If 1/q+γ/(2n+2) > 1, thenm{(z, t) ∈ Hn : |Iγf(z, t)| > λ} = 0 as a → 0. If 1/q+γ/(2n+2) < 1,
thenm{(z, t) ∈ Hn : |Iγf(z, t)| > λ} = 0 as a → ∞. Thus we have 1/q + γ/(2n + 2) = 1.

Case 2 (1 < p < q < ∞). Similarly, we have

∥∥Iγf
∥∥
q
= aγ+(2n+2)/q∥∥Iγfa

∥∥
q

≤ caγ+(2n+2)/q−(2n+2)/p∥∥f
∥∥
p,

(4.22)

which implies that 1/p = 1/q + γ/(2n + 2).

Then we complete the proof of this theorem.
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