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Let «¢ > 0, the authors introduce in this paper a class of the hypersingular
Marcinkiewicz integrals along surface with variable kernels defined by P‘S,u( lx) =

U 1@ ) /Iy £ G- D(ly Dy )y Pt/ £2)), where Q(x,2) € L=(RY) x LI(S™)

with g > max{1,2(n — 1)/(n + 2a)}. The authors prove that the operator yg/a is bounded from

Sobolev space LP(R™) to LP(R™) space for 1 < p < 2, and from Hardy-Sobolev space HE(R™) to
LP(R™) space for n/(n+a) < p < 1. As corollaries of the result, they also prove the L2(R") — L?(R")
boundedness of the Littlewood-Paley type operators P‘S,a,s and #Z;;,A which relate to the Lusin
area integral and the Littlewood-Paley g} function.

1. Introduction

Let R" (n > 2) be the n-dimensional Euclidean space and S™! be the unit sphere in R"
equipped with the normalized Lebesgue measure do = do(:). For x € R" \ {0}, let x' = x/|x]|.

Before stating our theorems, we first introduce some definitions about the variable
kernel Q(x, z). A function Q(x, z) defined on R” x R" is said to be in L*(R") x L4(S"!), g > 1,
if Q(x, z) satisfies the following two conditions:

(1) Q(x, Az) = Q(x, z), for any x,z € R" and any A > 0;
(2) 19 ooyt y = SUP,sg, yesen (ot [R(r2 + 1, 210 ()7 < oo,

In 1955, Calderén and Zygmund [1] investigated the LP boundedness of the singular
integrals Tg with variable kernel. They found that these operators connect closely with the
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problem about the second-order linear elliptic equations with variable coefficients. In 2002,
Tang and Yang [2] gave L” boundedness of the singular integrals with variable kernels
associated to surfaces of the form {x = ®(|y|)y'}, where ' = y/|y| for any y € R" \ {0} (n >
2). That is, they considered the variable Calderén-Zygmund singular integral operator Ty
defined by

Qf;’f)f(x—q’(lyl)y')dy. (1.1)

HOICE

On the other hand, as a related vector-valued singular integral with variable kernel,
the Marcinkiewicz singular with rough variable kernel associated with surfaces of the form
{x =®(|ly|)y'} is considered. It is defined by

© 1/2
po(f)(x) = (L |F$,t(x)|2f; ) , (12)
where
Q(x, .
F= [ 2O i a(lyly)ay, 13
wist |yl
f Q(x,z")do(z') = 0. (1.4)
Snfl

If ®(ly|) = |y|, we put p = pgq. Historically, the higher dimension Marcinkiewicz
integral operator pqo with convolution kernel, that is Q(x, z) = Q(z), was first defined and
studied by Stein [3] in 1958. See also [4-6] for some further works on pq with convolution
kernel. Recently, Xue and Yabuta [7] studied the L? boundedness of the operator 5 with
variable kernel.

Theorem 1.1 (see [7]). Suppose that Q(x, y) is positively homogeneous in y of degree 0, and satisfies
(1.4) and

(2') sup,cpn (Jon 1(y, z’)|qd0(z’))1/q < oo, for some g > 2(n — 1)/n. Let @ be a positive
and monotonic (or negative and monotonic) C' function on (0,00) and let it satisfy the
following conditions:

(i) 6 < |D(t)/(tD (t))| < M for some 0 < 6 < M < oo;
(ii) @' (t) is monotonic on (0, o0).

Then there is a constant C such that || ‘ug( DI, < Cliflly, where constant C is independent of f.

Since the condition (2) implies (2'), so the L?(R") boundedness of yg holds if Q €
L*(R") x L1(S™!) with g > 2(n— 1) /n.

Our aim of this paper is to study the hypersingular Marcinkiewicz integral ‘“g,u along
surfaces with variable kernel Q, and with index a > 0, on the homogeneous Sobolev space
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Lh(R") for1 < p < 2 and the homogeneous Hardy-Sobolev space H P(R") for some n/(n+a) <
p <1. Let Fg/t(x) be as above, we then define the operators .”g,u by

18 (f)(x) = ( f |ES, ()] fMW)UZ, a>0. (1.5)

Our main results are as follows.

Theorem 1.2. Suppose that a > 0, Q(x,y) satisfies (1.4) and Q € L*(R") x L1(S"!) with q >
max{1,2(n-1)/(n+2a)}. Let ® be a positive and increasing C* function on (0, co) and let it satisfy
the following conditions:

(i) D(t) = 1O (1),

(ii) 0 <D (t) < W on (0, 0).
Then there is a constant C such that ||‘u$/u(f)||
of f.
Theorem 1.3. Suppose 0 < a < n/2, and that Q € L®(R") x L1(S"™), with g > max{1,2(n -

1)/ (n +2a)}, and satisfies (1.4). Let ® be a positive and increasing C' function on (0, c0) and let it
satisfy the following conditions:

(i) D(t) =t (1),

(i) 0 < D'(t) <1, ®(0) =

Then, for n/(n+ a) < p < 1, there is a constant C such that ||‘u$,a(f)||Lp(Rn) < Clfll e gy
where constant C is independent of any f € Hb (R") N S(R").

@n S Cll f 12 ), where constant C is independent

Furthermore, our result can be extended to the Littlewood-Paley type operators pd o
and ‘M;;I; , with variable kernels and index a > 0, which relate to the Lusin area integral and
the Littlewood-Paley g} function, respectively. Let Fglt(x) be as above, we then define the

operators #8,01,5 and yZﬁ, , for f € S(R"), respectively by

1/2
2 dydt
s ([[ |l 2)

1/2
P‘QaA(f)(x) <ff <t+|x ]/|> |Qt( >|2t(j+y~°’flj"‘> ’

with A > 1, where T'(x) = {(y,t) € R**! : |x — y| < t}. As an application of Theorem 1.2, we
have the following conclusion.

(1.6)

Theorem 1.4. Under the assumption of Theorem 1.2, then Theorem 1.2 still holds for :“g,a,s and
*,D
Hoar

By Theorems 1.2 and 1.3 and applying the interpolation theorem of sublinear operator,
we obtain the L, - L? boundedness of yau.
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Corollary 1.5. Suppose 0 < a < n/2, and that Q € L*(R") x L1(S" '), g > max{1,2(n-1)/(n +
2a)}, and satisfies (1.4). Let ® be given as in Theorem 1.3. Then, for 1 < p < 2, there exists an absolute
positive constant C such that

e <CNF

11462 (f) (17)

Ly (R")!

forall f € LL(R") n S(R").

Remark 1.6. It is obvious that the conclusions of Theorem 1.2 are the substantial improve-
ments and extensions of Stein’s results in [3] about the Marcinkiewicz integral po with
convolution kernel, and of Ding’s results in [8] about the Marcinkiewicz integral pqo with
variable kernels.

Remark 1.7. Recently, the authors in [9] proved the boundedness of hypersingular
Marcinkiewicz integral with variable kernels on homogeneous Sobolev space L (R") for
1 <p<2and0 < a < 1 without any smoothness on Q. So Corollary 1.5 extended the results
in [9, Theorem 5].

Throughout this paper, the letter C always remains to denote a positive constant not
necessarily the same at each occurrence.

2. The Bounedness on Sobolev Spaces

Before giving the definition of the Sobolev space, let us first recall the Triebel-Lizorkin space.

Fix a radial function ¢(x) € C* satisfying supp(p) C {x : 1/2 < [x] < 2} and 0 <
p(x) <1,and ¢(x) >c>0if 3/5< |x| <5/3. Let g (x) = ¢(2/x). Define the function yi(x) by
F(gi)(&) = 9j(§), such that F(g; * £)(§) = F(f)(E)e;(S).

For 0 <p, g <o, and a € R, the homogeneous Triebel-Lizorkin space Fg'q is the set of

all distributions f satisfying
. 1/q
k

For p > 1, the homogeneous Sobolev spaces Lh(R™) is defined by Lh(R") = F;"Z(]R"),
namely ||fl|,» = ||f||ng From [10] we know that for any f € L2(R")

FARY =4 feS®):|f

<o p. (2.1)

P

-aq
Fp

1/2
7l = ([ 1R @Pleae) 02

and if & is a nonnegative integer, then for any f € L (R")

”f L (Rm) = Z ”DTf”LP(R")' (2.3)

|7l=a
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For 0 < p < 1, we define the homogeneous Hardy-Sobolev space Hf (R") by H (R") =
F,’;'Z(R"). It is well known that HP(R") = Fg'z(]R") for 0 < p < 1, one can refer [10] for the
details.

Next, let us give the main lemmas we will use in proving theorems.

Lemma 2.1 (see [11]). Suppose that n > 2 and f € LY(R") n L?>(R") has the form f(x) =

fo(|x|)P(x) where P(x) is a solid spherical harmonic polynomial of degree m. Then the Fourier
transform of f has the form F(f)(x) = Fo(|x|)P(x), where

Fo(r) = 2gri My~ ((m+2m=2)/2) f fo(8)Jnsam-2)22orrs)s™2m /2 ds, (2.4)
0

and r = |¢|, J(s) is the Bessel function.

Lemma 2.2 (see [12]). For A = (n —2)/2, and —A < a < 1, there exists C > 0 such that for any
h>0andm=1,2,...,

C

m)wa

]m+)n (t)

t)ﬁa

(2.5)

0

Lemma 2.3. Let a > 0, A = (n—2)/2, ®isa C' function on (0, o0) and let it satisfy the conditions
(1) and (ii) in Theorem 1.2.

Denote g (f)(x) = ([ [N.f (x) 2(de/e*22)) %, if

O(e)l¢]
FNHO = [ a2 (@), 26)

Then there exists a constant C independent of m, such that ||ga(f)|;. < C/ mM | £ I for every
integer m € N,m > a.

Proof. Let 7(|x]) = 5" (Jwer (8) /£1)dit, then we have

sz

lsaIR= [ [ INereoP s

+0oo d
- fo [ meemFm el

()
ff (o <|§|>'§'>

So it suffices to show fg‘” ﬂ(q)(ﬂ/|§|)|§|)2(dﬂ/ﬁ1+2”‘) < (C/m)h+1+a)2

Decompose this integral into two parts [;* = [ 2y s =11+ I,

(2.7)
Zadé dﬁ

ﬂ1+2a

|F ()@ 18P"de.

ﬁ1+2u
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For I, by using Lemma 2.2 and ®(t) = t®'(t), we can get

+o0
L= f
m/2

J«b(ﬂ/lé)él Tsa () dt>2 dp

0 A1 ﬁ1+2a
+
< LI e P (2.8)
m2A+2 /2 ﬂ1+2u
C
= 22420 '

For the other part I;, applying Stirling’s formula, we have

V2rx* V2™ < T(x) < 2v2mx* 1267, (2.9)

Also in [13], the authors proved the following inequality

(t/2)”
< . )
[Jv(B)] < T+ D) (2.10)
So by (2.9) and (2.10), 0 < « < [a] + 1 < m, and noting that @(t) < Wt, we have
m/2 [ «@B/IEDI n \ 4
e[ )
0 0 At [5 +2a
m/2 O(p/1EDIE] 2
<["(] )] 4)_dP
0 0 i+l pi+2a
1 m/2 DB/1g1IE] gm+d 2 dﬂ
S Sz f Tt ) o
22272 (m+ A+ 1) Jo 0 A+ pl2a
m/2 2m
wmr ) (O(a) 7
22mH 0T (m + A+ 1) ) ¢ pr2a (2.11)
2m+21+2 m/2 2m
< eg2m J‘ <I)/< p > dp
27[22m+2)‘(m + A+ 1)2m+2)n+1 0 |§| [5“2“72"’
2m+2A+2 m/2
<C € dp

271'22””2)‘(111 + A+ 1)2m+2)L+1 0 ﬁ1+2a—2m

e\ 2m+2\+2 1
<c(y)
- 4 m2a+21+2

C

< .
m2a+2)n+2

So far we can deduce the desired conclusion of Lemma 2.3. [
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Proof of Theorem 1.2. The basic idea of proof can go back to [14], for recently papers, one see [8,
15]. By the same argument as in [1], let {Y},;} (m >1, j=1,2,...,D,,) denote the complete
system of normalized surface spherical harmomcs See [14] for mstance, we can decompose
Q(x,y') as following:

+oo Dy,
Q(x,y) = D, Dlamj(x)Ym,;(y') is a finite sum. (2.12)
m=1j=1
Denote
: - )
i ’ am,j(x
am(x) = i (x , by i(x) = ——, 2.13
(x) (;l i >|> ) = 22 (2.13)
then we get
Dy, +00 Dy,
Db i) =1 QMxY) =D an(®) D bm;i(xX)Yn(y). (2.14)
=1 m=1 =1

Then, applying Holder inequality twice, we have for any 0 < ¢ < 1 that

2

2 (™ (y) , dt
|ﬂ$,uf(x)| =f f mel() Y flx=0(lyDy)dy| 5z
0 [yt m=1 | t
< <ﬁai (x)m—s(1+2u)> st(1+2u)
m=1 m=1
2

SN St P -0l
<t]

+00 +00 +00 / Dm
<Zlai(x)m5(l+2a)> Zlme<1+2a) fo <.Zlbi1'f(x)> (2.15)
m= m= j=

$3+2a

IN

Dy 2

Zf L%)f(x—@(lyby')dy
wist [y]

X

13+2a

+00 +00
<Z (13” (x) m5(1+2a)> Z m5(1+2a)
m=1 m=1

+o0 Dy
i f 3
0 j=1

t3+2u :

[T eyl yay
st y|”
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By [14, page 230, equation (4.4)], we can observe that the series in the first parenthesis

on the right-hand side of the inequality above, for each x fixed, is equal to ||Q(x, ')”iz sy
Y
where L2 (S") is the Sobolev space on §"~' with y = £((1/2) + ) for any 0 < £ < 1. So if we

take € suff1c1ently close to 1, then by the Sobolev imbedding theorem L7 C L2, we have

2y
1/2
<Za3n(x)mg(l+2a)> < Cl|€| e mmyxra(sn1y == ClIL|| (2.16)
m

with g > max{1,2(n-1)/(n +2a)}.
By Fourier transform and (2.16), we get

() 2 2 < £(1+2a) " 2 Ym/j (y,> ! ’
i8], < clgp Smea [ [ S 2L p G- a(lyly)dy dx
2 m=1 o Jr S| |yl

$3+2a

+00 +00
SC”Q”ZZmE(lJrZa)Zf J‘
m=1 j=1 "

([, e oyray ) o] e 2

) +o0 D,, 2
= clelP Ym0 3 11 (]|
m=1 j=1

(2.17)
For ,ug/]-/u (f), we have
+oo (y) e
|#Q]a(f)|| J. f J'l <tJ‘ m] (D(|y|)y )e —2uri §dxdy d§t3+2u
n y n
i J.+oof J' L(y’)efzyr@(\yl)y"é
n-1

0 n |y‘<t |

: f S = o(lyly ety dy‘ W o

d
ORI

S L
L

2
f Yni(Y) amioqyiiyey
n-1 v
st |y|

2

m ! dt

t1+af ]Elyl) —27ri®( yl)y-édy‘ , |?(f)(§)|2d§
wist |y
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For the integral on the right hand side of the above inequality, by changing of variable, we
can get

1 J‘ Yui(y') =20y ¢ g
Hlea n-1 Y
st |yl

1 ' 1\ ,—27iD(s)y’ !
= fl+a J‘O fgnl Ym/j (]/ )e 2rie)y gdy ds

o (2.19)
1 N\ ,—27iyy' - "
= e fo Lnl Yo (y)e 204 (07 (y) ) dy/dy
1 J. Ym,j(]/,) —-27riy-¢ -1 !
= i — e (@7 (lyl) ) dy-
e Jycow |y|"! < >
So we have
2 o | q Yo (y) 2 dt
@ = “MmINI ) 2rwiyé q)—l ,d ? zd
e .
) e N R L@@ e (@ (yl)) | 170 @)L
(2.20)

Put Py j(x) = Yo, j(x')|x|" and (p?;m'j(x) = Ppj(x) - |7 e () (@1 (|x])) 1,
we can deduce from Lemma 2.1 that

F (02" (@) = PujC121) - Fol2D) = Yon, (&) - &I Fo (2], (2.21)

where

() ,
Fo(r) = 2ari ™y (0/27ms1 f tiragmnomtl <CD_1(S)> Jon/2ysm-1(2rs)s™/2 M ds
0

o(t)
= 2gri My~ (/D)-mrly-la f S_(n/2)+1](n/2)+m—1 (27rrs)d<(D_1(s)>
0
(2.22)

_ i p-(1/2)-mi1 -1 J‘ " Jn/2yema (2:1?/72 ‘i’fﬁ))
o (®(p)

= @)Dt " Jin/2em- (27 ® () )

tlo @rro(p) ™

dp

dp.



10 Journal of Inequalities and Applications

Hence, we have

|0,
J[ e sy

[ [t el
Sl

Ym]-(g')|§|mi—’"|g|—M(2ﬁ)n/22 b Jin/2)em-1 (2| D(B)) p

dt ,
t J, (27r|§|cb(ﬁ))("/2)‘1 t|§’:(f)(§)| d¢

e N1 (" Ts2yem- 1(2”|§I‘D(ﬂ))
C Yo i d
: fRn fo i), xRl (p) P f“z“ wIFOOF
(2.23)
By [14], we know that Z]D:{ [Yon,j (2)* = m™2.
So we can get
](n/2)+m 1 (Zﬂlélq)(ﬂ>>
Cm"2 d
(f)” stm f f 0 (271'|§|(D(ﬂ))(n/2) -1 t1+2u|¢(f>(§)| é
(2.24)
Set A = (n/2) — 1,p = 2|¢|®(B) and note that D(t) = td (t), we can deduce that
! Jin/2)em1 (278 @ (B)) ap
(27lglo(p)) "
1 (20 70 (p) 1
- d (2.25)
t fo pt 2x|Ed (@ (p/2Ig])) g

20r|§|D(t)
_ 1f ]m+)L(P)q)_1< 1Y )dP

tJo pt 2r)é]

Noting that ®(t) is increasing, by using the second mean-value theorem, we get, for
some 0 < 17 < 20r|¢|D(¢),

iuj <

2715000
CD (®(t))f ]p;(f)d ‘

(2.26)

27 [¢|D(t)
< J‘ ]m+/\(P)dp‘

A+1
p

0
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From (2.26), it follows that

272l (1)
f ]m;iflp)d g(f)(é) t1+2a de. (2.27)

Sl zcm [ [

Thus using Lemma 2.3, we can deduce the desired conclusion of Theorem 1.2. [

Proof of Theorem 1.4. First, we know that yg . s(f)(x) < 2)‘"/4Q " A( f)(x). On the other hand,

An )
t 1 Q(x, z) , dzdt
- x—-D(|z))z")dz| ———
J‘ nJ‘J‘RfH <t + |x —y|> t |zl<t |Z|n—1 f( (l |) ) tn+1+2u
) 1 ¢ An 1 Q( ) Zd u
X,z .
B dx —O(|z))2)dz| ——
fo fn<tn fRn<t+|x—y|> > T T f(x - @(]z))2) T2
2
<C||ub. 0|
(2.28)

Thus, using Theorem 1.2, we can finish Theorem 1.4. [

3. The Bounedness on Hardy-Sobolev Spaces

In order to prove the boundedness for operator ‘ug,a on Hardy-Sobolev spaces and prove
Theorem 1.3, we first introduce a new kind of atomic decomposition for Hardy-Sobolev space
as following which will be used next.

Definition 3.1 (see [16]). For a > 0, the function a(x) is called a (p, 2, ) atom if it satisfies the
following three conditions:

(1) supp(a) ¢ Bwith aball B C R*;

) lallz < B2/

(3) [z.a(x)P(x) =0, for any polynomial P(x) of degree < N = [n((1/p) - 1)a].

By [16], we have that every f € H(R") can be written as a sum of (p,2,a) atoms

aj(x), thatis,

j
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Proof of Theorem 1.3. Similar to the argument of Lemma 3.3 in [17] and using above atomic
decomposition, it suffices to show that

ke @] <c (3.2)

with the constant C independent of any (p, 2, a) atom a.
Assume supp(a) C B(0, R). We first note that

P P P
@l <[ |te@e@[drs | | @] dn
2 |x|<8R |x|>8R (3.3)
= LI1 + LIZ.
For U3, using Theorem 1.2, it is not difficult to deduce that
Uy < |l (@] RO-#2 < Clalf, R/
ol b (3.4)

< CR™(p/2)-1) gn(1=(p/2)) <C.

For U», we first consider the case n/(n + a) < p < 1, according to [15, Lemma 5.5], for
0 <a<n/2and (p,2,a) atom a with support B = B(0, R), one has

f |a(x)|dx < CR™ (/P (3.5)
B
Using Minkowski inequality and Holder inequality for integrals, and (3.5), we can get

p
u, = f |48 (@) (0| bx
|x[>8R

100

|(x,y)| ,
<[l e @by lay

f Q(x,y)
|

—~a(x-2(|y|)y)dy
vist |y

dt
m dx (36)

P
dx.
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For the integral on the right hand side of the above inequality, by changing of variable and
noting that 0 < @' (t) <1,®(0) = 0, we can get

[ e
vy

R1Q
LMI | E,ch+i/)||“(x—®(7‘)y')|drdy’

_ |Q(x, )| B ,
—fgnlfo ((D 1( ))1+pc| ( Yy)lcp(q) 1( ))dydy

I R 0 ’1% oy
fSnl fo ((D,l(y))lﬂxl ( Yy)l Y

_ Qe :
—LML (m_l(y))ayl (x —yy)|dy dy
f 1Q(x,y)|
wico® |y|"(@71(|y]))
|Q(x, x - y)]
yizo®) |x = y|" (@1 (|x - y|)"

J
f IQ(x/x y)|

wa 1a(y)|dy.
oyl<o®)  |x -y

(3.7)

«la(x-y)|dy

zla(y)|dy

IN

By (3.7), we can get

f 1Q(x,x - )] ’

|x_y|n+a |a(y)|dy dx

J‘1R<x|<2/+1R
@, \np) f f Q(x, x — )| !
<3 (2R PRI a(y) |dy dx
]§3< > <2/R<x<2/+1R wx—y|™ la()ldy

=, o\ n(-p) |Q(x, x - y)| g
< 2/R dxd
S ]Zs< > <J.B|a(y) | f27R<|x|<2/*1R |x _ y|n+a xay

(3.8)

P 2, (-ap, . \n(l-p)
< Il ([ atldy) - 3(2R) ™ (2R)"
i=3
Thus by (3.5) and the condition p > n/(n + a),

U, < C||Q||waL1227("’””’“”) <C. (3.9)
j=3
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As for p = 1, similar to the argument of n/(n + a) < p <1, we can easily get U, < C. So
far the proof of Theorem 1.3 has been finished. I
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