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A class of small-deviation theorems for the relative entropy densities of arbitrary random field on
the generalized Bethe tree are discussed by comparing the arbitrary measure y with the Markov
measure jg on the generalized Bethe tree. As corollaries, some Shannon-Mcmillan theorems for
the arbitrary random field on the generalized Bethe tree, Markov chain field on the generalized
Bethe tree are obtained.

1. Introduction and Lemma

Let T be a tree which is infinite, connected and contains no circuits. Given any two vertices
x#y € T, there exists a unique path x = x1,x2,...,x, = y from x to y with x1,x2,..., x,
distinct. The distance between x and y is defined to m — 1, the number of edges in the path
connecting x and y. To index the vertices on T, we first assign a vertex as the “root” and label
itas O. A vertex is said to be on the nth level if the path linking it to the root has n edges. The
root O is also said to be on the Oth level.

Definition 1.1. Let T be a tree with root O, and let {N,,n > 1} be a sequence of positive
integers. T is said to be a generalized Bethe tree or a generalized Cayley tree if each vertex
on the nth level has N, branches to the n + 1th level. For example, when Ny = N +1 > 2
and N, = N (n > 2), T is rooted Bethe tree Tg 5 on which each vertex has N + 1 neighboring
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Figure 1: Bethe tree Tp .

vertices (see Figure 1, Tp»), and when N, = N > 1 (n > 1), T is rooted Cayley tree Tcn on
which each vertex has N branches to the next level.

In the following, we always assume that T is a generalized Bethe tree and denote by
T™ the subgraph of T containing the vertices from level 0 (the root) to level n. We use (n, j)
(1 £j < Ni---Nyn > 1) to denote the jth vertex at the nth level and denote by |B| the
number of vertices in the subgraph B. It is easy to see that, forn > 1,

|T<">

n n
=) No--Np=1+ > Ni---Np. (1.1)
m=0 m=1

Let S = {so,51,52,...}, Q = ST, w = w(-) € Q, where w(-) is a function defined on T and
taking values in S, and let F be the smallest Borel field containing all cylinder sets in Q. Let
X = {X;,t € T} be the coordinate stochastic process defined on the measurable space (Q, F);
that is, for any w = {w(t),t € T}, define

Xi(w) =w(t), teT. (1.2)
XxT® & {Xt,t e T™ }’ ‘u<XT("’ _ xT(n)) _ ‘u<xT(")>. (1.3)

Now we give a definition of Markov chain fields on the tree T by using the cylinder
distribution directly, which is a natural extension of the classical definition of Markov chains
(see [1]).

Definition 1.2. Let Q = Q(j | i). One has a strictly positive stochastic matrix on S, g = (q(so),
q(s1),4q(s2) ...) a strictly positive distribution on S, and pg a measure on (Q, F). If

pa(x0,1) = q(x0,1),

" n1No-Ny  Npii (1.4)
Ho <xT > = q(x01) IT  aGmalxm), n>1
m=0 =l j=Npa(i-1)+1
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Then pg will be called a Markov chain field on the tree T determined by the stochastic matrix

Q and the distribution g.
Let p be an arbitrary probability measure defined as (1.3), denote

frn(w) =—

1 n
oy Los#(X™): (1.5

fn(w) is called the entropy density on subgraph T with respect to p. If p = pg, then by (1.4),
(1.5) we have

n=1No-Ny, Nisi

1
fn(w) = _W log g(Xo,1) + Z Z logq(XmH,j | Xm,i) . (1.6)

m=0 i=1 j=Ny(i-1)+1

The convergence of f,(w) in a sense (L; convergence, convergence in probability, or
almost sure convergence) is called the Shannon-McMillan theorem or the entropy theorem or
the asymptotic equipartition property (AEP) in information theory. The Shannon-McMillan
theorem on the Markov chain has been studied extensively (see [2, 3]). In the recent years,
with the development of the information theory scholars get to study the Shannon-McMillan
theorems for the random field on the tree graph (see [4]). The tree models have recently
drawn increasing interest from specialists in physics, probability and information theory.
Berger and Ye (see [5]) have studied the existence of entropy rate for G-invariant random
fields. Recently, Ye and Berger (see [6]) have also studied the ergodic property and Shannon-
McMillan theorem for PPG-invariant random fields on trees. But their results only relate to
the convergence in probability. Yang et al. [7-9] have recently studied a.s. convergence of
Shannon-McMillan theorems, the limit properties and the asymptotic equipartition property
for Markov chains indexed by a homogeneous tree and the Cayley tree, respectively. Shi and
Yang (see [10]) have investigated some limit properties of random transition probability for
second-order Markov chains indexed by a tree.

In this paper, we study a class of Shannon-McMillan random approximation theorems
for arbitrary random fields on the generalized Bethe tree by comparison between the arbitrary
measure and Markov measure on the generalized Bethe tree. As corollaries, a class of
Shannon-McMillan theorems for arbitrary random fields and the Markov chains field on the
generalized Bethe tree are obtained. Finally, some limit properties for the expectation of the
random conditional entropy are discussed.

Lemma 1.3. Let py and py be two probability measures on (Q, ), D € ¥, and let {T,,n > 0} be a
positive-valued stochastic sequence such that

Tn
o]

lim inf >0, m-as.weD, (1.7)
n

then

)
lim ! 1 - <XT >
sup  log <0, m-as.weD. (1.8)

oo Tn /41 (XT(n)) >
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In particular, let T, = |T™|, then

| pa(X)
lim sup 1 ) <0, m-as.weD. (1.9)

et [T (XT0

Proof (see [11]). Let

()
o (1.10)

, 1
¢(p | po) = limsup 7] log

@(u | po) is called the sample relative entropy rate of y relative to pg. ¢(p | pg) is also called
the asymptotic logarithmic likelihood ratio. By (1.9)

u XT(n)
<(XT<")>) >0, p-as. (1.11)
Ha

o1
ol po) 2 llmglf|T<n)| log

Hence ¢(u | po) can be look on as a type of measures of the deviation between the arbitrary
random fields and the Markov chain fields on the generalized Bethe tree. ]

2. Main Results

Theorem 2.1. Let X = {X;,t € T} be an arbitrary random field on the generalized Bethe tree. f,(w)
and @(pu | po) are, respectively, defined as (1.5) and (1.10). Denote a > 0, H,g (Xms1,j | Xom,i) the
random conditional entropy of Xp1,; relative to Xy, ; on the measure pg, that is,

Hr% (Xm+1,j | Xm,i) = - Z q(xm+1,j | Xm,i) log q(xmﬂ,]- | Xm,i) . (21)
xm+1,j€S
Let
D(c) = {w:p(ulpg) <c}, (2.2)

ba= liinésip |T = |

Z Eg [logzq (Xmstj | Xomi) q(Xmsrj | Xomi) ™ | Xm,i] < oo,
m=0 il j=Npe (i-1)+1

(2.3)
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when 0 < ¢ < a?b,/2,

n=1No-Ny, Np1i

lim sup{fn(w) - |T3")| Z > Hi (Xpni) | Xm,i)}

n—oo m=0 i=1  j=Nyu (i-1)+1 (2.4)
< \/2cb,, pu-a.s. w € D(c).
1 n=INg=Nu N o
lim inf fa(w) - [T Z 2, 2, Hn (Xt Xoms)
m=0 i=1 j=Npu1(i-1)+1
(2.5)
> —\/2cb, — ¢, p-a.s. w € D(c).
In particular,
1 n—=1NoNy, Nisi
im | fu(w) = =0 >, Y HY (X | Xmi)
nme [T = = =Ny (i-1)+1
(2.6)
=0, p-as. weD(0),
where log is the natural logarithmic, Eqg is expectation with respect to the measure pg.
Proof. Let (Q, F, u) be the probability space we consider, A an arbitrary constant. Define
EQ [q(Xm+l,j | Xm,i)i)L | Xm,i = xm,i] = Z q(xm+1,j | xm,i)lil; (2.7)
xm+1,j€S
denote
-_ n-1 Ny-N,, Npii "I(xm+1j | Xm i)l—)L
Ho(L ") = qtxon] T T (2.8)

m=0 ‘i=1 j=N.(i-1)+1Eq [q(Xm+1,j | Xomi) ™ | Ximi = xm,i]
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We can obtain by (2.7), (2.8) that in the case n > 1,

Z o < T<n)>

xkneS
7n-1NoNp  Nypaii x 1-|x-17
= Zq(x()l)l_[ H q(Xms1,j ml)
xLne§ m=0 i=1 j=Ny.1(i-1)+1 EQ [q(Xm+1] | Xml) | Xmi = xm,i]
~ro(i) 5T 1 o [ 2)™
xlneS i=1  j=N,(i-1)+1 EQ [q(Xn] | Xna 1) - | anl,i = xnfl,i]
(2.9)
; 1-1
_ #Q <A,‘ xT(n71)>NDHNn71 N,i q(xn,j | xf;)qul,i)
i=1  j=N,(i-1)+1x,;€S Eg [‘7 (xn,,- | Xp-1) " | X1 = xn—l,i]
-1
(n-1) No:-No-a Nui EQ [Q(Xn,j | anl,i) | Xnfl,i = xn—l,i]
=l j=Ny(i-1)+1 EQ[ (xn,j | xn-1i) | X1 = xn—l,i]
= po (1),
Z Ho <)L, xT(0)> — Z q(xO,l) =1. (210)
xtoes X0,1€S
Therefore, pug (X, xT™),n1=0,1,2,...are a class of consistent distributions on ST". Let
po (4, X
U, (A, ) = <—()> 2.11)
p(XT)

then {U,(\, w), Fn, n > 1} is a nonnegative supermartingale which converges almost surely
(see [12]). By Doob’s martingale convergence theorem we have

lim U,(\, w) = Us (L, w) <oco. p-ass. (2.12)
n— oo

Hence by (1.3), (1.9), (2.9), and (2.11) we get

hm sup logU, (A, w) <0. p-as. (2.13)

I“I
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By (1.4), (2.8), and (2.11), we have

1

70| logU, (A, w)

1 n—=1No- Ny, Nii1i

= > [FA10ga(Xm | Xomi) ~10g Eg(q(Xmerj | Xim) ™ | X
m=0 i=1 j=Ny.1(i-1)+1

1 #Q(XT("))
+ = log TR
[T (X))

(2.14)

By (1.10), (2.2), (2.13), and (2.14) we have

1 n-1No--Np, Nypi

> [—)L log q(Xom+1,j | Xm,i) —log Eg <61(Xm+1,j | Xom,i) ™" | Xm,i>]
m=0 i=1 j=Ny.1(i-1)+1

<@(pu|pg) <c, p-as. we D(c).
(2.15)

By (2.15) we have

. .
lim sup—se >, >, (M{logq(Xmsj | Ximi) = Eq (108 4(Xms1j | Ximi) | Xmi) )
o |[TO]0 G =N (i-1)+1
1 7mINg=Nu Ny N
< limsup log Eo(q(Xma1,j | Ximi) " | Xom,i
n—oo |T(n) | m=0 i=1 j:N,,,;(i—l)H[ < Y " " >
—Eq(-A10g q(Xms1,j | Xmi) | Xmi)] +¢,  p-as. w e D(c).
(2.16)
By the inequality
xt -1+ Alogx < (;)Az(log x)x M 0<x<, (2.17)

logx <x—1(x>0)and (2.16), (2.17), (2.3), we have in the case of || < a,
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. 1 ' '
lim supwz Z (=) {log q(Xms1,j | Xmi) — Eg(log q(Xms1,j | Xmi) | Ximi) }

m=0 i=1 j=Nyu(i-1)+1

n=1NoNm  Npui

Z [EQ <q(Xm+1,j | Xoni) ™ | Xm,i> -1
m0 T N 1)

—EQ< — Mog g(Xms1,j | Xm,i) | Xm,i)] +c
n=1No--Np, Nisi

. 1
<lim sup2|T<n)| Z Z Z Eg [,\21og2 (q(Xm+1,j | Xm,i))

=0 =1 =Ny (i-1)+1

'q(Xm+1,j | Xm,i)iw | Xm,i] +cC

n=1No-Ny, Nisi

. A2 _
ctimsup 5 5SS B [log (0(Kimn1X00) - (X 1 ) 1 Ko
n— oo 2|T |m=0 i=1 =Ny (i-1)+1

+c= <;>)L2b,,, +c. p-as. w € D(c).
(2.18)

When 0 < A < a, we get by (2.18)

> —{logq(Xms | Xmi) — EQ(10g (X1 | Ximi) | Ximi) }
M=0 i1 =Ny (i-1)+1

1 c
< <2>.)Lbu + y WHasw € D(c).
(2.19)

Let g(1) = (1/2)Ab, + ¢/, in the case 0 < ¢ < (a’b,)/2, then it is obvious g(\) attains, at
A =1/(2¢) /by, its smallest value g(/(2c)/b,) = \/2¢cb,, on the interval (0, «). We have

> —{108q(Xmj | Ximi) = EQ(1og (X1 | Xomi) | Xomi) )
m=0 i=1 j=Np1(i-1)+1

< \/2cby, p-a.s. w € D(c).
(2.20)



Journal of Inequalities and Applications 9

When ¢ = 0, we select 0 < \; < a such that \; — 0 (i — o0). Hence for all i, it follows from
(2.19) that

D>~ (loga(Xm | Ximi) = Eq(log q(Xms1j | Xomi) | Xom,i) }
M=0 =1 j=Np(i-1)+1

<0, p-as.weD(0).

(2.21)
It is easy to see that (2.20) also holds if ¢ = 0 from (2.21).
Analogously, when —a < A < 0, it follows from (2.18) if 0 < ¢ < (a®b,) /2,
n— 1Nn Nm“i
h}{rlmf Z Z Z —{log q(Xim+1,j | Xm,i) — Eo(log q(Xm+1,j | Xmi) | Xm,i) }
*® | mO i=1 =Ny (i-1)+1
> —\/2cba, p-a.s. w € D(c).
(2.22)
Setting A = 0 in (2.14), by (2.14) we have
| | o)
hinésip |T< 1 logU, (0, w) = 11in_>sip Tl log (X7 <0, p-as. (2.23)
Noticing
Hy (Xms1,j | Xm,i) = Eq[~10og q(Xms1,j | Ximi) | Xom,i] - (2.24)
By (1.4), (1.5), (2.20), and (2.23), we obtain
n=1No--Np Nyiii Q
limsup | fn(w) - > Hp(Xmsrj Xomi)
n—oo m= i=1  j=Npu (i-1)+1
Ho(X™)
< 11inﬁsip 7o | log (XY
(2.25)
n-— Nyai
+lim sup Z Z
n— o m: i=1  j=Npu(i-1)+1

~ {log 4(Xm+1,j | Xm,i) = EQ(log q(Xm+1,j | Ximi) | Xim,i) }

< \V/2cb,, p-a.s. w € D(c).
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Hence (2.4) follows from (2.25). By (1.4), (1.5), (1.10), (2.2), and (2.22), we have

n— Nysai
lim inf | fo () - T(n) Z Z HE(w)
*® | | = = =Ny (i=1)+1
1 Ho <XT(")>
> lim inf log =
noe T p(X)

(2.26)

n—-1Np--Np, Npii

+1111111g1f|Tn)|Z Z

M=0 i1 =Ny (i-1)+1
— {log 4(Xm+1,j | Xm,i) = EQ(log q(Xm+1,j | Ximi) | Xm,i) }

~p(p | pg) — V2cbg > —\/2cby — ¢, p-a.s. w € D(c).

Therefore (2.5) follows from (2.26). Set ¢ = 0 in (2.4) and (2.5), (2.6) holds naturally. (N

Corollary 2.2. Let X = {X;,t € T} be the Markov chains field determined by the measure pg on the

generalized Bethe tree T - f,,(w), by are, respectively, defined as (1.6) and (2.3), and HE Xm1j | Xom,i)
is defined by (2.1). Then

n=1No--Np, Nysai

lim {fn(aJ) ">|Z > > HS(Xm+1,j|Xm,i)} =0. pg-as. (2.27)

m=0 i=1 j=Npu1(i-1)+1

Proof. We take yu = pg, then ¢(p | po) = 0. It implies that (2.2) always holds when ¢ = 0.
Therefore D(0) = Q holds. Equation(2.27) follows from (2.3) and (2.6). (N

3. Some Shannon-McMillan Approximation Theorems on
the Finite State Space

Corollary 3.1. Let X = {X;,t € T} be an arbitrary random field which takes values in the alphabet
S = {s1,...,5n} on the generalized Bethe tree. f,(w), ¢(u | po) and D(c) are defined as (1.5),
(1.10), and (2.2). Denote 0 < a < 1,0 < ¢ < 2Na?/[(1 - cx)e]z. H,%(XWU | Xm,i) is defined as
above. Then

Z HY (Xmerj | Xom,i)
m=0 i=1 j=N,.1(i-1)+1

limsup | fu(w) -

(3.1)
27!

(1_ )\/2CN p-a.s. w € D(c),
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1 n-1No--Ny, Nysai Q
i | o) T S 5L HECRw X
m=0 i=1 j=N,;1(i-1)+1 (3.2)
2e
> —
1

-1
a\/ZcN -¢, p-as.w € D(c).

Proof. Set 0 < a < 1 we consider the function

P(x) = (logx)*x'™, 0<x<1, 0<a<1 (Setp(0)=0). (3.3)
Then
P'(x)=x7" [2 (log x) + (log x)*(1 - a)]. (34)

Let ¢'(x) = 0 thus x = %/ | Accordingly it can be obtained that

max{$(x),0<x <1} = ¢<ez/("‘*1) ) = < 2 >2e2. (3.5)

a-1
By (2.3) and (3.5) we have

n—1No-Ny, Ny
—Z Z EQ [logzq(XmH,j | Xm,i) : "I(Xm+1,j | Xm,i)_“ | Xm,i]

m=0 i=1 j=N,.1(i-1)+1

n=1NoNy, Nisi

: 1 -a
slimsuprror >y 3y 3y 3 1080 (0mia | Ximi) 4w | Xons)!

1 n=INo=Nu N SN 7 \2
< lim sup Z Z Z <m> e

m=0 i=1  j=Npu1(i-1)+1 Xms1,j=51

2 TMW| -1 2
:N< 2 )e_z-limsupQ:N< 2 >e‘2<oo.
noow |T™]

(3.6)

Therefore, (2.3) holds naturally. By (2.18) and (3.6) we have

11mésup o] 2 Z . Z (-0){log q(Xoms1,j | Xmi) — Eg(10g q(Xms1,j | Xomi) | Xom,i) }
n—o m=0 i=1 j=N,.1(i-1)+1
-2
< NA? 2 +c¢, p-as. w e D(c).

(3.7)
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In the case of 0 < A < &, by (3.7) we have

Z —{log q(Xim+1,j | Xm,i) — Eo(log q(Xm+1,j | Xmi) | Xm,i) }

n—oo |T(n) | m=0 =1 =N (i-1)+1
2e72 c
<NA——+ , -a.s. w € D(c).
@ 12 H (c)

(3.8)

Let g(A) = 2ANe2/(a-1)> + ¢/, in the case 0 < ¢ < 2Na?/[(1 - a)e]?, then it is

obvious g(A) attains, at A = (1 - a)er/c/2N, its smallest value g((1 - a)e\/c/2N) =
2e7'v/2cN /(1 - a) on the interval (0, a). That is

i sup S 108 (X | Xns) ~ B (1o a(Xmess | Xons) | X))
noo |TW] 2 & =Nt (i-1)+1
< 27 N, pas weD(
S g V2N, pasw c).

(3.9)

By the similar means of reasoning (2.21), it can be concluded that (3.9) also holds when
¢ = 0. According to the methods of proving (2.4), (3.1) follows from (1.5), (2.23), and (3.9).
Similarly, when —a < A < 0,0 < ¢ <2Na?/[(1 - a)e]?, by (3.7) we have

L 1
hﬂng > Z —{log q(Xim+1,j | Xm,i) — Eo(log q(Xm+1,j | Xmi) | Xm,i) }
m=0 i=1 j=Np.1(i-1)+1

> —(1 _a) V2¢cN, pu-a.s. w e D(c).

(3.10)

Imitating the proof of (2.5), (3.2) follows from (1.5), (1.10), (2.2), and (3.10). (N

Corollary 3.2 (see [9]). Let X = {X;,t € T} be the Markov chains field determined by the measure

U on the generalized Bethe tree T - f,(w) is defined as (1.6), and HnQ1 (Xms1,j | Xom,i) is defined as
(2.1). Then

1 n-1Ng--N,, Nypai

nlgrolo{fn(w) - |T(")| Z Z Hr% (Xm+1,]' | Xm,l')} =0. H@Q-a.s. (3'11)

m=0 i=1 j=Nyu(i-1)+1
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Proof. By (3.1) and (3.2) in Corollary 3.1, we obtain that when ¢ = 0,

n=1No-Np, Nysai

lim { fulw) — 7] n)| 33 N HY (X | Xm,i)} =0, p-as. we D).

m=0 i=1 j=Ny(i-1)+1
(3.12)

Set u = pg, then ¢(pu | pg) = 0. It implies (2.2) always holds when ¢ = 0. Therefore D(0) =
holds. Equation (3.11) follows from (3.12). I

Corollary 3.3. Under the assumption of Corollary 3.1, if u < pg, then

n— Nyiii

|T<n)|m= Z S Hn%(xm+1,,-|xm,i)}=o. p-as. (3.13)

=1 j=Np (i-1)+1

11m {fn(w) -

Proof. It can be obtained that ¢(u | ug) = 0, a.s. holds if p < pg (see Gray 1990 [13]),
therefore u(D(0)) = 1. Equation (3.13) follows from (3.12).

Let X = {X;, t € T} be a Markov chains field on the generalized Bethe tree with the
initial distribution and the joint distribution with respect to the measure yp as follows:

pp(x01) = p(xoa), (3.14)
" n-1N Ny
P‘P( ! ) (x01)1_[ H p(Xms1j | Xmi), n>1, (3.15)
m=0 i=1 j=N,1(i-1)+1

where P = p(j | i) is a strictly positive stochastic matrix on S, p = (p(s0),p(s1),p(s2)...) is a
strictly positive distribution. Therefore, the entropy density of X = {X;,t € T} with respect to
the measure pp is

Z log p(Xoms1,j | Xomi) |- (3.16)

n—
m=0 i=1 =Ny (i-1)+1

e = =T 08P (an)

Let the initial distribution and joint distribution of X = {X;, t € T} with respect to the measure
uo be defined as (1.4) and (1.5), respectively.
I

We have the following conclusion.

Corollary 3.4. Let X = {X;, t € T} be a Markov chains field on the generalized Bethe tree T whose
initial distribution and joint distribution with respect to the measure pp and pg are defined by (3.14),
(3.15) and (1.4), (1.5), respectively. f,(w) is defined as (3.16). If

[p(1h)-q|h)]"
%% 0Th <c, (3.17)
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then

n=1No-Np, Nysai

Z HnQ1 (Xm+1,j | Xm,i)]

lim sup [fn (w) - n) |

n—o m=0 =1 j=Nyu1(i-1)+1 (3.18)
n— Nyps1i
1iﬂinf fn(w) - T<”) Z Z HE (X1 | Xomji)
% T2 S o Shnn (3.19)

>—2€_ -c -a.s
2-7-4 . ppas,

Proof. Let yu = pup in Corollary 3.1, and by (1.5), (3.15) we get (3.16). By the inequalities log x <
x-1(x>0),a<[a]’, (3.17), and (1.10), we obtain

o(pr | po)
up <XT(")>

_ 111‘1‘1 sup |T<”) | IOg 4o (XT(n))

. 1 p(XO,l)H:ln;lo i ’ mH] 7\;,1"’+1(i71)+1p(Xm+1,,- | Xm,i)
= limsup = log — 1

n— oo |T | q(Xo,l)l_[m=0 "’H] "]’\;,1””(1 1)+15](Xm+1,j | Xm,i)

1 n- Nm+1i Xm+ . Xmi

< lim sup log P(Xo1) +11msup Z Z gP(l,—]l,)

neo [T®] 0 q(Xo1) 12 5 e A | Xom)

n-1Np-- Npati p(l | h)

< hmsuplT( )lz Z Z ZZ(Sh(Xml)(SI(XmH])I 08 —= 773 (llh)

m=0 =1 j=N,u.(i-1)+1 heS €S

1 n—1Ng-Ny, Nii P(l | I’l) ]

Z Z ZZ(Sh(XMI)(SI(Xerl]) (l | h)

n
n—oo |T< )|m=0 i=1  j=Npe1(i-1)+1 heS €S

: |TW|=1p( | k) -q(l| h)
< Zthsup |T<”)| D)

heSleS N—®

[p( | k) - (1| B)]*
22—

heSleS

(3.20)
By (3.17) and (3.20) we have
o(pup | po) <c, as. (3.21)

It follows from (2.2) and (3.21) that D(c) = Q; therefore (3.18), (3.19) follow from (3.1),
(3.2). ||
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4. Some Limit Properties for Expectation of Random Conditional
Entropy on the Finite State Space

Lemma 4.1 (see [8]). Let X" = {X,,t € T™} be a Markov chains field defined on a Bethe tree
TN, Sn(k,w) be the number of k in the set of random variables X = (X, t € T™). then for all
kes,

lirflnSTI(“I;)T) =mx(k) pg-as, (4.1)

where or = (r(1), ..., (N)) is the stationary distribution determined by Q.

Theorem 4.2. Let X" = (X, t € T™Y} be a Markov chains field defined on a Bethe tree Tg N, and
let H,%(XWU | Xim,i) be defined as above. Then

N+1 0 n-1 (N+)N"1  Ni 0
lim [T ZHE Xl Xon+ 23, 3 3 Hu(Xmej | Xmi)
P m=1  i=1  j=N(i-1)+1 (4.2)

==Y > x(kq(l | k)logq(l | k), po-as.
keS leS

Proof. Noticing now Ny = N +1, foralln > 2, N, = N, that therefore we have

N+1 o n-1 (N+)N"™'  Ni 0
> Hy (X1 | Xop) + D) > Hp (X | Xons)
i=1 m=1 =1  j=N(i-1)+1

N+1

= > - Eg[logq(Xy, | Xo1) | Xo1]
i=1

n-1 (N+1) N1 Ni

+ > > —Egllogq(Xmej | Xmi) | Xoms]
m=l =l j=N(1)+l
N+1
= _Z Z q(x1,i | Xo1) logg(xu,i | Xoa)
i=1 xly,ES

-1 (N+1)N™1 Ni

-2 2 > > q(xmer | Xomi) 10g q(xmsnj | Xomi)

m=1  i=l  j=N(i-1)+1 Xps1,€S
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N+1
=3 3 S 6k(Xo1)q(l | k) log gl | k)

i=1 keSleS

n-1 (N+1)N™-! Ni
- > > 0k (Xmi)q(l | k) logg(l | k)

m=1 =1  j=N(i-1)+1keS leS

N+1 n-1 (N+1)N™! Ni
== > g k)logql | k)| D oeXo) + >, D 3 6(Xm,)
keSleS i=1 m=0 i=1 j:N(i—1)+1

=->>q(l | k)logq(l | k)[NS,-1(k, w) + 6¢(Xo1)]-
keSleS
(4.3)

Noticing that lim,, ., (|T™|/|T"Y|) = N, by (4.3) we have

n-1 (N+1)N™1  Ni

) 1 N+1
lim s ZHOQ(XU | Xo,1) + > > Hy (Xms1j | Ximi)
n |T0] |5 m=1 =1  j=N(i-1)+1

1
l;rqn|T(n)|ZZq(l | k)logq(l] k)[NSu-1(k,w) + 6k(Xoa)]
keSleS (4.4)

. 1
=2 2,4 1K) log g | lim a5y S (o)

keSleS

= -3 S w(k)q(l | k)logq(l | k).

keSles

Equation(4.2) follows from (4.4). I

Theorem 4.3. Let XT" = {X;,t € T™) be a Markov chains field defined on a Bethe tree Tg N,
HnQ1 (Xim+1,j | Xim,i) defined as above. Then

o Srelmsoixon] 55 3 et 1)
im—— Eq|Hy (X1, | Xon)| + Eq|Hp (Xms1,j | Ximi
n |T(n)| — 0 1 m=1 =1  j=N(i-1)+1 e 45)

= -3 q(k)q(l| k)log (I | k). po-as.
keSleS
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Proof. By the definition of H,%(Xmﬂ,]- | Xim,i) and properties of conditional expectation, we
have

N+1 o —1 (N+1)N™1 Ni 0
ZEQ [Ho (X1 | XO,l)] + Z Eg [Hm (Xoma1,j | Xm,i)]
i1 1 9=l j=N(-1) +1

:

3
I

= >, ~Eo{Eq[log q(X1 | Xo1) | Xoa]}

n-1 (N+1)N™1  Ni

+ Z Z Z - EQ{EQ [log UI(XerL]' | Xm,i) | Xm,i] }
m=l =1 j=N(-1)+1

N+1
Z - Eg[log q(X1,i | Xo1)]

i=1

n-1 (N+1)N™! Ni

+ D > —Eologq(Xmj | Xmi)]

m=1  i=1  j=N(i-1)+1

(4.6)
N+1
= _Z Z Z q(x0,1,x1,1) log q(x1,i | x01)
i=1 JCO,1€S xl,iES
n-1(N+1)N™!  Ni
-3 D, o> > q(xmisXme1,j) 108 G(Xmarj | Xmi)
m=1 i=1 j=N(i-1)+1 X, ;€S Xp41,;ES
N+1
=->. > > q(k)q(l| k)logq(l | k)
i=1 keSleS
n-1(N+1)N"™! Ni
SSOY Y S Sk K logqd | k)
m=1  i=1  j=N(i-1)+1keS IS
-> > q(k)q(t | k) logq(t | k) (|T] -1).
keSleS
Accordingly we have by (4.6)
1 N+1 0 n-1(N+1)N"-1 Ni o
lirrln—lT ay S Eo[HE(Xa: | Xon)] + > Y Eo[HI (K | X
i=1 m=1 i=1 j:N(i—1)+1
T —
-3 (] K logq@ | tim Lt (') @
keSleS | |
=->">'q(k)q(l | k)logq(l | k), pg-as.
keSleS

Therefore (4.5) also holds. [
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