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A recent refinement of the classical discrete Jensen inequality is given by Horvath and Pecaric.
In this paper, the corresponding weighted mixed symmetric means and Cauchy-type means are
defined. We investigate the exponential convexity of some functions, study mean value theorems,
and prove the monotonicity of the introduced means.

1. Introduction and Preliminary Results

A new refinement of the discrete Jensen inequality is given in [1]. The following notations
are also introduced in [1].

Let X be a set, P(X) its power set, and |X| denotes the number of elements in X. Let
u >1and v > 2 be fixed integers. Define the functions

So A1, u)” — P({1,..,u}"), 1.1)
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by
Sv,w(ilr e /iv) = (ill e /iIU*ll iw+1/ e /iv)/ 1 S w S U/

S’D(ill"'liv) = {Sv,w(ilz--./iv)}/

L (1.2)

Solit, ..., 1n), 1#¢,
To(I) = R (in,eiv)el

C-

g
I

¢, I=¢.
Further, introduce the function
i {1,...,u}’ —N, 1<i<uy, (1.3)
via
Ay,i(i1,...,1ip) := Number of occurrences of i in the sequence (iy, ..., iy). (1.4)
Foreach I € P({1,...,u}®), let
ar; = . Z Api(in, ..., 0), 1<i<u. (15)

(i1-wsi0) ET

It is easy to observe from the construction of the functions S,, Sy, T» and a,,; that they do
not depend essentially on u, so we can write for short S, for S%, and so on.

(Hp) The following considerations concern a subset I; of {1,..., n}k satisfying
A i > 1, 1 < i <mn, (16)
where n > 1 and k > 2 are fixed integers.
Next, we proceed inductively to define the sets I; C {1,..., n}l (k=1>1>1)by

I =Ti(I;)), k>1>2. (1.7)

By (1.6), I = {1,...,n} and this implies that ar, ; = 1 for 1 < i < n. From (1.6), again, we have
a],,i21 (k—lZlZl,lSlSTl)
For every k > 1> 2 and for any (ji,...,ji-1) € -1, let

Hll(jl""’]‘lfl) = {((ill"‘lil)/m) € Il X {1111} | Sl,m(ill-'-/il) = (].1/"'/].171)}' (18)
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Using these sets we define the functions t;,; : I} — N (k > > 1) inductively by

t[k,k(il,...,ik) =1, (i1, ...,ik) € I,

tlk,lfl (jl/ s /]‘l*l) = Z tIk,l(ill ey ll)

((i1sit) ) €Hy (oo )

(1.9)

Let J be an interval in R, let x := (x1,...,x,) € J" let p = (p1,...,pn) such that
pi>0(1<i<mn)and > ,pi=1andlet f: ] — Rbe a convex function. For any k > 1> 1,
set

[ U (o T Vs
Ay =ApIgxp) = > <Z P, >f<25=1 (pls/al”k)xl‘*>, (1.10)

. 1
(in ey \s=1 s Dlso1 Pi/ anig

and associate to each k —1 > [ > 1 the number

Ak = Ai(Ii; % p)

i ) I ) N s .
= _(kil) Z tIk,l(il,...,il)<Z P >f<zsz1(p15/a[k'zs)XIs>. (11D)
(i1

. 1
s=1 Fiis Zs:l Pi, /“Ik,is

We need the following hypotheses.
(Hz) Letx := (x1,...,x,) and p := (p1, ..., pn) be positive n-tuples such that 3.\, p; = 1.

(H3) Let J € R be an interval, let x := (x1,...,x,) € J", let p := (p1,...,pn) be a positive
n-tuples such that 3/, p; = 1, and let h, g : ] — R be continuous and strictly
monotone functions.

(Hy) Let ] C Rbe aninterval, let x := (xy,...,x,) € J",and let p := (p1, ..., p2) be positive
n-tuples such that Z;‘i pi = 1. Further, let f : ] — R be a convex function.

Assume (H;) and (H;). The power means of order r € R corresponding to il =
(i1,...,in) €1 (I=1,...,k) are given as

( 1 r r
Do (pi/ an i) x;,
1 7 r # 0/
Zs:l Pis/alk,is

M, (I, i) = (1.12)

1 , 1/ S (pi /g ic)
is / Xy is
<| |xf_ fk > , r=0.

s=1

We also use the means

M, = = (1.13)
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For y, n € R, we introduce the mixed symmetric means with positive weights as
follows:

( 1/n

k pi
S (S )enany| ., azo
M} (I k) = 4 L=t At o (1.14)
H (MY(Ikr ik»(Zﬁ:l Pis /alk/is)l 7=0,
ik=(i1 ..... ik)GIk

and, fork-1>1>1,

il=(iy,.i)ED s=1"tkts

1 1/n
(k—i)..l 2 tl"’l(il)<zf—15.>(Mr(lk,i’))n] » 170

M, (I, 1) = 3

[
e

r
=
I}
=
fory

i1, )€l

1/(k=1)..1
NNt (D (S pi /e i)
[T WM Iih)) , 1

(1.15)

We deduce the monotonicity of these means from the following refinement of the discrete
Jensen inequality in [1].
Theorem 1.1. Assume (Hy) and (Hy). Then,

f<ZPixi> S Apk SApka << Agp < Agr = Dopif (xi), (1.16)

i=1 i=1

where the numbers Ay (k > 1 > 1) are defined in (1.10) and (1.11). If f is a concave function, then
the inequalities in (1.16) are reversed.

Under the conditions of the previous theorem,

Y'(x,p, f) = Akm— A 20, k>I>m>1,

n (1.17)
YZ (X, p,f) = Ak,l - f<Zpl-x,-> > 0, k > 1 > 1.
i=1
Corollary 1.2. Assume (Hy) and (H,). Let 7, y € R such that 1 <y, then
My = My, (I, 1) > --- > My, (I, k) > M, (1.18)

My =M, (I, 1) <--- < My (Ix, k) < M. (1.19)
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Proof. Assume 177,y #0. To obtain (1.18), we can apply Theorem 1.1 to the function f(x) =
x/1 (x > 0) and the n-tuples (x;l,...,xZ) to get the analogue of (1.16) and to raise the
power 1/y. Equation (1.19) can be proved in a similar way by using f(x) = x"/7 (x > 0)
and (x],...,x),) and raising the power 1/7.

When 7 = 0 or y = 0, we get the required results by taking limit. O

Assume (H;) and (H3). Then, we define the quasiarithmetic means with respect to
(1.10) and (1.11) as follows:

ko4 k . . .
Mj, (I, k) = h! < > <Z&>h 0g™! <ZS‘1 P/ ans:) 8 C0) >> (1.20)

. k
(i1, mi)el \s=1 Hids st Pi/ A i

and, fork-1>1>1,

- 1 L pi, _ 21:1(]-’71' /e i) g(xi)
]\/I1 I ,l = h 1 - t il s h ° 1 S s ks s ]
ralleD) <(k SR lil:(nZ inel, Ik,l( ><§ “Ikris> g < S pi/an,

///// (1.21)

The monotonicity of these generalized means is obtained in the next corollary.

Corollary 1.3. Assume (H,) and (Hz). For a continuous and strictly monotone function q: | — R,
one defines

Mg =g <Zpiq(xi)>- (1.22)
i=1

Then,

My = M, (I, 1) 2 - 2 M, (I, k) > M, (1.23)

if either h o g1 is convex and h is increasing or h o g~ is concave and h is decreasing,

M, = M;h(Ik, 1)<---< M;h(Ik, k) < My, (1.24)

if either g o h™! is convex and g is decreasing or g o h™' is concave and g is increasing.

Proof. First, we can apply Theorem 1.1 to the function h o ¢! and the n-tuples
(g(x1),...,8(xn)), then we can apply h™! to the inequality coming from (1.16). This gives
(1.23). A similar argument gives (1.24): go h™!, (h(x1),...,h(x,)) and ¢! can be used. O

Throughout Examples 1.4-1.5, 1.9-1.12, which are based on examples in [1], the
conditions (Hy), in the mixed symmetric means, and (Hj), in the quasiarithmetic means, will
be assumed.
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Example 1.4. Suppose
L= {(il,iz) e(1,...,n)%| i1|i2}, (1.25)
where i1]i; means that i; divides i,. Since i|i (i =1,...,n), therefore (1.6) holds. We note that

ap,i = [?] +d@i), i=1,...,n, (1.26)

where [n/1] is the largest positive integer not greater than n/i, and d(i) means the number of
positive divisors of i. Then, (1.14) gives for 77, y € R

1/n
S Pls . n
I (I,2) [ - <2m> (MY(IZ'I"))] , 1#0,
27 =

i2=(i1,i2)€l

(1.27)
| | (M (12 iZ))Zizlpis/([n/i5]+d(is)) 040
Y ’ )
2:(i1,i2)612
while (1.20) gives

2 2 1 i
P - ) . _1<zs:1<pis/([n/151 +d<zs>>>g<xié>> .
h,g( #? <(11§€Iz<sz [n/is] +d(is) 8 Zi:l(pis/([n/isl +d(is)))

(1.28)

Assume (Hj) holds, and consider the set I in Example 1.4. Then, Theorem 1.1 implies
that

3 : b 52 (p/([n/is] + d(i)))xi, \ | &
f(épm) <2 <Z [n/ij%d(is)>f< 21(p g l~ l. x >S;Prf(xr),

(ir,i2)€l \s=1 Zszl (Pis/([n/ls] + d(ls)))
(1.29)

and thus

2 i 320 (pi/ ([n/is] + d(is))) xi,
Y3(X,P/f) = Z <Z n/lsp+d(ls)>f< 1(p i : )x > <Zpr r>

(ini2)€l \s=1 Zs 1(P1 /([n/is] + d(ls)))

: =3 _ S > (Zi_l(pis/[n/is]+d(is))xi5
YR S)= oS <i1%efz<§["/isl+d<is> N posmiigaiy )"
(1.30)
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Example 1.5. Let ¢; > 1 be an integer (i = 1,...,n), let k := >, ¢;, and also let I = P,f]""’c"
consist of all sequences (iy,...,ix) in which the number of occurrences of i € {1,...,n} is
¢i (i=1,...,n). Obviously, (1.6) holds, and, by simple calculations, we have

n !
C1ee-/Ci1,Ci = 1,Cis1 ove Cn k! :
i1 = LJPki1 1 ey = ————c, i=1...,n (1.31)
= 1l oyl
Moreover, t, k-1(i1,...,ik-1) = k for
(it ... ik) € PLyrervartatnj =, . (1.32)
Under the above settings, (1.15) can be written as
e 1/n

13 S pea = (pi/ci)x] >
) i~ Pi 7 O/ 0/
[k_lg(c P)( /e n#0, y#

n ep/r\ VD
M,lw(lk,k -1) =« H > 1Prxr (pl/c,)x y#0, 7=0
1 (pl/Cl) 7 7 7

i=1

Y Y ain \ 1/(k-1)
(1)) r=01-0
\ i=1 i=1

(1.33)

while (1.21) becomes

M} (T k —1) :h_l<%§(ci_r7i)h0g <Zf 1prg19ir)(pl/(z)/c1)g(x1 >> (1.34)

Assume (Hy) holds, and consider the set I in Example 1.5. Then, Theorem 1.1 yields

that
1 & r=1 PrXr — (Pi/ci)xi
A -1 = 7 5 1 4
kk-1= 3779 ;( P)f( 1- (pi/ <)
(1.35)
f(zprxr> < Ak k-1 < Zprf(xr)
r=1 r=1
This shows that
YS (x/ p/f) = Ak,k*l - f<zprxr> Z 0/
= (1.36)

Y(xp, f) = ipff(xr) - Agr-120.
r=1
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The following result is also given in [1].

Theorem 1.6. Assume (Hy) and (Hy), and suppose |Hy, (i, - - -, ji-1)| = Pi-a for any (ji, ..., ji-1) €
Iy (k>1>2). Then,

! I
n s=1 Pis Xi,
Akp = Ay = ] > <2Pis>f<zll—p>, k>1>1, (1.37)
(i1

,,,,, il)EII s=1 Zs:l pis

and thus

f<Zprxr> S Apk S Apap1 < < Ap <A = D pf(x). (1.38)

r=1 r=1

If f is a concave function then the inequalities (1.38) are reversed.

Under the conditions of the previous theorem, we have, from (1.38), that

Y (x,p,f) = Amm— A >0, k>I>m>1,

n (1.39)
Y (x,p, f) = Ay —f(Zprx,> >0, k>I>1.
r=1

Assume (H;) and (H,), and suppose |Hy,(ji, ..., ji-1)| = i1 for any (ji,...,ji-1) € Il (k >
1 > 2). In this case, the power means of order r € R corresponding to il == (iy,...,i) €I, (I =

1,...,k) has the form
c ! , 1/r

s= isxi
% , r # 0,

Zs:l Pi,

(1.40)
! 1/ 3 pis
<Hx,~spfs > , r=0.
s=1

Now, for y, 7 € Rand k > I > 1, we introduce the mixed symmetric means with positive
weights related to (1.37) as follows:

Mr(Il,il> = Mr(Ik,il> = 3

i .
1
_n .
11| 2 pi, ) (My(Li)"[ , n#0,
g 1

i1,..,i1)€l \ 5=

M; (1) = 4 (1.41)

- T n/l||
T o@in=r|

\ Li'=(i1i)el

=
I
o
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Corollary 1.7. Assume (Hy) and (Hy), and suppose |Hy, (j1, ..., ji-1)| = Pi=1 for any (ji, ..., ji-1) €
Iii(k>1>2). Let 1, y € R such that n < y. Then,

MY = M%,r](ll) 2 e 2 M%,rl(Ik) 2 Mrl/
(1.42)
My =M; (L) <--- <M (Ix) < M.

Proof. The proof comes from Corollary 1.2. O

Assume (H;) and (H3), and suppose |Hy, (ji,-..,ji-1)| = fi-1 for any (ji,...,ji-1) €
I (k > 1> 2). We define for k > [ > 1 the quasiarithmetic means with respect to (1.37) as

follows:
l > pig(xi)
M1y =ht (2 < p-s>hog-1<—s=”’ 24 > : (1.43)
h'g Z|Il|(i1,§)ell s=1 1 lezl pis

Corollary 1.8. Assume (Hy) and (Hz), and suppose |Hy, (j1,- .., ji-1)| = Pi=1 for any (ji, ..., ji-1) €
Iy (k>12>2). Then,

My =M (1) 2+ 2 Mj, (Ik) 2 My, (1.44)

where either h o g™' is convex and h is increasing or h o g™V is concave and h is decreasing,

M, = M;h(h) <. < M;h(lk) < My, (1.45)

where either g o h™! is convex and g is decreasing or g o h™! is concave and g is increasing.
Proof. The proof is a consequence of Corollary 1.3. O

Example 1.9. If we set
I = {(il,...,ik) ef(l,...,n)* i <~-<ik}, 1<k<n, (1.46)

thenaj,; =1 (i = 1,...,n), that is, (1.6) is satisfied for k = n. It comes easily that Tx(Ix) =
Ity (k=2,...,n), Ik =(}) (k=1,...,n),and foreach k =2,...,n

|H, G- jie1) | =n—=(k=1),  (ji,---jk-1) € it (1.47)
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In this case, (1.41) becomes forn >k > 1

- 1/n

k
M2 (L) =4 " (1.48)

1/ n-1
H (My(lk,ik))(zlglpis):l <k_1>, n=0,

| 1<ij<--<i<n

and (1.43) has the form

K koo
M; (L) = h1< 5 < pis>h og! <—ZS‘1 P8 (x’5)>>. (1.49)
’ (1)1 i \( S is=1Pic

Equation (1.48) is a weighted mixed symmetric mean and (1.49) is a generalized mean, as
given in [2]. Therefore, Corollaries 1.7 and 1.8 are more general than the Corollaries 1.2 and
1.3 given in [2].

Assume (Hj) holds, and consider the set I in Example 1.9. Then, Theorem 1.6 shows

1 . Zk= p.qx.s
Ak'k:T Z ( Pls>f<% 7 kzl/'-'/n/
-1 ) 1<ij<<ig<n \s=1 25:1 Pi,

that

/N

(1.50)
f<§1prxr> =Aun S Anan1 < <A = éprf(x,).
Thus, we have
Y (x,p, f)i=Amm—Ay >0, n>l>m>1 (1.51)
Example 1.10. If we set
I = {(il,...,ik) efl,...,nt*lip< < ik}, k>1, (1.52)

thenaj; >1 (i =1,...,n) and thus (1.6) is satisfied. It is easy to see that Ti(Ix) = Ix-1 (k =

2,..0, Ikl = (") (k=1,...),and foreach 1 = 2,...,k

|Hi, (i, jic) | =0 (jieerjica) € I (1.53)
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Under these settings (1.41) becomes

(T 1/71

1 k )
s () wen|w

< ) 1<ip<-<ig<n \s=1

M2 (I)=4 - ! (1.54)

' 1/<n+k—1>

I1 (My(Ik,ik))(Zg”’*’] o n=0,

| 1<iy <-<ige<n

~

Ve

and (1.43) has the form

M%lrg(lk) :h_1<(n+1 ) > <szs>h°g (Zszngp(ng)>> (1.55)
1<i1<-<ig<n \ s= s=1 Pis

Equation (1.54) represents weighted mixed symmetric means, and (1.55) defines generalized
means, as given in [2]. Therefore, Corollaries 1.7 and 1.8 are more general than the
Corollaries 1.9 and 1.10 given in [2].

Assume (Hy) holds, and consider the set I in Example 1.10. Then, it follows from
Theorem 1.6 that

f<ZPrxr> <o KA << A = Zprf(xr)/ (1.56)
r=1 r=1
where
s=1 Pis Xi,
Agg = < plg> <1—> k>1. (1.57)
(n+k ! ) 1<11<z;1k<n Z Zs 1 Pis
This yields that

YO(x,p, f) = Akk— Ay 20, I>k>1,

n (1.58)
YU (x,p, f) = Ak —f<ZPrxr> >0, k>1
r=1
Example 1.11. We set
I:=1{1,...,n)%, k>1. (1.59)

Then, ar,; > 1 (i = 1,...,n), hence (1.6) holds. It is not hard to see that T (Ix) = Ix-1 (k =
2,..), [Ixl=n* (k=1,...),and foreach I = 2,.. ., k,

|Hy G --ojie)| =7 Giuoeeesfin) € I (1.60)
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Therefore, under these settings, for k > 1, (1.41) leads to

k n
: Z <Zpis>(MY(Ik,ik))’7] , n#0,

k—
_k” ! ik=(i),...ir)elr \s=1
M (Ix) = S (1.61)

1/kn*!
ko
[T M ik>>@5—”’*s>] ;o

U Li*=(i-ik) €L

-

1l
=

and (1.43) gives

1 k Zk_ pi,8(xi,)
M2 _(Iy) = ™! < m)h 0g”! <s_1— : (1.62)
g kn* ik:(z&;ik)elk s=1 Zlgﬂ Pis

respectively.

Assume (Hy) holds, and consider the set I; in Example 1.11. Then, Theorem 1.6 implies
that

f<ZPrxr> << App << A= D peflxg), (1.63)
r=1 r=1

where

1 < 51 pixi,
Ak = > ( Pis>f<zkl—p>, k>1. (1.64)
1

(i1,sik)E€l \ 5= 2is-1Pi,

Therefore, we have

le(X,Prf) =Akx— A >0, I>k>1,

n (1.65)
YB(x,p, f) = Ak —f<Zprxr> >0, k>1
r=1

Example 1.12. Let 1 < k < nand let I consist of all sequences (iy, ..., ix) of k distinct numbers
from {1,...,n}. Then, a;,; > 1 (i = 1,...,n), hence (1.6) holds. It is immediate that Ty (Ix) =
Iiei (k=2,...), Ikl =n(n-1)---(n-k+1) (k=1,...,n),and forevery k =2,...,n,

|H]k (jl/---/]'kfl)l = (n—k+ 1)k, (jl/"'/jkfl) S Ik—l- (166)
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Therefore under these settings, for k = 1,...,n, (1.41) gives

( r

1/
n k e
kn(n—l)"'(n—k+1)ik=(z < 1Pis>(My(Ikr1k))] » n#0,

i1,...0k)Elx \5=

M (Ix) = S

k .
[T (M (i)

| i*=(i1,....0K) €Lk

, n=0,

- ] n/kn(n-1)-(n-k+1)

(1.67)
and (1.43) has the form

K S pigx,)
M2 (L) = bt z o Jhogt( Seie TRl ) )
ng(Tk) <kn(n—1)~-(n—k+1)ik_(i1§ik)elk<§1ps> °8 < S5 b
(1.68)

respectively.

Assume (Hj) holds, and consider the set I in Example 1.12. Then, Theorem 1.6 yields
that

r=1

f<zprxr> < An,n <--- < Ak,k <---< Al,l = Zprf(xr), (169)

where fork =1,...,n,

k k
n Zs:lpisxis
Apx = i Sl ) 1.70
kn(n—1)-~<n—k+1>(ﬁ,_§)dk<s_1”’>f < 2p> (70

Therefore, we have

Y4(X,p, f) = Amm— A 20, n>l>m>1,

n (1.71)
Yls(xlprf) = Al,l _f<zprxr> 2 0/ n 2 l 2 1
r=1

2. Main Results

We have seen that
Yi(x,p f) >0, i=1,...,15 (2.1)

From now on, (H;) and (Hi) are assumed if we consider Yi(x,p, f) (i = 1,2), further, the
hypothesis |Hy, (ji, . .., ji-1)| = pi-1 for any (ji, ..., ji-1) € I1-1 (k > 1> 2) is also assumed if we
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consider Yi(x,p, f) (i = 7,8). The numbers Yi(x,p, f) (i =3,...,6,9,...,15) are generated by
concrete examples, and (Hy) is assumed.

We need the following subclass of convex functions (see [3]).
Definition 2.1. A function f : (a,b) — R is exponentially convex if it is continuous and

& f (xi+x7) >0, (2.2)

ij=1

for all n € N and all choices ¢; € Rand x; + xj € (a,b) (1<1i,j <n).
We quote here useful propositions from [3].

Proposition 2.2. Let f : (a,b) — R be a function. Then, the following statements are equivalent

(i) f is exponentially convex.

(ii) f is continuous and

Saif (xi ; ad > >0, 2.3)

ij=1

for every & € R and every x; € (a,b) (1 <i<n).

Proposition 2.3. If f : (a,b) — (0, o) is an exponentially convex function, then f is log-convex
which means that for every x, y € (a,b) and all A € [0,1]

FOx+1-0y) < f@)'fy) ™ (2.4)

First, we introduce a special class of functions.

(Hs) Let {fs : (c,d)(CR) — R |s € (a,b) C R} be a set of twice differentiable convex
functions such that the function s — f(x)s € (a,b) is exponentially convex for
every fixed x € (¢, d).

As examples, consider two classes of functions ¢ : (0,0) — R defined by

xS
s(s—1)7 s70,
Ps (x) = —10g X, s=0, (2.5)
xlogx s=1,

and ¢s : R — [0, 00) defined by

Ps(x) = (2.6)

It is easy to see that the sets of functions {¢s | s € R} and {¢s | s € R} satisfy (Hs).
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Assume (Hs). If f is replaced by f, in (2.1), we obtain

Y. :=Y!(x,p, fs) 20, se€(ab) i=1,...,15. (2.7)
Especially,

Y=Y (x,p,¢s) >0, seR, i=1,...,15. (2.8)

In this paper we prove the exponential convexity of the functions s — ?’; (s € (a,b)), and we
give mean value theorems for Y(x,p, f) (i = 1,...,15). We also define the respective means
of Cauchy type and study their monotonicity. The results for Y' (i = 3, ..., 6) are special cases
of the results for Y’ (i = 1,2), and the results for Y’ (i = 9,...,15) are special cases of results
for Y' (i = 7,8). Especially, the results for Y (i =9,10,11) are also given in [2].

Theorem 2.4. Assume (Hs), LGd suppose that the functions s — ?g(s € (a, b)) are continuous. The
following statements hold for Y. (i=1,...,15).

(a) Foreveryq € Nand sy,...,s4 € (a,b), the matrix [Y:

q . .. . . .
(s1+5m) /o] — positive semidefinite.

Particularly,

~. k
det [Yi, ..., /2]z,m:1 >0, fork=1,2,...,q. (2.9)

(b) The function s — Yis (s € (a,b)) is exponentially convex.

Proof. Fix 1 <i < 15.

(a) Letu; € R (I = 1,...,9), and define the functions p : (0,00) — R by pi(x) :=
Z;fmzl Uil fs,,(x) for k = 1,...,q, where s;,, = (51 + 5,)/2 (1 < I,m < g). Then
ur (k=1,...,q) is a convex function since

k
pp(x) = D wuf" ()20, xe(cd). (2.10)

1,m=1

By taking f = py in (2.1), we have

k
> wu Y, >0, k=1,...,q. (2.11)

I,m=1

This means that the matrix [Y’(
valid.

(b) It is assumed that the function s +— Y’; (s € (a,b)) is continuous. By using

Poposition 2.2 and (a), we get the exponential convexity of the function s — Y (s €
(a,b)). O

qa . . S . .
sr+sm) /z]l,m:1 is positive semidefinite, that is, (2.9) is



16 Journal of Inequalities and Applications

Since the functions s — Y. (s € R) are continuous (i = 1,...,15), we have the
following.

Corollary 2.5. The function s — Y. (s € R, i = 1,...,15) are exponentially convex. This remains
valid if we replace (s by ¢ in (2.8).

3. Cauchy Means
In this section, first, we are interested in mean value theorems.
Theorem 3.1. Assume f € C*[a,b]and Y'(x,p; x*) #0 (i =1,...,15). Then, there exists ¢; € [a, b]
such that
i 1 " i 2 .
Y(xp f) =5 @Y (xpx"), i=1..,15 (3.1)

Theorem 3.2. Assume f, g € C?[a,b]. Then, there exists &; € [a, b] such that

Y(xp f) f'&)

. = , i=1,...,15, 3.2
Yi(x,p,g) &%) 3-2)

provided that the denominators are nonzero.

The idea of the proofs of Theorems 3.1 and 3.2 is the same as the proofs of Theorems 2.3
and 2.4 in [2].

Corollary 3.3. Let f, g : [a,b](C (0,0)) — R, f(x) = x” and g(x) = x9. Then, for distinct real
numbers p and q, different from 0 and 1, there exists ¢; € [a, b] such that

g2 AV Y0RS) oy g (33)

“p(p-1)Yi(xpg)’

Proof. Theorem 3.2 can be applied. O
Remark 3.4. Suppose the conditions of Corollary 3.3 are satisfied.

(a) Since the function ¢ — 77 (¢ € (0,0)), p#4 is invertible, then we get, from (3.3),
thatfori=1,...,15

aa-1 Yxp H\ " a4
‘= (P(p—l)Yi(x,p,g)> = oy

(b) By choosing a := minj<j<, x; and b := maXj<i<, X;, we can see that the expression
between a and b in (3.4) defines a mean.
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Corollary 3.5. Assume (H;) and (H,), and suppose x; € [a,b] C (0,00) (1 <i < n).In (3.6), it is
also supposed that |Hy, (j1,. .., ji-1)| = Pi= for any (ji, ..., ji-1) € Li-i(k > 1 > 2). Then, for distinct
real numbers p, q, and r, all are different from 0 and 1, there exists ¢1,¢& € [a, b], such that

pq_9(q-1) <Mrl’«’(1"’l - 1)>p - <M117,r(1krl)>p
TP ) (M (1= 1) - (M, (D)

vaalg—r) (M3 00) = (M3, ()’
2 p(p-r) (M2, ()T - (M2,(1)7

(3.5)

(3.6)

Proof. We can apply Theorem 3.2 to the functions f, ¢ : [a,b] — R, f(x) = xP/", and g(x) =
x7/7, and the n-tuples (x7,...,x%). O
Remark 3.6. Suppose the conditions of Corollary 3.5 are satisfied.
(a) Since the function ¢ — ¢P79 (¢ € (0,00)) is invertible, then we get, from (3.5) and
(3.6) that

q(q-r) <M;17,r(1k11 - 1)>p - <M;J,r(1k, l))P 1/(p-9)

plp-7) (Ml (k1-1))" - (M}, (k1))

(3.7)
1/(p—
q(q-r) <M§,r(fzf1)>p - <M§,r (Iz)>” /(p=a)

=\ PN M U)) - (M2, (D)

(b) As in Remark 3.4 (b), the expressions in (3.7) define means.

By Remark 3.4 (b), we can define Cauchy means for p, g € R as follows:

i 1/(p-9)

i Yl 74 4

M, = <—.(x P (P")> , p#q i=1,...,15. (3.8)
Y’(x,p, ‘Pq)

Moreover, we have continuous extensions of these means in other cases. By taking the limit,
we have

1-2 Y! ,P;
q (XP‘Pq‘P0)>l 20,1,
q(g-1)  Yi(xp;pg)

_ Yi(x,piogr)
2Yi(x,pig1) )’

Y (%, p; 93) >

- 2Yi(x, p; o)

M;/q = exp<
M, = exp <—1 (3.9)

MS,O = exp <1
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Now, we deduce the monotonicity of these means in the form of Dresher’s inequality
as follows.

Theorem 3.7. Let p,q,u,v € R such that p < v, q <u. Then

M < M, i=1,..15 (3.10)

Proof. Fix 1 < i < 15. Corollary 2.5 shows that the function p — Y;; (p € R) is
exponentially convex, and hence, by Proposition 2.3, it is log-convex. Therefore, the function
p— log(Y;) (p € R) is convex, which implies (see [4]) that

IOg Y;g - lOg Y; < log Y‘lv — 10g YL

< (3.11)

p—q v-u
This gives (3.10) if p # g and v # u. The other cases come from this by taking limit. O

By Remark 3.6 (b), we can define Cauchy means in the following form:
i 1/(p-9)
Y, i p/r)
M= , ,i=1,2, 3.12

par <Yl(x’,p;(Pq/r) p7a. G12)

where X" = (x{,..., x7,). By taking the limit, we have

(r-29) Y'(X,p; ‘/’q/r‘PO))
M =exp -— , q(qg-r7)#0, r#0,
v <q(q —r)  rY(X,p;ggr)

M, = 1— Y pigh) r#0
00 r o 2rYi(x, prgo) '

M =exp L Y Opigeg) (3.13)
i o 2rYi(X, p;¢r1)

exp( 2+ Yl(logxrp'x‘i’q) 40
‘1‘70_ p q Y’(logx P'd)q) q 4

M =ex w
000 = P\ 3i(log x, p; o) )’

where logx = (log x1,...,log x,).
Now, we give the monotonicity of these new means.

Theorem 3.8. Let p,q,u,v € Rsuch that p < v, q <u. Then,

M < M

pqr— v/

i=1,2. (3.14)
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Proof. Suppose i = 1, 2 is fixed. The function p — Y;; (p € R) is exponentially convex, and

hence, by Proposition 2.3, it is log-convex. Therefore, the function p — log(Y]ig) (p € R)is
convex, which implies (as in the proof of Theorem 3.7) that

i\ 1/ (p-9) o\ 1/(v-u)

Y i

r < (L . (3.15)
Y5 Y,

Ifr#0,setx;:=x], p:=p/r, q:=q/r, u:=u/r, v:=v/rin (3.15) to obtain (3.14).
For r = 0, we get the required result by limit. O
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