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Let us introduce the Sobolev-type inner product (f,g) = (f,g); + A(f',&'),, where A > 0 and

(fr8h = [ f08)1 -2 1+ dx, (f,8), = [1 fC(1 =01+ /(T -
&INE D dx + M Zf\zjg My f D (&) g (&), with a, p > —1,]&| > 1, and My; > 0, for all k,i. A
Mehler-Heine-type formula and the inner strong asymptotics on (-1,1) as well as some estimates
for the polynomials orthogonal with respect to the above Sobolev inner product are obtained.
Necessary conditions for the norm convergence of Fourier expansions in terms of such Sobolev
orthogonal polynomials are given.

1. Introduction

For a nontrivial probability measure o, supported on [-1,1], we define the linear space
LP(do) of all measurable functions f on [-1,1] such that || f||, do) < 9, Where

1 1/p
(f |f<x>|"do<x>> ,ifl<p<on,
-1

ess sup| f(x)

—l<x<1

||f||Ln(dg) = (1.1)

, if p=co.

Let us now introduce the Sobolev-type spaces (see, e.g., [1, Chapter 3] in a more general
framework)
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WP _ {f : ||f||€v/v,p - “f”Zv(dua,ﬁ) +)L||f/||ip(d11a,ﬂ)

M Ny
+ZZMk,i|f(i+l) (r;k)|p < oo}, 1<p<oo, (1.2)

k=1i=0

WA = L0 fllyne = M@y M i) | < 01

where A > 0 and dpap(x) = (1 -x)"(1+ x)Pdx, Avap(x) = ((1- x)“ 1+ x)ﬂ+1)/(]_[kM=1|x -
&N dx with a, p > -1, 1&| > 1, and Mg, > 0, for all k,i. We denote by N the vector of
dimension M with components (N7, ..., Nu).

Let f and g in W/%2, We can introduce the Sobolev-type inner product

(fr8)={(f,8)+Mf.&)y (1.3)
where A > 0 and
1
(Frgh = [ F@ga-x"sxld, (14)
1 _aa+l p+1 M Ni ) .
()= [ f@se TP O de e S S MO @os @), 1)
-1 [Tz lx = &kl k=1i=0

where L > 0, a, p > -1, [&| > 1, and My; > 0, for all k,i. In the sequel, we will assume that
¢k < =1, and, therefore, |[x —&x| = x — ¢ forallk =1,2,...,M,and -1 < x < 1.

Using the standard Gram-Schmidt method for the canonical basis (x"),., in the linear
space of polynomials, we obtain a unique sequence (up to a constant factor) of polynomials
(Q,(f’ﬂ ) )ns0 Orthogonal with respect to the above inner product. In the sequel, they will called
Jacobi-Sobolev orthogonal polynomials.

For M =1 and N; = 0, the pair of measures (djap, dvap + M1,00;) is a 0-coherent pair,
studied in [2-4] (see also [5] in a more general framework). In [6], the authors established
the distribution of the zeros of the polynomials orthogonal with respect to the above Sobolev
inner product (1.3) when M = 1 and N; = 0. Some results concerning interlacing and
separation properties of their zeros with respect to the zeros of Jacobi polynomials are also
obtained assuming we are working in a coherent case. More recently, for a noncoherent pair
of measures, when a = f, M =2, Ny = Ny = 0, and ¢ = —¢, the distribution of zeros of
the corresponding Sobolev orthogonal polynomials as well as some asymptotic results (more
precisely, inner strong asympttics, outer relative asymptotics, and Mehler-Heine formulas)
for these sequences of polynomials are deduced in [7-9]. In the Jacobi case, some analog
problems have been considered in [10, 11].

The aim of this contribution is to study necessary conditions for W-?-norm
convergence of the Fourier expansion in terms of Jacobi-Sobolev orthogonal polynomials.
In order to prove it, we need some estimates and strong asymptotics for the polynomials

Q,(f’ﬂ’ﬂ) (x) as well as for their derivatives Q’,(f’ﬂ’ﬂ)(x). A Mehler-Heine-type formula, inner
strong asymptotics, upper bounds in (-1, 1), and W”'? norms of Jacobi-Sobolev orthonormal
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polynomials are obtained. Thus, we extend the results of [10] for generalized N-coherent
pairs of measures.

The structure of the manuscript is as follows. In Section 2, we give some basic
properties of Jacobi polynomials that we will use in the sequel. In Section 3, an algebraic
relation between the sequences of polynomials (Q,ﬁa'ﬁ ’Jv))n20 and Jacobi orthonormal
polynomials is stated. It involves N + 1 (where N = Zﬁil(N k + 1)) consecutive terms of
such sequences in such a way that we obtain a generalization of the relations satisfied in
the coherent case. Upper bounds for the polynomials Qﬁla’ﬂ A (x) and their derivatives in
[-1,1] are deduced. The inner strong asymptotics as well as a Mehler-Heine-type formula
are obtained. Finally, the asymptotic behavior of these polynomials with respect to the
WP norm is studied. In Section 4, necessary conditions for the convergence of the Fourier
expansions in terms of the sequence of Jacobi-Sobolev orthogonal polynomials are presented.

Throughout this paper, positive constants are denoted by ¢, ¢, ... and they may vary
at every occurrence. The notation u, = v, means that the sequence u, /v, converges to 1 and
notation u, ~ v, means ciu, < v, < cou, for sufficiently large n.

2. Preliminaries
For a, p > -1, we denote by (p,(f’ﬂ ))n20 the sequence of Jacobi polynomials which are
orthonormal on [-1, 1] with respect to the inner product

1
(f &)= f_l f8dpap. (2.1)

We will denote by k(sr,) the leading coefficient of any polynomial 7, (x), and 7,(x) =
(k(a,)) Lo, (x). Now, we list some properties of the Jacobi orthonormal polynomials which
we will use in the sequel.

Proposition 2.1. (a) The leading coefficient ofp,(f’ﬂ) is (see [12, formulas (4.3.4) and (4.21.6)])

k ap\ _ 1 /2n+a+p 2a+ﬁ+11—‘(71+06+1)1—'(n+ﬂ+1) -1/2 .
<Pn>_2n n X Cn+a+p+D)I(n+DI(n+a+p+1) . (2.2)

(b) The derivatives of Jacobi polynomials satisfy (see [12, formula (4.21.7)])

d (ap (a+1,p+1)
P (x) = \/n(n+a+ﬁ+l)pn71 (x). (2.3)
(c) For a, p>-1/2, and g = max{a, p}
(a,p) _ |, (@p) ~ . (g+1)/2
max |pi ()| = |pi (@)] = en@72, (24)

wherea=1ifq=aand a =-1if q = p (see [12, Theorem 7.32.1]).
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(d) For the polynomials pila’ﬂ), we get the following estimate (see [12, formula (7.32.6)], [13,
Theorem 1]):

|pff’ﬂ)(x)| < o(1 - x) ™24 4 x) P4 (2.5)

where x € (-1,1) and a, p > =1/2.
(e) Mehler-Heine formula (see [12, Theorem 8.1.1])

lim n~*/2p P <cos Z) =@ P2y (2, (2.6)

n—oo

where a, p are real numbers and J(z) is the Bessel function of the first kind. This formula
holds locally uniformly, that is, on every compact subset of the complex plane.

(f) Inner strong asymptotics. For p,(f’ﬂ) (x), when x € [-1+€,1-€]and 0 < e < 1, we get (see
[12, Theorem 8.21.8])

p}(ia,ﬂ)(x) _ rZ'ﬂ(l — %)™V 4 ) P2 cos (KO + ) + o(,fl), (2.7)

where x =cosO, k=n+(a+p+1)/2,y =—(a+(1/2))x/2, and r,f’ﬂ = (2/71’)1/2.
(g) Fora, p > -1, 7 = max{a, B}, and 1 < p < oo (see [12, p.391. Exercise 91], [14, (2.2)],

[15, Theorem 2]),
c, if2T >pTr-2+p/2,
IIP,(f'ﬂ)IIL,,(dWﬂ) ~ 4 (log n)l/p, if2r=pr-2+p/2, (2.8)

n™1/2=Cr2)/p - if 21 < pT -2+ p/2.

Let {sn(x)};2, be the sequence of orthonormal polynomials with respect to the inner
product (1.5), and let

N
TN (x) = 1+ > biTi(x) (2.9)
k=1

be the N-th polynomial orthonormal with respect to dx/x+v/1 - x2[ o2, (x — &)V, where
N = 3M (Ng +1) and Ti(x) = cos k8, x = cos 0, are the Tchebychev polynomials of the first
kind.

Proposition 2.2 ([16, Lemma 2.1]). For n > N, there exist constants A,,; such that

N
sn(x) = 3 AP (x) (2.10)
i=0
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and limy, _, , Ay i = Ai, where

! A= , 1<i<N. (2.11)

S V2NBy T /2Nby

Ao
Next, we will consider the polynomials
S @p)
Upa1(x) = Zan,ipn;i+1 (x), (2.12)
i=0
where a,; = Ayin/(n+ 1) (n+a+p+2)/(n—-i+1)(n—i+a+p+2),0<i<N.Notice that

N
Nayi= () (2.13)
=0 V2Nby

Taking into account that the zeros of the polynomial Iy (x) orthogonal with respect to
dx/mv/1 - le_[ivil(x - &)V on the interval [-1,1] are real, simple, and located in (-1,1),
we have TTn/(1) #0 #ITn(~1). Therefore, XY a,; #0 for n large enough.

On the other hand, using (b) in Proposition 2.1, we have

V1 (1) =\t 1) (n+ a+ f+2)sa(x). (2.14)

From Proposition 2.1 and (2.12), we get the following.

Proposition 2.3. (a) For a, f > -1/2, and q = max{a, f},

max [v,(x)| = [on(a)] = cn@D2, (2.15)

wherea=1ifg=aanda=-1ifq=p.
(b) When x € (-1,1) and a, p > —1/2, we get the following estimate for the polynomials v,:

[0 ()| < (1 = x)™¥/27 /41 4 x)P/2VA4, (2.16)
(c) Mehler-Heine type formula. We get

TIn(1
;}ijrgon’“’l/zvn (cos z> =2@=p)/2 \/ZNiN(;z“]u(z), (2.17)
N

where a, B are real numbers, and J,(z) is the Bessel function of the first kind. This formula holds
locally uniformly, that is, on every compact subset of the complex plane.
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(d) Inner strong asymptotics. When x € [-1+¢,1-¢] and 0 < € <1, we get

N
va(x) = (1 - x)™ /> V41 4 x)’ﬂ/z’l/‘lZan_llirZ’E cos((k—-i)0+y) + O<n_1>, (2.18)
i=0

where x = cos0, k =n+ (a+p+1)/2,y=—(a+ (1/2))w/2, and ry? = 2/x)"/%
(e) Fora, p>-1,1<p<o0,and1<j<n,

cllp; N,

(a,p)
[ sdmﬂnmwm. (2.19)

3. Asymptotics of Jacobi-Sobolev Orthogonal Polynomials

Let {Qn“ﬂﬂ)(x)} ~o denote the sequence of polynomials orthogonal with respect to (1.3)
normalized by the condition that they have the same leading coefficient as v, (x), that is,

K(Q ™) = aya ok (p).
The following relation between Q< P and v, (x) holds.

Proposition 3.1. Fora, 3> -1,
vy (x) = (uﬂ/v)(x) + Za “ﬂﬂ) (x), n>1, (3.1)

where, for 1 <k <N,

N (ap) ~(ap,N)
Zl ka”11<pn1 ’Qn—k >1

, )
QA"

a® =
nk

(3.2)

Moreover, |a1(:i)N| =0(1/n?) and |a1(:i)k| =0(1/n) for1 <k < N.

Proof. Expanding v,(x) with respect to the basis { ( A /v)}

polynomials with degree at most n, we get

ke Of the linear space of

BN BN
CPP () 4 30 QPN () (3.3)

k=1

U (x) =

where, fork=1,...,n,

(@ N)
O < O Qi > (3.4)

n-k <Q(ﬂﬂﬂ’) Qvfﬂﬂ’)>




Journal of Inequalities and Applications 7

Fork=1,...,n,
<vn, Q;(ﬁf'ﬂ)> - <v"’ Qi‘i’flﬂ)> * ’\\/ n(n+a+p+ 1)<Sn 1 <Q<aﬂm> >2
- [[ o0 oo 5
N
= Zan 11f Pnaf)(x)Qmﬂjv)(x)d#a,p(x).
i=0

Therefore,

<v Q“‘““>> 0, k>N,

n-k
(3.6)
(0, QU7 = Zan y f PP (0QUL” (Wdpap(x), 1<k<N.
As a conclusion,
a” =0, k>N, (3.7)
(n) Zf\jkan 11<Pn f})/Q<aﬂjv)>

= o 1 1<k<N. (3.8)

QA [y

Using the extremal property for monic orthogonal polynomials with respect to the corre-
sponding norm (see [12, Theorem 3.1.2]),

~(a, 2 . .
||P;(1 ﬂ)“Lz(dWﬂ) = mf{ ||P||iz(dﬂn,ﬁ) cdegp = n,pmomc}, (3.9)

we get

= (apn) 2

Aap ) 2 A .
10l 2 o 12

”Lz (d,uawl ﬂ+1)

(3.10)

/\le ~( :x+1 [5+1)
P, ;2

Hk L (1= gt

(d”lx+l,ﬁ+1 ) :
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Thus,
19 e 2 en (k(Q) ) (k(pi3 ) 2 en 10

Finally, from (3.8), we find that

- 1
|“§Z)N| _ |@n-1,N An-N-1,0] _ O( >, (3.12)

! n?
QLN e

and from Schwarz inequality,

|< ,(;z;ﬁ),Q(uﬂJv)>| \/<Q<ap/v> Q' ﬂJU)> QP (3.13)

Thus,

()
n-k

a

=o<rll), 1<k<N. (3.14)
N

Using (3.1) in a recursive way, we get the representation of the polynomial Q( P in
terms of the elements of the sequence {v,(x)},,. More precisely we get the following.

Proposition 3.2. For a, > -1, it holds that

, N
QU (x) = 360, (x), (3.15)
m=0
where b(o) =1, b(l) n")k, and b(m) b(m b fl" km:jl + b](;fl 11), k=1,2,...,.N,m=2,3,...,n

Moreover, [b")| = O(1/n) for m=1,2,...,N =1, and |b{"| = O(l/nz)for m=N,N+1,...,n

(0) 1) 1 1 1
Proof. Let denote by b, =1, b, a” , and b<m) bi":l Yot bk’fl Y k=12,...,N,
m=2,3,...,n. First, we prove that
BN , N
Q;(:xﬂ )(.X') — Zb(m)vn m(x) + Zb(l+1) na]f,l )(.X'), (316)

m=0

wherel =0,1,..., and, by convention, QS‘;’ﬂ ’/v)(x) =0,s=1,2,....
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We will prove (3.16) by induction. When [ = 0, it is a trivial result. On the other hand,
applying (3.1) in a recursive way, we get

QP (x) = v (x) - Za (@B ()

N
on -l ot - St 0] - St o
k=2
(3.17)

N
(m) (1 (n-1) (ﬂl B, N) a,p, )
bl,n Un-m (X) — bl,n X k- 1 n-k-1 (x) + Zbk+1n n-k—-1 (x)

k=1

1l
-

—

N
2) ~(a,p,N) (a0, B, N)
= Zbiﬁ)vmm (x) + Zbl((J)’lQnDii—l (x) - N+1 nQnDi][iI—l (x).
o)

m=0

Taking into account (3.7), we have bj(\lj:l .

(3.16) holds for I > 1. Again, from (3.1),

= 0. Thus, (3.16) follows for [ = 1. Now, we assume

N
l+1) (a,p, N) (l+1) (a,B,0) l+1) (a0, B, N)
Zb Qo () =b, Q1 )+Zb Q.0 (%)
k=1

N
(1+1) (n=1-1) ~(a,, /) (+1) (pA)
=b, I:U" 1-1(x) = Z“n—k—l—l ki1 (X )] + Zbk+1n ki1 (X)
k=1

(1+1 142) ~(a,B,N) I+1 (ar,8,N)
= b0, 11 (x) +Zb‘* QU () - b QU (%)

(3.18)

Now, we prove that b(m) = 0 for k > N. For I = 0, this follows from (3.7). Since b,(i;l) =

bilzq ;n kl ) + b,(i)rl and a,_ (n— l) =0, for k > N the statement follows by induction. Thus, (3.16)

holds for I + 1. Now takmg l =nin (3.16), we get (3.15).
Finally, we prove that |b](<l,)n| =0(/n) forl=1,2,...,N -1, and |b](<l,)n| = O(1/n?) for
I=N,N +1,...,n. First, the following inequality holds:

( 1
O( ) if1<k<N-1,
n
|bk,n O<;>, if N-1+1<k<N, (3.19)
nn-1+1)
0, if k>N,
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I =1,2,...,N. Indeed, for | = 1, (3.19) follows from Proposition 3.1 and (3.7). Now, we
assume that the relation (3.19) holds for [ > 1. Thus, for 1 <k < N -1 -1,

O|_~f1 O |_~f1 (D) | _ 1
o] = O<n>' o] = O(n>f @] = O(n - ,), (3.20)
for N-I<k<N-1
1 1 _ 1
o _ o | _ () | _
o _O<n>' [p _O<n(n—l+1)>' @k O(n_l), (3.21)
fork=N
1 1 -1 1
b | = o( > b =0, D=0 , 3.22
| 1n n | k+1,n an—l—k (11 _ l)z ( )
and for k > N
|b’(<li1,n =0, “::i)k =0. (3.23)
Therefore, from
by, = bal )+ bl (3.24)

the relation (3.19) holds for I + 1. As consequence, |b1(<l,)n| =0(1/n)forl=1,2,...,N -1and
1<k<N.
Now, we will prove by induction that |b,(<l/)n| =0(1/n*) forl>Nand1<k<N.

The case | = N follows from (3.19). We assume that |b,((l)n| = O(1/n?) for 1 > N and
1<k<N.For1<k<N-1,

1 1 _ 1
(O} . 0} (n=1) | _
|b1,n _O<n2>/ |bk+1n O<n2>, anflfk —O(m), (325)
and fork = N
0Ol _ 1 o |_ (1) | _ 1
|b1,n = O<n2>/ |bk+1,n = 0, anril—k = O(m) (326)

Therefore, from

b(l+1) _ _b(l) a(nfl) n b(l)
kn

1n""n-k-1 k+1,n’ (3.27)

the statement holds for [ + 1. [

Next, we will give some properties of the Jacobi-Sobolev orthogonal polynomials.
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Proposition 3.3. (a) For the polynomials Qila’ﬂ ) we get

Q¥ ()| < e(1 ~x) 241 4+ )P, (3:28)

where x € (-1,1), and a, p > -1/2.

(b) For the polynomials Q’,(f’ﬂ ) we get

|Q’f1a'ﬂ,—/v) (x)| < C1’l(1 _ x)—u/2—3/4(1 + x)—ﬂ/2—3/4, (329)

where x € (-1,1), and a, p > -1.

Proof. (a) Using Proposition 3.2, we have

@p ) 1 N-1 1 n
0] <1+ 0( ) Slownl +0( ) Slowntol (330

Therefore, from Proposition 2.3(b), the statement follows immediately.
On the other hand, taking into account Proposition 2.1(d), Proposition 2.2, (2.14), and
(3.15), the proof of (b) can be done in a similar way. I
Now, we show that, like for the classical Jacobi polynomials, the polynomial Q,(f’ﬂ ) (x)
attains its maximum in [-1, 1] at the end-points. More precisely,

Proposition 3.4. (a) For a, p > —1/2, and q = max{a, B}

max fo’ﬁ’ﬂ)(x)| = ,ia'ﬁ’jv)(a)| ~nla+)/2, (3.31)
-l<x<1
wherea=1ifg=aanda=-1ifq=p.
(b) For a, p > -1 and q = max{a, #}
max | Q7 ()| = QP (k)| ~ n+02, (3.32)
-1<x<1

whereb=1ifg=aandb=-1ifg=p.

Proof. Here, we will prove only the case when a > f. The case when f§ > a can be done in a
similar way.
(a) From Proposition 2.3(a),

[Opm(x)| < cn@D’2 m=0,1,...,n, (3.33)
for x € [-1,1] and a > p > —1/2. Therefore, according to (3.30),

|fo’ﬂ’ﬂﬂ) (x)| < en ™72, (3.34)
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for x € [-1,1] and & > > —1/2. From Proposition 3.1, we get
a,p,N a—
QW ()| = low()] - O(n=72). (3.35)

Finally, from Proposition 2.3(a), the statement follows.
(b) Taking into account Proposition 2.1(c), Proposition 2.2, (2.14), (3.1), and (3.15), we
can conclude the proof in the same way as we did in (a). ]

Corollary 3.5. Fora, f>-1/2,

(P (cos 9)| < cA(n,a,p,6), (3.36)
and for a, p > -1,
|Q',(f’ﬂ’ﬂ)(cos 9)| <cnA(n,a+1,p+1,0), (3.37)
where
(02— 0)#7172), if fl <0< ”; ‘
A(n,a,p,0) = { n@n/2, if0<o< Z (3.38)
nB+0/2. 7 <<
Proof. The inequality
n@/2 < cpal/2 (3.39)
holds for 6 € (0,c/n], as well as
nP/2 < o(or — 9) P12, (3.40)

for 8 € [or - ¢/n, ). Therefore, from Propositions 3.3 and 3.4, the statement follows
immediately. [

(“/ﬂ/ﬂ)

Next, we deduce a Mehler-Heine-type formula for Q, and Q’f:l’ﬂ ) (see
Theorem 4.1 in [10]).
Proposition 3.6. Uniformly on compact subsets of C,
(a)
Tn(1
lim n_“_l/zQila’ﬂ'ﬂ) <cos Z) = 2(”‘_@/2&2_“]11 (2), (3.41)
n— oo n \/ZNbN
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(b)

In(1
lim n~*5/2Q ) (cos Z> = 2(““6)/2&2_“_1]%1(2), (3.42)
n— oo n \/2NbN

where a, f are real numbers, and J,(z) is the Bessel function of the first kind.

Proof. To prove the proposition, we use the same technique as in [17].
(a) Multiplying in (3.1) by (n + 1) '/?, we obtain

N
Va(2) = Yu(2) + DAY Y, k(z), n>1, (3.43)
k=1

where Y, (z) = (n + 1)_“_1/2Q,<f'ﬂ’jv) (cosz/n), Vu(z) = (n + 1) ?v,(cos z/n) and Af:i)k =
a” (n-k)/(n+1)*"2 k=1,...,N.Moreover, |A" | = O(1/n%) and |A" | = O(1/n) for
1<k<N.

Using the above relation in a recursive way as well as the same argument of
Proposition 3.2, we have

Yu(2) = 3 B Vy(2), (3.44)
m=0

where Bg =1, |B§TZ)| =0(/n)form=1,2,...,N-1,and |B¥Z)| =0(1/n?) form=N, N +
1,...,n. Thus,

n
Y@< X |BE Vw21, (345)
m=0

On the other hand, from Proposition 2.3(c), (V3) .50 is uniformly bounded on compact subsets
of C. Thus, for a fixed compact set K C C, there exists a constant C, depending only on K,
such that when z € K,

[Va(z)|<C, n>0. (3.46)
Thus, the sequence (Y},),,5 is uniformly bounded on K C C. As a conclusion,
Y, (z) = Vy(z) + o<n-1>, zeK, (3.47)

and from Proposition 2.3(c), we obtain the result.

(b) Since we have uniform convergence in (3.41), taking derivatives and using a well
known property of Bessel functions of the first kind (see [12, formula 1.71.5]), we obtain
(3.42). ||

Now, we give the inner strong asymptotics of Q,(f’ﬂ ) on (-1,1).
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Proposition 3.7. Forx € [-1+¢,1-¢]and0<e <1,

P () = (1= x) 2V 4 x) P24 Zan Lt cos((k—1)9+y) +O< >
i=0

(3.48)

QP (cos ) = \/n(n ta+pr1)(1-x)" A 4 x) PN

(3.49)
ZAn L cos (k=)0 +11) +O(1),

where x = cosO, k =n+ (a+p+1)/2,y = —(a+ (1/2)x/2, y1 = —(a + (3/2))m/2, and
m? =@/

Proof. From Proposition 3.3(a), the sequence (Q,1 P /v)),1>0

subsets of (-1, 1); thus, from Proposition 3.1,

is uniformly bounded on compact

QPN (x) = v, (x) + O<111> (3.50)

Now, using Proposition 2.3(d), the relation (3.48) follows.
Concerning (3.49), it can be obtained in a similar way by using Propositions 2.1(f) and
2.2, (2.14), Propositions 3.1 and 3.3(b). I

Now, we can give the sharp estimate for the Sobolev norms of the Jacobi-Sobolev
polynomials.

Proposition 3.8. Fora > >-1/2and1<p < oo,

4(a+2)
"’ f 2av3)
(a,,N) _ 1/p L Aa+2)
1Qn " llwar ~ { n(logn) if a3 P (3.51)
- LA (a+2)
(a+5)/2—(2a+4) /p
" ey

Proof. Clearly, if p = oo, then we get Proposition 3.4(b). Thus, in the proof, we will assume
1 < p < oo. Since by Proposition 3.2 and(2.14)

n-1

i -1 i i
‘ HlQ‘“ﬂ“”)(gk) <cn ddxl.sml(gk) ) ddxisnfmq@k) +O(n) ,;V ddl Sy ma @0))],

(3.52)
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where k = 1,...,M,i = 0,1,...,Ni, and (d'/dx')s,(&) are bounded because of the
orthonormality condition, we obtain

<cmn, (3.53)

4t BN
‘ i O @0

wherek=1,...,M,andi=0,1,..., Ng.
On the other hand, using (3.30), Minkowski’s inequality, and Proposition 2.3(e), we
deduce

(a,p, ) (a,p) (a+1,p+1)
QSN gy < ™ ey < PR Ny sy (3.54)

In the same way as above, we get

(a+1,6+1)
”Lp(dym,w) SC"“Pna ¢ ||U’(dﬂa+1,ﬁ+1)' (3.55)

”Ql (tl,ﬂ,_/v)
n
Thus, from (3.53), (3.54), and (3.55), we have

(a, 8, V)P
QY 1y ns

(@) P A @) P %% A wpm |
<NQn M () + 1Q" %" llp 4 + Mii| o Q777 (ék)
( H rﬂ) H;(\/il(_]- _ ék)Nk+1 n ( Ha+1,p 1) P dx1+1
(a+1,4+1)
< e lpn™ "l
(3.56)

Notice that the upper estimate in (3.54) and (3.55) can also be proved using the bounds for
Jacobi-Sobolev polynomials given in Corollary 3.5.
In order to prove the lower bound in (3.51) we will need the following.

Proposition 3.9. Fora > -1and 1 <p < oo,

r _4(a+2)
s i 2a+3)

>p,

4(a+2) 3

Qa+3) P (3.57)

BN 1/ .
1Q Pl oy = €4 cnlogm)' ¥, if

L A4(a+2)
(a+5)/2—(2a+4) /p
"  F aas) <P
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Proof. We will use a technique similar to [12, Theorem 7.34]. According to (3.42),

ar/2
f 92u+3
0

w/n
> J‘ 92u+3
0

w
— Cn—Zu—4f t2u+3
0

w
% J. t2a+3
0

w
x f Padpap| 1 (1Pt
0

Q'fl“’ﬂ’/v) (cos ) |pd9

QP (cos ) |pd9

P
Q@b <Cos t>‘ df = opP@+5/2)-2a-4 (3.58)
n

O i (t) |Pdt _ opPla+5/2)2a4

On the other hand, from (see [18, Lemma 2.1]),if y > -1 —paand 1 < p < oo, we have

. 14
" c, ify< 71
f PP dt ~ (3.59)
0 P

¢ log w, ify:m.

Thus, for 4(a +2)/(2a + 3) < p and w large enough, (3.57) follows.
Finally, from (3.49), we obtain

ar/2 /2
f 23| ' @PM (s 9)|Pd9 > f 0273| Q' “P (cos 0) " dB > en. (3.60)
0 /4
The proof of Proposition 3.9 is complete. Il
From (3.57), fora > -1land 1 <p < oo,
L A(a+2)

cn, 1 m>}7/

1/p i 4:(“4‘2) _

||Q£la,ﬂ,ﬂ)||wﬂ,p > cq n(logn)™'*, oai3) " P, (3.61)

L A(a+2)
(a+5)/2-(2a+4) /p f .
L » " oars) <P

Thus, using (3.56) and (3.61), the statement follows. I
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4. Necessary Conditions for the Norm Convergence

The analysis of the norm convergence of partial sums of the Fourier expansions in terms
of Jacobi polynomials has been done by many authors. See, for instance, [19-21], and the
references therein.

Let q<a P be the Jacobi-Sobolev orthonormal polynomials, that is,
a,p, N a,p,N 1 (@pn
a7 @) = (10 lyan) - QP (). (41)

For f € W' its Fourier expansion in terms of Jacobi-Sobolev orthonormal
polynomials is

Zf(k) B (x (4.2)
where

f(k)=<fq“‘””)>, k=0,1,.... 4.3)

Let S, f be the n-th partial sum of the expansion (4.2)
Su(f,x) = Zf (k)P (). (4.4)

Theorem 4.1. Leta > > -1/2,and 1 < p < oo. If there exists a constant ¢ > 0 such that
1Snflwar < cllfllyars (4.5)

for every f € W/, then p € (po, q0) with

4(a+2) _A(a+2)
22+3 7 P°T oays

qo = (4.6)

Proof. For the proof, we apply the same argument as in [20]. Assume that (4.5) holds. Then,

(£, )ae @), = 1Snf = S Fllyan < €l flly (47)

Wy

Consider the linear functionals

Ta(f) = (£a " Waw ™y (48)
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on W/?. Hence, for every f in W/Psup |T,(f)| < oo holds. From the Banach-Steinhaus
theorem, this yields sup,||T,|| < oo. On the other hand, by duality (see, for instance, [1,
Theorem 3.8]), we have

B, N LB, N
ITull = 15 o 195 1y, (4.9)
where p is the conjugate of g. Therefore,
B, N LB, N
sup, 17577 () |y asllge P ()l s < 00 (4.10)

On the other hand, from (3.51), we obtain the Sobolev norms of Jacobi-Sobolev
orthonormal polynomials

c, if p < qo,
BN .
||q;(qaﬂ )”W./U,p ~ 4 (log n)l/p, if p = qo, (4.11)
n(a+3)/27(2a+4)/p, if P> qo,

fora >p>-1/2and 1< p < . Now, from (4.11), it follows that the inequality (4.10) holds
if and only if p € (po, 90)-
The proof of Theorem 4.1 is complete. [
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