
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2011, Article ID 279754, 13 pages
doi:10.1155/2011/279754

Research Article
On Strong Law of Large Numbers for
Dependent Random Variables

Zhongzhi Wang

Faculty of Mathematics and Physics, Anhui University of Technology, Ma’anshan 243002, China

Correspondence should be addressed to Zhongzhi Wang, wzz30@ahut.edu.cn

Received 16 December 2010; Accepted 3 March 2011

Academic Editor: Vijay Gupta

Copyright q 2011 Zhongzhi Wang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We discuss strong law of large numbers and complete convergence for sums of uniformly bounded
negatively associate (NA) random variables (RVs). We extend and generalize some recent results.
As corollaries, we investigate limit behavior of some other dependent random sequence.

1. Introduction

Throughout this paper, let � denote the set of nonnegative integer, let {X,Xn, n ∈ �} be a
sequence of random variables defined on probability space (Ω,F, P), and put Sn =

∑n
k=1 Xk.

The symbol C will denote a generic constant (0 < C < ∞) which is not necessarily the same
one in each appearance.

In [1], Jajte studied a large class of summability method as follows: a sequence {Xn, n ≥
1} is summable to X by the method (h, g) if

1
g(n)

n∑

k=1

Xk

h(k)
−→ X, as n −→ ∞. (1.1)

The main result of Jajte is as follows.

Theorem 1.1. Let g(·) be a positive, increasing function and h(·) a positive function such that φ(y) ≡
g(y)h(y) satisfies the following conditions.

(1) For some d ≥ 0, φ(·) is strictly increasing on [d,+∞) with range [0,+∞).

(2) There exist C and a positive integer k0 such that φ(y + 1)/φ(y) ≤ C, y ≥ k0.

(3) There exist constants a and b such that φ2(s)
∫∞
s (1/φ2(x))dx ≤ as + b, s > d.



2 Journal of Inequalities and Applications

Then, for i.i.d. random variables {Xn, n ∈ �},

1
g(n)

n∑

k=1

Xk − EXk1[|Xk|≤φ(k)]
h(k)

−→ 0 a.s. iff E
[
φ−1(|X|)

]
< ∞, (1.2)

where φ−1 is the inverse of function φ, 1A is the indicator of event A.

Motivated by Jajte [1], the present paper is devoted to the study of the limiting
behavior of sums when {X,Xn, n ∈ �} are dependent RVs In particular, we willl consider
the case when {X,Xn, n ∈ �} are NA RVs and obtain some general results on the complete
convergence of dependent RVs First, we shall give some definitions.

Definition 1.2. A finite family of random variables {Xn, 1 ≤ i ≤ n} is said to be negatively
associated (abbreviated NA) if, for every pair of disjoint subsets A and B of {1, 2, . . . , n}, we
have

Cov
(
f1(Xi, i ∈ A), f2

(
Xj, j ∈ B

)) ≤ 0, (1.3)

whenever f1 and f2 are coordinatewise increasing and the covariance exists.

Definition 1.3. A finite family of random variables {Xn, 1 ≤ i ≤ n} is said to be positively
associated (abbreviated PA) if

Cov
(
f(X1, . . . , Xn), g(X1, . . . , Xn)

) ≥ 0, (1.4)

whenever f and g are coordinatewise increasing and the covariance exists.
An infinite family of random variables is NA (resp., PA) if every finite subfamily is

NA (resp., PA).

Let Fn
m be the σ-algebra generated by RVs Xi, m ≤ i ≤ n.

Definition 1.4. A sequence of random variables {Xn, n ∈ �} is said to be m-dependence if Fr
1

and F∞
r ′ are independent for all r and r ′ such that 1 ≤ r < r ′ < ∞, r ′ − r > m.

Definition 1.5. A sequence of random variables {Xn, n ∈ �} is said to be ϕ-mixing (or
uniformly strong mixing), if

ϕ(τ) = sup
t∈�

sup
A∈Ft

1, B∈F∞
t+τ , P(A)>0

|P(B | A) − P(B)| −→ 0 as τ −→ ∞. (1.5)

These concepts of dependence were introduced by Esary et al. [2] and Joag-Dev and
Proschan [3]. Their basic properties may be found in [2, 3] and the references therein.
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Definition 1.6. Let {Xn, n ∈ �} be a sequence of random variables which is said to be:
uniformly bounded by a random variable X (we write {Xn, n ∈ �} ≺ X) if there exists a
constant C > 0, for almost every ω ∈ Ω, such that

sup
n≥1

P{|Xn| > t} ≤ CP{|X| > t} ∀t > 0. (1.6)

Remark 1.7. The uniformly bounded random variables in (1.6) can be insured by moment
conditions. For example, if

sup
n

E|Xn|2+δ < ∞ for some δ > 0, (1.7)

then there exists a uniformly bounded random variable X such that EX2 < ∞.

The structure of this paper is as follows. Some needed technical results will be
presented in Section 2. The strong law of large numbers for NA RVs will be established
in Section 3. The Spitzer and Hus-Robbins-type law of large numbers will be presented in
Sections 4 and 5, respectively.

2. Preliminaries

We now present some terminologies and lemmas. The following six properties are listed for
reference in obtaining the main results in the next sections. Detailed proofs can be founded
in the cited references.

Lemma 2.1 (cf. [4]) (three-series theorem for NA). Let {Xn, n ∈ �} be NA. Let C > 0 and let
XC

n = Xn1[|Xn|≤C]. In order that
∑∞

n=1 Xn converges a.s., it is sufficient that

(1)
∑∞

n=1 P{|Xn| > C} < ∞,

(2)
∑∞

n=1 EX
C
n converges,

(3)
∑∞

n=1 var(X
C
n ) < ∞.

Lemma 2.2 (cf. [4]). Let {Xn, n ∈ �} be NA with EXn = 0, EX2
n < ∞, then for p > 2, for all ε > 0

P

{

max
1≤k≤n

|Sk| ≥ ε

}

≤ 2ε−2
n∑

i=1

EX2
i ,

E

(

max
1≤k≤n

|Sk|2
)

≤ C
n∑

i=1

EX2
i ,

E

(

max
1≤k≤n

|Sk|p
)

≤ C

⎧
⎨

⎩

n∑

i=1

EX
p

i +

(
n∑

i=1

EX2
i

)p/2
⎫
⎬

⎭
.

(2.1)
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Lemma 2.3 (cf. [5]). Let {Xn, n ∈ �} be m-dependence with EXn = 0, EX2
n < ∞, then

E(Sn)2 ≤ (m + 1)
n∑

i=1

EX2
i . (2.2)

Lemma 2.4 (cf. [5]). Let {Xn, n ∈ �} be ϕ-mixing with EXn = 0, EX2
n < ∞, then

E(Sn)2 ≤
(

1 + 4
n−1∑

r=1

ϕ1/2(r)

)
n∑

i=1

EX2
i . (2.3)

Lemma 2.5 (cf. [6]). Let {Xn, n ∈ �} be PA with EXn = 0, EX2
n < ∞, then

Emax
1≤k≤n

S2
k ≤ 2ES2

n. (2.4)

Furthermore, if

n∑

k=1

μ1/2(2n) < ∞, (2.5)

then

Emax
1≤k≤n

S2
k ≤ Cnmax

1≤k≤n
EX2

k, (2.6)

where μ(n) = supi≥1
∑

j:j−i≥n cov(Xi, Xj).

Lemma 2.6. Let {Xn, n ≥ 1} be a sequence of random variables and X a random variable. If {Xn} ≺
X, then for all t > 0, p ≥ 2

�X
p
n1[|Xn|≤t] ≤ C

[
tp�{|X| > t} + �Xp1[|X|≤t]

]
. (2.7)

Proof. By the integral equality

p

∫ t

0
sp−1�(|X| > s)ds = tp�(|X| > t) + � |X|p1[|X|≤t], (2.8)

it follows that

� |Xn|p1[|Xn|≤t] ≤ p

∫ t

0
sp−1�(Xn > s)ds

≤ Cp

∫ t

0
sp−1�(|X| > s)ds = C

[
tp�(|X| > t) + � |X|p1[|X|≤t]

]
.

(2.9)
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Lemma 2.7 (cf. [7]). Let {An, n ≥ 1} be a sequence of events defined on (Ω,F, P). If∑∞
n=1 P(An) <

∞, then P(lim supnAn) = 0, if
∑∞

n=1 P(An) = ∞ and P(Ak ∩Am) ≤ P(Ak)P(Am) for k /=m, then
P(lim supnAn) = 1.

3. Strong Law of Large Numbers

Theorem 3.1. Let g(·), h(·), and φ(·) be as in Theorem 1.1, and let {X,Xn, n ∈ �} be a sequence
of negatively associated random variables with EXn = 0. Assume that {Xn, n ∈ �} ≺ X. If
E[φ−1(|X|)] < ∞, then

lim
n

1
g(n)

n∑

k=1

Xk

h(k)
= 0, a.s. (3.1)

Conversely, let {X,Xn, n ∈ �} be a sequence of identically distributed NA random variables, if (3.1)
is true, then E[φ−1(|X|)] < ∞.

Proof. Assume that E[φ−1(X)] < ∞. To prove (3.1) by applying the Kronecker lemma, it
suffices to show that

the series
∞∑

k=1

Xk

φ(k)
converges a.s. (3.2)

Here, we shall use the three-series theorem for NA RVs.
Let Yk = Xk/φ(k)1[|Xk/φ(k)|≤1]. Then, by E[φ−1(|X|)] < ∞, we have

∞∑

k=1

P

{∣
∣
∣
∣
Xk

φ(k)

∣
∣
∣
∣ > 1

}

≤ C
∞∑

k=1

P

{∣
∣
∣
∣

X

φ(k)

∣
∣
∣
∣ > 1

}

= C
∞∑

k=1

P
{
φ−1(|X|) > k

}
≤ CE

[
φ−1(|X|)

]
< ∞,

(3.3)

which shows that P{{|Xk/φ(k)| > 1}, i.o.} = 0, and

∞∑

k=1

∣
∣
∣
∣
Xk

φ(k)

∣
∣
∣
∣1[|Xk/φ(k)|>1] < ∞ a.s. (3.4)

Therefore, from EXk = 0, it follows that

∞∑

k=1

|E(Yk)| ≤
∞∑

k=1

E

∣
∣
∣
∣
Xk

φ(k)

∣
∣
∣
∣1[|Xk/φ(k)|>1] < ∞. (3.5)
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To this end we estimate the series

∞∑

k=1

Var(Yk) ≤
∞∑

k=1

E
(
Y 2
k

)
= E

∞∑

k=1

X2
k

φ2(k)
1[|Xk/φ(k)|≤1]

≤ C
∞∑

k=1

[

E1[|X|>φ(k)] + E
X2

φ2(k)
1[|X/φ(k)|≤1]

]

≤ C
∞∑

k=1

P
{|X| > φ(k)

}
+C

[

k0 +C
∞∑

k=k0+1

EX2

φ2(k + 1)
1[|X|≤φ(k)]

]

≤ CE
[
φ−1(|X|)

]
+ Ck0 + CE

[

X2
∫∞

φ−1(|X|)

1
φ2(x)

dx

]

≤ CE
[
φ−1(|X|)

]
+ Ck0 + CaE

[
φ−1(|X|)

]
+Cb < ∞.

(3.6)

Conversely, since {X,Xn, n ∈ �} are identically NA RVs. If (3.1) holds, that is,

1
φ(n)

n∑

k=1

Xk = o(1), a.s. (3.7)

It follows that

Xn

φ(n)
=
∑n

k=1 Xk

φ(n)
− φ(n − 1)

φ(n)

∑n−1
k=1 Xk

φ(n − 1)
−→ o(1) a.s. (3.8)

which shows that φ−1(n)Xn → 0 a.s. Hence,

φ−1(n)X±
n −→ 0 a.s., (3.9)

where x+ = max(0, x) and x− = max(0,−x).
Since {X±

n, n ∈ �} is still an NA sequence. Defining the following events,

An =
{

X+
n >

εφ(n)
3

}

, Bn =
{

X−
n >

εφ(n)
3

}

, (3.10)

we have P(Ak ∩Al) ≤ P(Ak)P(Al), and P(Bk ∩ Bl) ≤ P(Bk)P(Bl), for k /= l. By Lemma 2.7, if
φ−1(n)X±

n → 0 a.s., then
∑∞

n=1 P{X+
n > (1/3)εφ(n)} < ∞ and

∑∞
n=1 P{X−

n > (1/3)εφ(n)} < ∞.
Therefore,

∞∑

n=1

P
{|Xn| > εφ(n)

} ≤
∞∑

n=1

P

{

X+
n >

1
3
εφ(n)

}

+
∞∑

n=1

P

{

X−
n >

1
3
εφ(n)

}

< ∞, ∀ε > 0, (3.11)

which is equivalent to E[φ−1(|X|)] < ∞.
These complete the proof of Theorem 3.1.
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Theorem 3.1 also includes a particular case of logarithmic means, we can establish the
following.

Corollary 3.2. Let {X,Xn, n ∈ �} be a sequence of NA RVs with EXn = 0 and {Xn, n ∈ �} ≺ X. If
E|X| < ∞, then, one has

lim
n

1
log n

n∑

k=1

Xk

k
= 0, a.s. (3.12)

Proof. Let h(y) = y, g(y) = log y, that is, φ(y) = y logy. In this case, φ−1(y) ∼ y/ log y as
y → ∞, therefore E(|X|α) ≤ E[φ−1(|X|)] ≤ E(|X|), for 0 < α < 1.

Corollary 3.3. Let {X,Xn, n ∈ �} be a sequence of NA RVs with EXn = 0 and {Xn, n ∈ �} ≺ X. If
E|X| < ∞, then, for every a, b ≥ 0, a + b > 1/2, one has

lim
n

1
na

n∑

k=1

Xk

kb
= 0, a.s. (3.13)

Remark 3.4. As pointed out by Jajte [1], Theorem 3.1 includes several regular summability
methods such as (1) the Kolmogorov SLLN [h(y) = 1, g(y) = y]; (2) the classical MZ SLLN
[h(y) = 1, g(y) = y1/α, 1 ≤ α ≤ 2].

4. Spitzer Type Law of Large Numbers

Since the definition of complete convergence was introduced by Hsu and Robins, there have
been many authors who devote themselves to the study of the complete convergence for
sums of independent and dependent RVs and obtain a series of elegant results, see [4, 8] and
reference therein.

We say that the Hsu-Robbins [9] law of large numbers (LLN) is valid if, for all ε > 0,

∞∑

n=1

P{|Sn| ≥ nε} < ∞, (4.1)

and the Spitzer [10] LLN is valid if, for all ε > 0,

∞∑

n=1

1
n
P{|Sn| ≥ nε} < ∞. (4.2)

Theorem 4.1. Let φ(·) be as in Theorem 1.1, and let {X,Xn, n ∈ �} be a sequence of NA random
variables with EXn = 0. Assume that {Xn, n ∈ �} ≺ X. If E[φ−1(|X|)] < ∞, then for all ε > 0,

∞∑

n=1

1
n
P
{|Sn| ≥ εφ(n)

}
< ∞. (4.3)
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Conversely, let {X,Xn, n ∈ �} be a sequence of identically distributed NA random variables, if (4.3)
is true, then E[φ−1(|X|)] < ∞ and EX = 0.

Proof. For 1 ≤ k ≤ n, letU(n)
k

= Xk1[|Xk|≤φ(n)], V
(n)
k

= Xk −U
(n)
k

, then for every n

|Sn| =
∣
∣
∣
∣
∣

n∑

k=1

(
U

(n)
k + V

(n)
k

)
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

n∑

k=1

(
U

(n)
k − EU

(n)
k

)
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

n∑

k=1

EU
(n)
k

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

n∑

k=1

V
(n)
k

∣
∣
∣
∣
∣
. (4.4)

Note that

{|Sn| ≥ εφ(n)
} ⊂

{∣
∣
∣
∣
∣

n∑

k=1

(
U

(n)
k

− EU
(n)
k

)
∣
∣
∣
∣
∣
>
εφ(n)
2

}

∪
{∣
∣
∣
∣
∣

n∑

k=1

V
(n)
k

∣
∣
∣
∣
∣
>
εφ(n)
2

}

∪
{

1
φ(n)

max
1≤i≤n

∣
∣
∣
∣
∣

n∑

k=1

EU
(n)
k

∣
∣
∣
∣
∣
−→ 0

}

.

(4.5)

For the first term on the RHS of (4.5), by Markov inequality and Lemma 2.2 and (3.6), we
have

∞∑

n=1

1
n
P

{∣
∣
∣
∣
∣

n∑

k=1

(
U

(n)
k

− EU
(n)
k

)
∣
∣
∣
∣
∣
>

εφ(n)
2

}

≤
∞∑

n=1

C

nφ2(n)

n∑

k=1

E
(
U

(n)
k

)2 (
Since U

(n)
k , 1 ≤ k ≤ n is also NA

)

= C
∞∑

n=1

1
nφ2(n)

n∑

k=1

EX2
k1[|Xk|≤φ(n)]

≤ C
∞∑

n=1

1
n

n∑

k=1

[

E1[|X|≥φ(n)] +
EX21[|X|≤φ(n)]

φ2(n)

]

= C
∞∑

n=1

[

E1[|X|≥φ(n)] +
EX21[|X|≤φ(n)]

φ2(n)

]

< ∞.

(4.6)

For the second term on the RHS of (4.5), since

{∣
∣
∣
∣
∣

n∑

k=1

V
(n)
k

∣
∣
∣
∣
∣
>

εφ(n)
2

}

⊂
n⋃

k=1

{|Xk| > φ(n)
}
, (4.7)
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hence,

∞∑

n=1

1
n
P

{∣
∣
∣
∣
∣

n∑

k=1

V
(n)
k

∣
∣
∣
∣
∣
>

εφ(n)
2

}

≤
∞∑

n=1

1
n

n∑

k=1

P
{|Xk| > φ(n)

}

≤
∞∑

n=1

C

n

n∑

k=1

P
{|X| > φ(n)

}

= C
∞∑

n=1

P
{|X| > φ(n)

}
< ∞.

(4.8)

For the third term on the RHS of (4.5), we have, by (3.5),

1
φ(n)

n∑

k=1

∣
∣
∣EU

(n)
k

∣
∣
∣ =

1
φ(n)

n∑

k=1

∣
∣
∣EV

(n)
k

∣
∣
∣

(
By EXk = 0

)

=

∑n
k=1

∣
∣EXk1[|Xk|>φ(n)]

∣
∣

φ(n)

≤
∑n

k=1 E|Xk|1[|Xk|>φ(n)]
φ(n)

≤ CE
[
φ−1(|X|)

]
< ∞.

(4.9)

Therefore, (4.3) follows.
Conversely, since

∑∞
n=1(1/n)P{|Sn| ≥ εφ(n)} < ∞ imply that Sn/φ(n) = o(1) a.s.,

hence from Theorem 3.1, we have E[φ−1(|X|)] < ∞. These complete the proof of Theorem 4.1.

Corollary 4.2. Under the assumptions of Theorem 4.1, one has

∞∑

n=1

1
n
P

{

max
1≤k≤n

|Sk| ≥ εφ(n)
}

< ∞. (4.10)

Proof. Denote S
(n)
k =

∑k
i=1 U

(n)
k , and noticing that

{

max
1≤k≤n

|Sk| ≥ εφ(n)
}

⊂
{

max
1≤k≤n

∣
∣
∣
∣S

(n)
k

∣
∣
∣
∣ ≥ εφ(n)

}

∪
{

n⋃

k=1

(|Xk| > φ(n)
)
}

, (4.11)

hence, similarly to the proof of Theorem 4.1, we obtain (4.10).



10 Journal of Inequalities and Applications

Analogously, we can prove the following corollaries, and omit the details.

Corollary 4.3. Let {X,Xn, n ∈ �} be a sequence of ϕ-mixing random variables with EXn = 0.
Assume that {Xn, n ∈ �} ≺ X. If E[φ−1(|X|)] < ∞, and

∞∑

r=1

ϕ1/2(r) < ∞, (4.12)

then (4.3) holds.

Corollary 4.4. Let {X,Xn, n ∈ �} be a sequence of m-dependent random variables with EXn = 0.
Assume that {Xn, n ∈ �} ≺ X. If E[φ−1(|X|)] < ∞, then (4.3) holds.

Corollary 4.5. Let {X,Xn, n ∈ �} be a sequence of PA random variables with EXn = 0. Assume that
{Xn, n ∈ �} ≺ X. If E[φ−1(|X|)] < ∞, and

∞∑

n=1

μ

1
2 (2n) < ∞, (4.13)

then (4.3) holds.

5. Hsu-Robbins Type Law of Large Numbers

Theorem 5.1. Let φ(·), be define as in Theorem 1.1, but the following condition (3) is replaced by

(3′) There exist constants a such that φp(s)
∫∞
s (xp/2/φp(x))dx ≤ as1+p/2, s > d, p > 2, and

let {X,Xn, n ∈ �} be a sequence of NA random variables with EXn = 0. Assume that
{Xn, n ∈ �} ≺ X. If E[φ−1(|X|)]1+p/2 < ∞, then for all ε > 0,

∞∑

n=1

P
{|Sn| ≥ εφ(n)

}
< ∞. (5.1)

Proof. From the previous section, we know that to prove Theorem 5.1, we need only to prove
the convergence of the following three series.

First, note that E[φ−1(|X|)]1+p/2 < ∞ ⇒ E[φ−1(|X|)]2 < ∞ ⇒ nP(|X| > φ(n)) → 0, we
have

1
φ(n)

n∑

k=1

∣
∣
∣EU

(n)
k

∣
∣
∣ =

1
φ(n)

n∑

k=1

∣
∣EXk1[|Xk|≤φ(n)]

∣
∣

=
1

φ(n)

n∑

k=1

∣
∣EXk1[|Xk|>φ(n)]

∣
∣ (Since EXk = 0)

≤ 1
φ(n)

n∑

k=1

E|Xk|1[|Xk|>φ(n)]
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=
1

φ(n)

n∑

k=1

∫∞

0
P
{|Xk|1[|Xk|>φ(n)] > t

}
dt

≤ Cn

φ(n)
· φ(n)P{|X| > φ(n)

}
+

Cn

φ(n)

∫∞

n

P
(
φ−1(|X|) > t

)
dt

≤ CnP
{|X| > φ(n)

}
+

Cn

φ(n)

∫∞

n

E
[
φ−1(|X|)]2

t2
dt

= CnP
{|X| > φ(n)

}
+
CnE

[
φ−1(|X|)]2
φ(n)

· 1
n

= CnP
{|X| > φ(n)

}
+
CE

[
φ−1(|X|)]2
φ(n)

−→ 0.

(5.2)

Hence, (1/φ(n))maxj
∑j

k=1 E|U
(n)
k | → 0 as n → ∞. Next, by (4.4), we have

∞∑

n=1

P

{∣
∣
∣
∣
∣

n∑

k=1

V
(n)
k

∣
∣
∣
∣
∣
>

εφ(n)
2

}

≤
∞∑

n=1

n∑

k=1

P
{|Xk| > φ(n)

} ≤
∞∑

n=1

C
n∑

k=1

P
{|X| > φ(n)

}

≤ C
∞∑

n=1

nP
{|X| > φ(n)

}
< CE

[
φ−1(|X|)

]2
< ∞.

(5.3)

Last, from the definition ofU(n)
k and theNA’s property, we know that {U(n)

k , 1 ≤ k ≤ n, n ≥ 1}
remains a sequence of NA RVs. By applying Lemma 2.2 and Cr inequality, we have

∞∑

n=1

P

{∣
∣
∣
∣
∣

n∑

k=1

(
U

(n)
k − EU

(n)
k

)
∣
∣
∣
∣
∣
>

εφ(n)
2

}

≤
∞∑

n=1

C

φp(n)
E

∣
∣
∣
∣
∣

n∑

k=1

(
U

(n)
k − EU

(n)
k

)
∣
∣
∣
∣
∣

p

=
∞∑

n=1

C

φp(n)

n∑

k=1

E
(
U

(n)
k

− EU
(n)
k

)p

+
∞∑

n=1

C

φp(n)

[
n∑

k=1

E
(
U

(n)
k

− EU
(n)
k

)2
]p/2

:= I1 + I2.

(5.4)

It is easy to see that

I1 ≤ C
∞∑

n=1

1
φp(n)

n∑

k=1

E
(
U

(n)
k

)p

≤ C
∞∑

n=1

1
φp(n)

[
n∑

k=1

φp(n)P
(|X| > φ(n)

)
+

n∑

k=1

E|X|p1[|X|≤φ(n)]

]
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= C
∞∑

n=1

nP
{|X| > φ(n)

}
+ C

∞∑

n=1

n

φp(n)
E|X|p1[|X|≤φ(n)]

≤ CE
[
φ−1(|X|)

]2
+
1
2
k0(k0 + 1)C + C

∞∑

k=k0+1

(k + 1)p/2

φp(k + 1)
E|X|p1[|X|≤φ(k)]

≤ CE
[
φ−1(|X|)

]1+p/2
+ Ck2

0 + CE

[

|X|p
∫∞

φ−1(|X|)

xp/2

φp(x)
dx

]

≤ CE
[
φ−1(|X|)

]1+p/2
+ Ck2

0 < ∞,

(5.5)

I2 ≤ C
∞∑

n=1

1
φp(n)

[
n∑

k=1

E
(
U

(n)
k

)2
]p/2

≤ C
∞∑

n=1

1
φp(n)

[
nφ2(n)P

{|X| > φ(n)
}
+ nEX21[|X|≤φ(n)]

]p/2

≤ C
∞∑

n=1

1
φp(n)

[
φp(n)np/2P

(|X| > φ(n)
)]

+ C
∞∑

n=1

np/2

φp(n)

[
EX21[|X|≤φ(n)]

]p/2

≤ C
∞∑

n=1

np/2P
{|X| > φ(n)

}
+ C

∞∑

n=1

np/2

φp(n)
E|X|p1[|X|≤φ(n)]

≤ CE
[
φ−1(|X|)

]1+p/2
< ∞.

(5.6)

These complete the proof of Theorem 5.1.
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