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Firstly, a generalized weak convexlike set-valued map involving the relative interior is introduced
in separated locally convex spaces. Secondly, a separation property is established. Finally,
some optimality conditions, including the generalized Kuhn-Tucker condition and scalarization
theorem, are obtained.

1. Introduction

In mathematical programming, set-valued optimization is a very important topic. Since
the 1980s, many authors have paid attention to it. Some international journals such
as Set-Valued and Variational Analysis (original name: Set-Valued Analysis) were also
established. Theories and applications are widely developed. Rong and Wu [1], Li [2],
and Yang [3] and Yang [4] introduced cone convexlikeness, subconvexlikeness, generalized
subconvexlikeness, and nearly subconvexlikeness, respectively. In these generalized convex
set-valued maps, it is clear that nearly subconvexlikeness is the weakest. We find that, in the
above-mentioned papers, the convex cone has a nonempty topological interior. However,
it is possible that the topological interior of the convex cone is empty. For instance, if
C = {(r, 0) | r ≥ 0} ⊆ R2, then the topological interior of C is empty. In order to study some
optimization problems which the convex cone has empty topological interior, we have to
weaken the concept of the topological interior. Rockafellar [5] introduced the relative interior,
which is the generalization of the topological interior. Based on the relative interior, Frenk and
Kassay [6, 7] obtained Lagrangian duality theorems and Bot et al. [8] studied strong duality
for generalized convex optimization problems. Borwein and Lewis [9] introduced the quasi-
relative interior. Bot et al. [10] studied the regularity conditions via quasi-relative interior in
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convex programming. However, we find that only a few papers [11, 12] are about set-valued
optimization involving the relative interior. In this paper, we will further study set-valued
optimization problems involving relative interior.

This paper is organized as follows. In Section 2, we give some preliminaries. In
Section 3, a kind of generalized weak convexlike set-valued map involving relative interior
is introduced, and a separation property is established. In Section 4, some optimality
conditions, including the generalized Kuhn-Tucker condition and scalarization theorem, are
obtained.

2. Preliminaries

Let X, Y , and Z be three separated locally convex spaces, and let 0 denote the zero element
for every space. Let K be a nonempty subset of Y . The generated cone of K is defined as
cone K = {λa | a ∈ K, λ ≥ 0}. A cone K ⊆ Y is said to be pointed if K ∩ (−K) = {0}. A cone
K ⊆ Y is said to be nontrivial if K/= {0} andK/=Y .

Let Y ∗ and Z∗ stand for the topological dual space of Y and Z, respectively. From
now on, let C and D be nontrivial pointed closed-convex cones in Y and Z, respectively. The
topological dual cone C+ and strict topological dual cone C+i of C are defined as

C+ =
{
y∗ ∈ Y ∗ | 〈y, y∗〉

� 0, ∀y ∈ C
}
,

C+i =
{
y∗ ∈ Y ∗ | 〈y, y∗〉 > 0, ∀y ∈ C \ {0}},

(2.1)

where 〈y, y∗〉 denotes the value of the linear continuous functional y∗ at the point y. The
meanings of D+ and D+i are similar.

Let K be a nonempty subset of Y . We denote by clK, intK, and affK the closed hull,
topological interior, and affine hull ofK, respectively.

Definition 2.1 (see [11, 13]). Let K be a subset of Y . The relative interior of K is the set

riK =
{
x ∈ K | there exists U, a neighborhood of x, such that U ∩ affK ⊆ K

}
. (2.2)

Now, we give some basic properties about the relative interior.

Lemma 2.2. Let K be a subset of Y . Let k0 ∈ K, k ∈ riK, α ∈ R, and λ ∈ (0, 1]. Then,

(a) α riK = ri(αK);

(b) if K is convex, then

(1 − λ)k0 + λk ∈ riK. (2.3)

Proof. (a) Since α affK = aff(αK), it is clear that α riK = ri(αK);
(b) since k ∈ riK, there exists V , a neighborhood of 0, such that

(
k + V

)
∩ affK ⊆ K. (2.4)
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By (2.4), we have

(
λk + λV

)
∩ (λ affK) ⊆ λK. (2.5)

It follows from (2.5) that

(
(1 − λ)k0 + λk + λV

)
∩ ((1 − λ)k0 + λ affK) ⊆ (1 − λ)k0 + λK. (2.6)

It is clear that

(1 − λ)k0 + λ affK = affK. (2.7)

Since K is convex, we have

(1 − λ)k0 + λK ⊆ K. (2.8)

By (2.6), (2.7), and (2.8), we obtain

(
(1 − λ)k0 + λk + λV

)
∩ affK ⊆ K, (2.9)

which implies that

(1 − λ)k0 + λk ∈ riK. (2.10)

Remark 2.3. By Lemma 2.2, ifK is a convex cone, then riK ∪ {0} is a convex cone.

Lemma 2.4. If K is a convex cone of Y , then

K + riK ⊆ riK. (2.11)

Proof. If riK = φ, it is clear that the conclusion holds. If riK/=φ, we have

K + riK = 2
(
1
2
K +

1
2
riK

)
⊆ 2 riK = ri 2K = riK, (2.12)

where Lemma 2.2(b) is used in the first inclusion relation and Lemma 2.2(a) is used in the
second equality.

Lemma 2.5 (see [14, 15]). Let W be a linear topological space and w∗ be a linear functional on
W . w∗ is continuous if and only if H = {w | 〈w,w∗〉 = 0, w ∈ W} is closed. If H is not closed, H
is dense in W .

Wewill close this section by giving a separation theorem based on the relative interior.
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Lemma 2.6 (see [11]). Let K ⊆ Y be a closed-convex set with riK/=φ. If 0 /∈ riK, then there exists
y∗ ∈ Y ∗ \ {0} such that 〈k, y∗〉 ≥ 0 for each k ∈ K.

Remark 2.7. The following example will show that the closeness of K cannot be deleted in
Lemma 2.6.

Example 2.8. Let Y be an infinite-dimensional normed space and k∗ be a non-continuous
linear functional on Y . K is defined as

K = {k | 〈k, k∗〉 = 1, k ∈ Y}. (2.13)

Since affK = K, it is clear that 0 /∈ riK = K. By Lemma 2.5, K is not closed and clK = Y .
Therefore, for any y∗ ∈ Y ∗ \ {0}, y∗ cannot separate 0 andK.

Remark 2.9. Example 2.8 shows that, even if K is a convex subset of Y , the expression that
ri(clK) = riK does not hold generally.

3. Separation Property

From now on, we suppose that riC/=φ and riD/=φ. Let A be a nonempty subset of X and
F : A → 2Y be a set-valued map on A. Write F(A) = ∪x∈AF(x).

Definition 3.1 (see [1]). Let A be a nonempty subset of X. A set-valued map F : A → 2Y is
called C-convexlike on A if the set F(A) + C is convex.

In [2, 3, 16, 17], when intC/=φ, C-subconvexlike map and generalized C-
subconvexlike map were introduced, respectively. The following two definitions are
generalizations of C-subconvexlike map and generalized C-subconvexlike map, respectively.

Definition 3.2 (see [12]). Let A be a nonempty subset of X. A set-valued map F : A → 2Y is
called C-weak convexlike on A if the set F(A) + riC is convex.

Definition 3.3 (see [12]). Let A be a nonempty subset of X. A set-valued map F : A → 2Y is
called generalized C-weak convexlike on A if the set coneF(A) + riC is convex.

Remark 3.4. By [12, Theorems 3.1 and 3.2], we have the following implications:
C-convexlikeness ⇒ C-weak convexlikeness ⇒ generalized C-weak convexlikeness.

However, the following two examples show that the converse of the above
implications is not generally true.

Example 3.5. Let X = Y = R2, C = {(y1, 0) | y1 ≥ 0}, and A = {(1, 0), (0, 2)}. The set-valued
map F : A → 2Y is defined as follows:

F(1, 0) =
{(
y1, y2

) | 1 < y1 ≤ 2, 0 ≤ y2 ≤ 1
} ∪ {(1, 0), (1, 1)},

F(0, 2) =
{(
y1, y2

) | 1 < y1 ≤ 2, 1 ≤ y2 ≤ 2
} ∪ {(1, 2), (1, 1)}.

(3.1)
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It is clear that F(A) + riC is convex and F(A) + C is not convex. Therefore, F is C-weak
convexlike on A. However, F is not C-convexlike on A.

Example 3.6. Let X = Y = R2, C = {(y1, 0) | y1 ≥ 0}, and A = {(1, 0), (0, 2)}. The set-valued
map F : A → 2Y is defined as follows:

F(1, 0) =
{(
y1, y2

) | y1 ≥ 0, 1 ≤ y2 ≤ −y1 + 2
}
,

F(0, 2) =
{(
y1, y2

) | y1 ≥ 1, 0 ≤ y2 ≤ −y1 + 2
}
.

(3.2)

It is clear that coneF(A) + riC is convex and F(A) + riC is not convex. Therefore, F is
generalized C-weak convexlike on A. However, F is not C-weak convexlike on A.

Now, we consider the following two systems.

System 1: There exists x0 ∈ A such that F(x0) ∩ (−riC)/=φ.

System 2: There exists y∗ ∈ C+ \ {0} such that 〈y, y∗〉 ≥ 0, for all y ∈ F(A).

Theorem 3.7. Let A be a nonempty subset of X.

(i) Suppose that F : A → 2Y is generalized C-weak convexlike on A and ri(cl(coneF(A) +
riC)) = ri(coneF(A) + riC)/=φ. If System 1 has no solution, then System 2 has solution.

(ii) If y∗ ∈ C+i is a solution of System 2, then System 1 has no solution.

Proof. (i) Firstly, we assert that 0 /∈ coneF(A)+ riC. Otherwise, there exist x0 ∈ A, α ≥ 0 such
that 0 ∈ αF(x0) + riC.

Case 1. If α = 0, then 0 ∈ riC. Thus, there exists U, a neighborhood of 0, such that

U ∩ affC ⊆ C. (3.3)

Without loss of generality, we suppose that U is symmetric. It follows from (3.3) that

U ∩ (−affC) ⊆ (−C). (3.4)

It is clear that affC is a linear subspace of Y . Therefore, affC = −affC. By (3.4), we have

U ∩ affC ⊆ (−C). (3.5)

By (3.3) and (3.5), we obtain

U ∩ affC ⊆ C ∩ (−C). (3.6)

Since C is nontrivial, there exists c ∈ C \ {0}. By the absorption of U, there exists λ, a
sufficiently small positive number, such that

λc ∈ U ∩ affC ⊆ C ∩ (−C), (3.7)

which contradicts that C is pointed.
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Case 2. If α > 0, there exists y0 ∈ F(x0) such that −y0 ∈ (1/α)riC ⊆ riC, which contradicts
F(x) ∩ (−riC) = φ, for all x ∈ A.

Therefore, our assertion is true. Thus, we obtain

0 /∈ ri(cl(coneF(A) + riC)). (3.8)

Since F is generalizedC-weak convexlike onA, cl(coneF(A)+ riC) is a closed-convex set. By
Lemma 2.6, there exists y∗ ∈ Y ∗ \ {0} such that

〈
y, y∗〉 ≥ 0, ∀y ∈ cl(coneF(A) + riC). (3.9)

So,

〈
αF(x) + c, y∗〉 ≥ 0, ∀x ∈ A, c ∈ riC, α ≥ 0. (3.10)

Letting α = 0 in (3.10), we obtain

〈
c, y∗〉 ≥ 0, ∀c ∈ riC. (3.11)

We assert that y∗ ∈ C+. Otherwise, there exists c′ ∈ C such that 〈c′, y∗〉 < 0, hence,
〈θc′, y∗〉 < 0, for all θ > 0. By Lemma 2.4, we have

θc′ + c ∈ riC, ∀c ∈ riC. (3.12)

It follows from (3.11) that

〈
θc′ + c, y∗〉 ≥ 0, ∀θ > 0, c ∈ riC. (3.13)

Thus, we obtain

θ
〈
c′, y∗〉 +

〈
c, y∗〉 ≥ 0, ∀θ > 0, c ∈ riC. (3.14)

On the other hand, (3.14) does not hold when θ > −〈c, y∗〉/〈c′, y∗〉 ≥ 0. Therefore, 〈c, y∗〉 ≥
0, for all c ∈ C, that is, y∗ ∈ C+.

Letting α = 1 in (3.10), we have

〈
F(x) + c, y∗〉 ≥ 0, ∀x ∈ A, c ∈ riC. (3.15)

Taking c0 ∈ riC, λn > 0, limn→∞λn = 0, we have

〈
F(x) + λnc0, y

∗〉 ≥ 0, ∀x ∈ A, n ∈ N. (3.16)

Limitting (3.16), we obtain 〈F(x), y∗〉 ≥ 0, for all x ∈ A.
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(ii) Since y∗ ∈ C+i is a solution of System 2, we have

〈
y, y∗〉 ≥ 0, ∀y ∈ F(A). (3.17)

Now, we suppose that System 1 has solution. Then, there exists x0 ∈ A such that F(x0) ∩
(−riC)/=φ. Thus, there exists y0 ∈ F(x0) such that −y0 ∈ riC. It is clear that −y0 /= 0. So, we
have

〈
y0, y

∗〉 < 0, (3.18)

which contradicts (3.17).

Remark 3.8. If Y = Rn, by [5, Theorems 6.2 and 6.3], the condition that ri(cl(coneF(A) +
riC)) = ri(coneF(A) + riC)/=φ holds automatically. However, by Remark 2.9, it is possible
that, the condition that ri(cl(coneF(A) + riC)) = ri(coneF(A) + riC)/=φ does not hold.
Therefore, our assumption is reasonable.

4. Optimality Conditions

Let F : A → 2Y and G : A → 2Z be two set-valued maps from A to Y and Z, respectively.
Now, we consider the following vector optimization problem of set-valued maps:

min F(x)

s.t. −G(x) ∩D/=φ.
(VP)

The feasible set of (VP) is defined by

S =
{
x ∈ A | −G(x) ∩D/=φ

}
. (4.1)

Now, we define

W Min(F(S), C) =
{
y0 ∈ F(S) | y0 − y /∈ riC, ∀y ∈ F(S)

}
,

P Min(F(S), C) =
{
y0 ∈ F(S) | (−C) ∩ cl

(
cone

(
F(S) + C − y0

))
= {0}}.

(4.2)

Definition 4.1. A point x0 is called a weakly efficient solution of (VP) if x0 ∈ S and F(x0) ∩
W Min(F(S), C)/=φ. A point pair (x0, y0) is called a weak minimizer of (VP) if y0 ∈ F(x0) ∩
W Min(F(S), C).

Definition 4.2. A point x0 is called a Benson properly efficient solution of (VP) if x0 ∈ S and
F(x0) ∩ P Min(F(S), C)/=φ. A point pair (x0, y0) is called a Benson proper minimizer of (VP)
if y0 ∈ F(x0) ∩ P Min(F(S), C).

Let I(x) = F(x) × G(x), for all x ∈ A. It is clear that I is a set-valued map from A to
Y × Z, where Y × Z is a seperated local convex space with nontrivial pointed closed-convex



8 Journal of Inequalities and Applications

cone C ×D. The topological dual space of Y × Z is Y ∗ × Z∗, and the topological dual cone of
C ×D is C+ ×D+.

By Definition 3.3, we say that the set-valued map I : A → 2Y×Z is generalized C ×D-
weak convexlike on A if cone I(A) + ri(C ×D) is a convex set of Y ×Z.

Theorem 4.3. Let ri(cl(cone I∗(A) + ri(C × D))) = ri(cone I∗(A) + ri(C ×D))/=φ. Suppose that
the following conditions hold:

(i) (x0, y0) is a weak minimizer of (VP);

(ii) I∗(x) is generalized C ×D-weak convexlike on A, where I∗(x) = (F(x) − y0) ×G(x).

Then, there exists (y∗, z∗) ∈ C+ ×D+ with (y∗, z∗)/= (0, 0) such that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) =

〈
y0, y

∗〉,

inf〈G(x0), z∗〉 = 0.
(4.3)

Proof. According to Definition 4.1, we have

(
y0 − F(S)

) ∩ riC = φ. (4.4)

It is clear that I∗(x) = I(x) − (y0, 0), for all x ∈ A. We assert that

−I∗(x) ∩ ri(C ×D) = φ, ∀x ∈ A. (4.5)

Otherwise, there exists x ∈ A such that

−I∗(x) ∩ ri(C ×D)/=φ. (4.6)

It is easy to check that ri(C ×D) = riC × riD. Therefore,

−I∗(x) ∩ (riC × riD)/=φ. (4.7)

By (4.7), we obtain

(
y0 − F(x)

) ∩ riC/=φ, (4.8)

−G(x) ∩ riD/=φ. (4.9)

It follows from (4.9) that x ∈ S. Thus, by (4.8), we have

(
y0 − F(S)

) ∩ riC/=φ, (4.10)

which contradicts (4.4). Therefore, (4.5) holds.
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By Theorem 3.7, there exists (y∗, z∗) ∈ C+ ×D+ with (y∗, z∗)/= (0, 0) such that

〈
I∗(x),

(
y∗, z∗

)〉 ≥ 0, ∀x ∈ A. (4.11)

That is,

〈
F(x), y∗〉 + 〈G(x), z∗〉 ≥ 〈

y0, y
∗〉, ∀x ∈ A. (4.12)

Since x0 ∈ S, there exists p ∈ G(x0) such that −p ∈ D. Because z∗ ∈ D+, we obtain
〈p, z∗〉 ≤ 0. On the other hand, taking x = x0 in (4.12), we get

〈
y0, y

∗〉 +
〈
p, z∗

〉 ≥ 〈
y0, y

∗〉. (4.13)

It follows that 〈p, z∗〉 ≥ 0. So, 〈p, z∗〉 = 0. Thus, we have

〈
y0, y

∗〉 ∈ 〈
F(x0), y∗〉 + 〈G(x0), z∗〉. (4.14)

Therefore, it follows from (4.12) and (4.14) that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) =

〈
y0, y

∗〉. (4.15)

Finally, taking again x = x0 in (4.12), we obtain

〈
y0, y

∗〉 + 〈G(x0), z∗〉 ≥
〈
y0, y

∗〉. (4.16)

So, 〈G(x0), z∗〉 ≥ 0. We have shown that there exists p ∈ G(x0) such that 〈p, z∗〉 = 0. Thus, we
have

inf〈G(x0), z∗〉 = 0. (4.17)

The following example will be used to illustrate Theorem 4.3.

Example 4.4. Let X = Y = Z = R2, C = D = {(y1, 0) | y1 ≥ 0}, and A = {(1, 0), (1, 2)}. The
set-valued map F : A → 2Y is defined as follows:

F(1, 0) =
{(
y1, y2

) | y1 = 1, 0 ≤ y2 ≤ 1
}
,

F(1, 2) =
{(
y1, y2

) | y1 > 1, 0 ≤ y2 ≤ −y1 + 2
}
.

(4.18)

The set-valued map G : A → 2Y is defined as follows:

G(1, 0) =
{(
y1, y2

) | y1 ≤ 0, 0 ≤ y2 ≤ y1 + 1
}
,

G(1, 2) =
{(
y1, y2

) | y1 ≥ −1, y1 + 1 ≤ y2 ≤ 1
}
.

(4.19)
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Let x0 = (1, 0) and y0 = (1, 0) ∈ F(x0). It is clear that all conditions of Theorem 4.3 are satisfied.
Therefore, there exist y∗ : 〈(y1, y2), y∗〉 = y1 + y2 and z∗ : 〈(y1, y2), z∗〉 = −y1 + y2 such that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) =

〈
y0, y

∗〉,

inf〈G(x0), z∗〉 = 0.
(4.20)

Remark 4.5. Theorem 4.3 generalizes Theorem 3.1 of [2] and Theorem 4.2 of [3].

Theorem 4.6. Suppose that the following conditions hold:

(i) x0 ∈ S;

(ii) there exist y0 ∈ F(x0) and (y∗, z∗) ∈ C+i ×D+ such that

inf
x∈A

(〈
F(x), y∗〉 + 〈G(x), z∗〉) ≥ 〈

y0, y
∗〉. (4.21)

Then, x0 is a weakly efficient solution of (VP).

Proof. By condition (ii), we have

〈
F(x) − y0, y

∗〉 + 〈G(x), z∗〉 ≥ 0, ∀x ∈ A. (4.22)

Suppose to the contrary that x0 is not a weakly efficient solution of (VP). Then, there exists
x′ ∈ S such that (y0 −F(x′))∩ riC/=φ. Therefore, there exists t ∈ F(x′) such that y0 − t ∈ riC ⊆
C \ {0}. Thus, we obtain

〈
t − y0, y

∗〉 < 0. (4.23)

Since x′ ∈ S, there exists q ∈ G(x′) such that −q ∈ D. Hence,

〈
q, z∗

〉 ≤ 0. (4.24)

Adding (4.23) to (4.24), we have

〈
t − y0, y

∗〉 +
〈
q, z∗

〉
< 0, (4.25)

which contradicts (4.22). Therefore, x0 is a weakly efficient solution of (VP).

The following example will be used to illustrate Theorem 4.6.

Example 4.7. Let X = Y = Z = R2, C = D = {(y1, 0) | y1 ≥ 0}, and A = {(1, 0), (1, 2)}. The
set-valued map F : A → 2Y is defined as follows:

F(1, 0) =
{(
y1, y2

) | y1 ≥ 1, y1 ≤ y2 ≤ 2
}
,

F(1, 2) =
{(
y1, y2

) | y1 ≤ 2, 1 ≤ y2 ≤ y1
}
.

(4.26)
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The set-valued map G : A → 2Y is defined as follows:

G(1, 0) =
{(
y1, y2

) | −1 ≤ y1 ≤ 0, y2 = 0
}
,

G(1, 2) =
{(
y1, y2

) | −1 ≤ y1 ≤ 0, 0 ≤ y2 ≤ 1
}
.

(4.27)

Let x0 = (1, 0), y0 = (1, 1) ∈ F(x0), 〈(y1, y2), y∗〉 = y1 + y2, and 〈(y1, y2), z∗〉 = −y1. It is clear
that all conditions of Theorem 4.6 are satisfied. Therefore, (1, 0) is a weakly efficient solution
of (VP).

Remark 4.8. Theorem 4.6 generalizes [2, Theorem 3.3].

Now, we consider the following scalar optimization problem (VP)ϕ of (VP):

min
〈
F(x), ϕ

〉

s.t. x ∈ S,
(VP)ϕ

where ϕ ∈ Y ∗ \ {0}.

Definition 4.9. If x0 ∈ S, y0 ∈ F(x0) and

〈
y0, ϕ

〉 ≤ 〈
y, ϕ

〉
, ∀y ∈ F(S), (4.28)

then x0 and (x0, y0) are called a minimal solution and a minimizer of (VP)ϕ, respectively.

Lemma 4.10 (see [18]). Let U1, U2 ⊂ Y be two closed-convex cones such thatU1 ∩U2 = {0}. IfU2

is pointed and locally compact, then (−U+
1 ) ∩U+i

2 /=φ.

Lemma 4.11. If V is a subset of Y , then

(i) cl(cone(V + riC)) = cl(coneV + riC),

(ii) cl(cone(V + riC)) = cl(cone(V + C)).

Proof. (i) If V = φ, it is obvious that

cl(cone(V + riC)) = cl(coneV + riC). (4.29)

If V /=φ, there exists c ∈ riC. It is clear that

λc ∈ coneV + riC, ∀λ ∈ (0,+∞). (4.30)

Letting λ → 0 in (4.30), we have

0 ∈ cl(coneV + riC). (4.31)
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Now, we will show that

cone(V + riC) ⊆ (coneV + riC) ∪ {0}. (4.32)

Let y ∈ cone(V + riC).

Case 1. If y = 0, then y ∈ (coneV + riC) ∪ {0}.

Case 2. If y /= 0, there exist α > 0, v ∈ V , and c ∈ riC such that

y = α(v + c) = αv + αc ∈ coneV + riC ⊆ (coneV + riC) ∪ {0}. (4.33)

Therefore, (4.32) holds. Since Y is separated, by (4.31) and (4.32), we obtain

cl(cone(V + riC)) ⊆ cl((coneV + riC) ∪ {0})
= cl(coneV + riC) ∪ cl{0}
= cl(coneV + riC) ∪ {0}
= cl(coneV + riC).

(4.34)

That is,

cl(cone(V + riC)) ⊆ cl(coneV + riC). (4.35)

Using the technique of Lemma 2.1 in [19], we easily obtain

coneV + riC ⊆ cl(cone(V + riC)). (4.36)

So,

cl(coneV + riC) ⊆ cl(cone(V + riC)). (4.37)

By (4.35) and (4.37), we have

cl(cone(V + riC)) = cl(coneV + riC). (4.38)

(ii) It is obvious that

cl(cone(V + riC)) ⊆ cl(cone(V + C)). (4.39)

We will show that

cone(V + C) ⊆ cl(cone(V + riC)). (4.40)
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It is clear that (4.40) holds if V = φ. Now, we suppose that V /=φ. Let y ∈ cone(V + C), then
there exist λ ≥ 0, v ∈ V , and c ∈ C such that

y = λ(v + c). (4.41)

Since riC/=φ, there exists c0 ∈ riC. It follows from Lemma 2.4 that

λ

α
c0 + y = λ

(
1
α
c0 + c + v

)
∈ cone(V + riC), ∀α > 0. (4.42)

Letting α → +∞ in (4.42), we have

y ∈ cl(cone(V + riC)), (4.43)

which implies that (4.40) holds. By (4.40), we obtain

cl(cone(V + C)) ⊆ cl(cone(V + riC)). (4.44)

By (4.39) and (4.44), we have

cl(cone(V + riC)) = cl(cone(V + C)). (4.45)

Theorem 4.12. Suppose that the following conditions hold:

(i) C ⊆ Y is locally compact;

(ii) (x0, y0) is a Benson proper minimizer of (VP);

(iii) F − y0 is generalized C-weak convexlike on S.

Then, there exists ϕ ∈ C+i such that (x0, y0) is a minimizer of (VP)ϕ.

Proof. By condition (ii), we have

(−C) ∩ cl
(
cone

(
F(S) +C − y0

))
= {0}. (4.46)

By Lemma 4.11 and condition (iii), we obtain that cl(cone(F(S) + C − y0)) is a closed-convex
cone. Thus, conditions of Lemma 4.10 are satisfied. Therefore, there exists ϕ ∈ C+i such that

ϕ ∈ (
cl
(
cone

(
F(S) +C − y0

)))+
. (4.47)

Since F(S) − y0 ⊆ cl(cone(F(S) + C − y0)), we obtain

〈
y − y0, ϕ

〉 ≥ 0, ∀y ∈ F(S). (4.48)
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That is,

〈
y, ϕ

〉 ≥ 〈
y0, ϕ

〉
, ∀y ∈ F(S). (4.49)

So, (x0, y0) is a minimizer of (VP)ϕ.

The following example will be used to illustrate Theorem 4.12.

Example 4.13. Let X = Y = Z = R2, C = D = {(y1, 0) | y1 ≥ 0}, and A = {(1, 0), (1, 2)}. The
set-valued map F : A → 2Y is defined as follows:

F(1, 0) =
{(
y1, y2

) | y1 ≥ 1, 2 ≤ y2 ≤ −y1 + 4
} ∪ {(1, 1)},

F(1, 2) =
{(
y1, y2

) | y1 ≥ 2, 1 ≤ y2 ≤ −y1 + 4
}
.

(4.50)

The set-valued map G : A → 2Z is defined as follows:

G(1, 0) =
{(
y1, y2

) | y1 ≤ 0, 0 ≤ y2 ≤ y1 + 1
}
,

G(1, 2) =
{(
y1, y2

) | y1 ≥ −1, y1 + 1 ≤ y2 ≤ 1
}
.

(4.51)

Let x0 = (1, 0), y0 = (1, 1) ∈ F(x0). Thus, all conditions of Theorem 4.12 are satisfied.
Therefore, there exists ϕ : 〈(y1, y2), ϕ〉 = y1 + y2 such that (x0, y0) is a minimizer of (VP)ϕ.

Remark 4.14. Theorem 4.12 generalizes Theorem 4.2 of [16] and the necessity of Theorem 4.1
of [17].

In this paper, our results improve some results in the literature, and our results are
very useful to form Lagrange multipliers rule and establish duality theory.
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