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Gavrea and Ivan (2010) obtained an inequality for a continuous linear functional which annihilates
all polynomials of degree at most k − 1 for some positive integer k. In this paper, a new functional
proof by Riesz representation theorem is provided. Related results and further applications of the
inequality are also brought together.

1. Introduction

Let k ≥ 1 be an integer and f ∈ Ck[a, b]. Denote by �k the set of all polynomials of degree
not exceeding k. Let L : C[a, b] → � be a continuous linear functional which annihilates all
polynomials of degree at most k − 1; that is,

L(
f
)
= 0, ∀f ∈ �k−1. (1.1)

It is well known that a continuous linear functional is bounded, and finding the
bound or norm of a continuous linear functional is a fundamental task in functional analysis.
Recently, in light of the Taylor formula and the Cauchy-Schwarz inequality, Gavrea and Ivan
in [1] obtained an inequality for the continuous linear functionalL satisfying (1.1). In order to
state their result, we need some more symbols. Recall that the L2 norm of a square integrable
function f on [a, b] is defined by

∥∥f
∥∥
L2[a,b]

=

(∫b

a

∣∣f(x)
∣∣2dx

)1/2

, (1.2)
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and denote by t+ := max{t, 0} the truncated power function. The notation Lt(f(t, s)) means
that the functional L is applied to f considered as a function of t. The main result of [1] can
now be stated as follows.

Theorem 1.1. The functional L satisfies the following inequality:

∣∣L(
f
)∣∣ ≤ Mk

∥∥
∥f (k)

∥∥
∥
L2[a,b]

, (1.3)

where

Mk =

√
(−1)k

(2k − 1)!
LsLt(t − s)2k−1+

(1.4)

are the best possible constants. The equality is attained if and only if f is of the form

f(s) = C
(
Lt(t − s)k−1+

)(−k)
, s ∈ [a, b], (1.5)

where C is an arbitrary constant and the symbol (−k) denotes a kth antiderivative of f .

Remark 1.2. Usually, the functional L is allowed an interchange with the integral (this is
silently assumed throughout this paper). This is true in most interesting cases when, for
example,L is an integral or a derivative or a linear combination of them. If the interchange is
permitted, then it is easily verified

(
Lt(t − s)k−1+

)(−k)
=

(−1)k(k − 1)!
(2k − 1)!

Lt(t − s)2k−1+ + p(s), p ∈ �k−1. (1.6)

It should be pointed out that the inequality (1.3) can be found in Wang and Han [2,
Lemma 1] (see also [3]). In this note, we will give a short account of historical background on
inequality (1.3). A new functional proof based on the Riesz representation theorem [4, 5] is
also given. Furthermore, some related results are brought together, and further applications
are also included.

2. Historical Background

It is well known that a Hilbert space can be given a Gaussian measure. Let H be a Hilbert
space equipped with Gaussian measure and L a continuous linear functional acting on H .
Smale in [6] (a pioneering work on continuous complexity theory) defined an average (with
respect to the Gaussian measure) error for quadrature rules. A result of Smale [6] says that
the average error is proportional to ‖L‖. More precisely,

Av
f∈H

L(
f
)
=

√
2
π
‖L‖. (2.1)
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Using (2.1), Smale was able to compute the average error for right rectangle rule, the
trapezoidal rule, and Simpson’s rule (see [6, Theorem D]).

Later on, Wang and Han in [2] extended and unified results in [6, Theorem D], and
they also simplified the corresponding analysis given in [6]. The main observations in [2] are

(i) any quadrature rule has its algebraic precision, or equivalently, the corresponding
quadrature error functional annihilates some polynomials,

(ii) and hence the Peano kernel theorem applies.

In fact, more can be stated. The quadrature rule in the above observations can be replaced by
any continuous linear one. The main result and its elegant proof deserve to be better known.
For reader’s convenience, they are recorded here. To do this, we need more notations. For
brevity, let [0, 1] = [a, b]. Denote by L2 the square integrable functions on [0, 1], and

Hk =
{
f ∈ C[0, 1] | f (k−1) is absolutely continuous and f (k) ∈ L2

}
. (2.2)

The inner product on Hk is defined by

〈
f, g

〉
Hk

=
k−1∑

j=0

f (j)(0)g(j)(0) +
〈
f (k), g(k)

〉

L2

. (2.3)

Then, Hk is a Hilbert space of functions. The result in [2] can be now stated as follows.

Theorem 2.1. Let L : Hk → � be a continuous linear functional satisfying L(f) = 0, for all
f ∈ �k−1. Then,

‖L‖2 = (−1)k
(2k − 1)!

LsLt(t − s)2k−1+ . (2.4)

It is easily seen that Theorem 1.1 is a rediscovery of Theorem 2.1. For completeness,
we record the original short but beautiful proof of (2.4) in [2].

Proof. We have by the Peano kernel theorem

L(
f
)
=
∫1

0
Gk(s)f (k)(s)ds, (2.5)

where

Gk(s) =
1

(k − 1)!
Lt(t − s)k−1+ . (2.6)

And hence,

‖L‖ = ‖Gk‖L2
. (2.7)
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Obviously,

‖Gk‖2L2
= L(

f1
)
, (2.8)

where f1 ∈ Hk satisfying

f
(k)
1 = Gk, almost everywhere. (2.9)

Solving the above equality, we have

f1(s) =
(−1)k

(2k − 1)!
Lt(t − s)2k−1+ + p(s), p ∈ �k−1. (2.10)

Applying the functional L to both sides of (2.10) and noting (2.7) and (2.8), we obtain (2.4)
as required.

3. A Functional Proof

It seems that the original proof of Wang and Han recorded in the previous section does not
fully utilize the spaceHk. We now provide an alternative functional proof.

First, we define an equivalence relation ∼ onHk with respect to its subspace �k−1 since
L vanishes on �k−1. We say that f ∼ g if f −g ∈ �k−1. It is easy to check that the quotient space
Hk/�k−1 is still a Hilbert space. For any f ∈ Hk, there must exist a function F ∼ f such that
F(j)(0) = 0, j = 0, 1, . . . , k − 1. For example,

F(x) = f(x) − f(0) −
k−1∑

j=1

f (j)(0)
j!

xj (3.1)

may serve this purpose. So, we may assume that f (j)(0) = 0, j = 0, 1, . . . , k − 1, for any f ∈
Hk/�k−1 and, the inner product on Hk/�k−1 is

〈
f, g

〉
Hk/�k−1

=
〈
f (k), g(k)

〉

L2

. (3.2)

The functional L can be viewed as acting on Hk/�k−1, since it vanishes on �k−1. The Peano
kernel theorem can be rewritten as

L(
f
)
=
〈
f (k), Gk

〉

L2
, (3.3)

where Gk is defined by (2.6). By the Riesz representation theorem (see, e.g., [4] or [5]), there
exists a unique f0 ∈ Hk/�k−1 such that

L(
f
)
=
〈
f, f0

〉
Hk/�k−1

, (3.4)

‖L‖ =
∥∥f0

∥∥
Hk/�k−1

=
√
L(

f0
)
. (3.5)
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From (3.2) and (3.4)

L(
f
)
=
〈
f, f0

〉
Hk/�k−1

=
〈
f (k), f

(k)
0

〉

L2
. (3.6)

From (3.3) and (3.6), we have

f
(k)
0 = Gk, almost everywhere, (3.7)

which gives

f0(s) =
(−1)k

(2k − 1)!
Lt(t − s)2k−1+ . (3.8)

Applying the linear functional L to both sides of the above equality gives

L(
f0
)
=

(−1)k
(2k − 1)!

LsLt(t − s)2k−1+ , (3.9)

which together with (3.5) yields

‖L‖2 = (−1)k
(2k − 1)!

LsLt(t − s)2k−1+ , (3.10)

as desired.

Remark 3.1. From the above proof, we see that f0 given by (3.8) is the representer of the
Hilbert spaceHk/�k−1.

4. Related Results and Further Applications

Numerical integration and quadrature rules are classical topics in numerical analysis while
quadrature error functionals are typical continuous linear functionals on function spaces. It
was quadrature error functionals that stimulated study of Smale [6] and Wang and Han [2].
So it is natural to consider the applications of (2.4) to quadrature error estimates.

Example 4.1. Let n be a positive integer, f ∈ Hk and x ∈ [0, 1]. Let the Euler-Maclaurin
remainder functional LEM be defined by

LEM(f
)
=
∫1

0
f(t)dt − 1

n

n−1∑

i=0

f

(
i + x

n

)
+

k−1∑

ν=1

f (ν−1)(1) − f (ν−1)(0)
nνν!

Bν(x), (4.1)
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where Bν(t) is the νth Bernoulli polynomial. It is not hard to verify thatLEM vanishes on �k−1.
So the norm of LEM can be calculated according to (2.4). It can be found in [2] (cf. [7]) which
gave a bound in terms of Bernoulli number B2k = B2k(0); that is,

∥∥
∥LEM

∥∥
∥ =

[
(−1)k−1
(2k)!

B2k +
(
Bk(x)
k!

)2
]1/2

1
nk

. (4.2)

Example 4.2. Letm, n be positive integers and f ∈ Hk. Suppose that the following quadrature
rule

∫1

0
f(t)dt =

m−1∑

j=0

pjf
(
xj

)
(4.3)

is exact for any polynomial of degree ≤ k − 1 for some positive integer k. Then,

LCQ(f
)
=
∫1

0
f(t)dt − 1

n

n−1∑

i=0

m−1∑

j=0

pjf

(
i + xj

n

)
(4.4)

defines a composite quadrature error functional which annihilates any f ∈ �k−1. So Theorem
3 applies. The expression for the norm of LCQ can be found in [2]. A different but easy-to-use
expression can also be found in [7]

∥∥∥LCQ
∥∥∥ =

1
k!nk

⎧
⎨

⎩

m−1∑

i,j=0

pipj

(
(−1)k−1k!2

(2k)!
B̃2k(xi − xj) + Bk(xi)Bk(xj)

)⎫
⎬

⎭

1/2

, (4.5)

where B̃k is the Bernoulli function, defined by B̃k(t) = Bk({t}). Here {t} stands for the
fractional part of t.

Example 4.3. The error functionals LM, LT , and LS for the midpoint rule, trapezoidal
quadrature and Simpson’s rule are, respectively,

LM(
f
)
=
∫1

0
f(t)dt − f

(
1
2

)
,

LT
(
f
)
=
∫1

0
f(t)dt − 1

2
(
f(0) + f(1)

)
,

LS(f
)
=
∫1

0
f(t)dt − 1

6

[
f(0) + 4f

(
1
2

)
+ f(1)

]
.

(4.6)
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They vanishes on �1, �2, and �3, respectively. So, (4.5) applies (see [7] for details). It is a
routine computation to find their norms and they can be found in [2] (some of them can also
be found in [6–8]). In the following, H∗

k stands for the dual space ofHk

∥
∥∥LM

∥
∥∥
H∗

1

=
∥
∥∥LT

∥
∥∥
H∗

1

=
1

2
√
3
,

∥
∥∥LM

∥
∥∥
H∗

2

=
1

8
√
5
,

∥
∥∥LT

∥
∥∥
H∗

2

=
1

2
√
30

,

∥
∥∥LS

∥
∥∥
H∗

1

=
1
6
,

∥
∥∥LS

∥
∥∥
H∗

2

=
1

12
√
30

,

∥
∥∥LS

∥
∥∥
H∗

3

=
1

48
√
105

,
∥
∥∥LS

∥
∥∥
H∗

4

=
1

576
√
14

.

(4.7)

From these and (1.4), or equivalently (2.4), we immediately obtain

∣
∣∣LM(

f
)∣∣∣ =

∣∣
∣∣∣

∫1

0
f(t)dt − f

(
1
2

)∣∣
∣∣∣
≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
√
3

∥∥f ′∥∥
L2
, if f ∈ H1,

1

8
√
5

∥
∥f ′′∥∥

L2
, if f ∈ H2.

∣
∣∣LT(f

)∣∣∣ =

∣∣
∣∣∣

∫1

0
f(t)dt − 1

2
(
f(0) + f(1)

)
∣∣
∣∣∣
≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
√
3

∥
∥f ′∥∥

L2
, if f ∈ H1,

1

2
√
30

∥
∥f ′′∥∥

L2
, if f ∈ H2.

∣∣
∣LS(f

)∣∣
∣ =

∣∣∣
∣∣

∫1

0
f(t)dt − 1

6

[
f(0) + 4f

(
1
2

)
+ f(1)

]∣∣∣
∣∣
≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6
∥
∥f ′∥∥

L2
, if f ∈ H1,

1

12
√
30

∥∥f ′′∥∥
L2
, if f ∈ H2,

1

48
√
105

∥∥f ′′′∥∥
L2
, if f ∈ H3,

1

576
√
14

∥∥f (4)
∥∥
L2
, if f ∈ H4.

(4.8)

Note that there is a mistake in Example 9 in [1]. The constant 1/576
√
14 in the last inequality

is mistaken to be 1/1152
√
14 there.

Recently, there is a flurry of interest in the so-called Ostrowski-Grüss-type inequalities.
Some authors, for example, see Ujević [9], consider to bound a quadrature error functional
in terms of the Chebyshev functional, that is, ‖f (k)‖2L2

− (
∫1
0 f

(k)(t)dt)2, for some appropriate
integer k (see, e.g., [9]). It is worth mentioning that these Ostrowski-Grüss-type inequalities
are related to inequality (1.3). Actually, we have the following general result.
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Proposition 4.4. Suppose that a continuous linear functional L : Hk → � vanishes on �k−1. Then
for any nonnegative j < k, we have

∣∣L(
f
)∣∣ ≤

√√√
√ (−1)j

(
2j − 1

)
!
LsLt(t − s)2j−1+

⎛

⎝
∥∥
∥f (j)

∥∥
∥
2

L2
−
(∫1

0
f (j)(t)dt

)2
⎞

⎠

1/2

. (4.9)

Proof. Let p be a polynomial in �k−1 such that p(j)(t) = 1. Let

F(t) = f(t) − p(t)
∫1

0
f (j)(t)dt, f ∈ Hk. (4.10)

Then, F ∈ Hk and

L(F) = L
(

f − p

∫1

0
f (j)(t)dt

)

= L(
f
)
, (4.11)

since p ∈ �k−1 and L vanishes on �k−1. Obviously,

∣∣L(
f
)∣∣ = |L(F)| ≤ ‖L‖

∥
∥∥F(j)

∥
∥∥
L2
. (4.12)

Moreover, by noting p(j)(t) = 1, we have

∥
∥∥F(j)

∥
∥∥
L2

=

∥∥
∥∥∥
f (j) −

∫1

0
f (j)(t)dt

∥∥
∥∥∥
L2

. (4.13)

It is trivial to check that

∥∥∥
∥∥
f (j) −

∫1

0
f (j)(t)dt

∥∥∥
∥∥

2

L2

=
∥∥
∥f (j)

∥∥
∥
2

L2
−
(∫1

0
f (j)(t)dt

)2

. (4.14)

From (4.12)–(4.14) and (2.4), follows (4.9). This completes the proof.

Note that Proposition 4.4 shows that we have a corresponding inequality (4.9) for
every j < k whenever we have inequality (2.4). It should be mentioned, however, (4.9) does
not hold for k in general especially when the kernel of L is exactly �k−1.

Proposition 4.4 can be reformulated in a slightly different language as follows.

Corollary 4.5. Suppose that L is a continuous linear functional acting on Hk and kerL = {f |
L(f) = 0} = �k−1. Then for any nonnegative j < k, both (2.4) and (4.9) hold while only (2.4) is also
valid for k.

Finally, we end this paperwith an inequality of the above-mentionedGrüss-type.More
examples are left to the interested readers.
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Example 4.6 (see also [7]). From Example 4.3 and Proposition 4.4, we have

∣∣∣
∣∣

∫1

0
f(t)dt − 1

6

[
f(0) + 4f

(
1
2

)
+ f(1)

]∣∣∣
∣∣
≤ 1

6

⎛

⎝
∥∥f ′∥∥2

L2
−
(∫1

0
f ′(t)dt

)2
⎞

⎠

1/2

. (4.15)

In view of Proposition 4.4 or Corollary 4.5, the above inequality is still valid with f ′ replaced
by f ′′ and f ′′′, respectively, and with obvious change in the coefficients. We omit the details.
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