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The main aim of this paper is to introduce and study multivariate Baskakov-Durrmeyer operator,
which is nontensor product generalization of the one variable. As a main result, the strong direct
inequality of Lp approximation by the operator is established by using a decomposition technique.

1. Introduction

Let Pn,k(x) =
(
n+k−1

k

)
xk(1 + x)−n−k, x ∈ [0,∞), n ∈ N. The Baskakov operator defined by

Bn,1
(
f, x

)
=

∞∑

k=0

Pn,k(x)f
(
k

n

)

(1.1)

was introduced by Baskakov [1] and can be used to approximate a function f defined on
[0,∞). It is the prototype of the Baskakov-Kantorovich operator (see [2]) and the Baskakov-
Durrmeyer operator defined by (see [3, 4])

Mn,1
(
f, x

)
=

∞∑

k=0

Pn,k(x)(n − 1)
∫∞

0
Pn,k(t)f(t)dt, x ∈ [0,∞), (1.2)

where f ∈ Lp[0,∞)(1 ≤ p < ∞).
By now, the approximation behavior of the Baskakov-Durrmeyer operator is well

understood. It is characterized by the second-order Ditzian-Totik modulus (see [3])

ω2
ϕ

(
f, t

)
p = sup

0<h≤t

∥∥f
(· + 2hϕ(·)) − 2f

(· + hϕ(·)) + f(·)∥∥p, ϕ(x) =
√
x(1 + x). (1.3)
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More precisely, for any function defined on Lp[0,∞)(1 ≤ p < ∞), there is a constant such that

∥
∥Mn,1(f) − f

∥
∥
p ≤ const.

(

ω2
ϕ

(
f,

1√
n

)

p

+
1
n

∥
∥f

∥
∥
p

)

, (1.4)

ω2
ϕ

(
f, t

)
p = O

(
t2α

)
⇐⇒ ∥

∥Mn,1(f) − f
∥
∥
p = O

(
n−α), (1.5)

where 0 < α < 1.
Let T ⊂ R

d (d ∈ N), which is defined by

T := Td := {x := (x1, x2, . . . , xd) : 0 ≤ xi < ∞, 1 ≤ i ≤ d}. (1.6)

Here and in the following, we will use the standard notations

x := (x1, x2, . . . , xd), k := (k1, k2, . . . , kd) ∈ N
d
0 ,

xk := xk1
1 xk2

2 · · ·xkd
d
, k! = k1!k2! · · · kd!, |x| :=

d∑

i=1

xi, |k| :=
d∑

i=1

ki,

(
n

k

)

:=
n!

k!(n − |k|)! ,
∞∑

k=0

:=
∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kd=0

.

(1.7)

By means of the notations, for a function f defined on T the multivariate Baskakov operator
is defined as (see [5])

Bn,d

(
f, x

)
:=

∞∑

k=0

f

(
k
n

)
Pn,k(x), (1.8)

where

Pn,k(x) =

(
n + |k| − 1

k

)

xk(1 + |x|)−n−|k|. (1.9)

Naturally, we can modify the multivariate Baskakov operator as multivariate
Baskakov-Durrmeyer operator

Mn,df := Mn,d

(
f, x

)
:=

∞∑

k=0

Pn,k(x)φn,k,d
(
f
)
, f ∈ Lp(T), (1.10)

where

φn,k,d
(
f
)
:=

∫
T Pn,k(u)f(u)du
∫
T Pn,k(u)du

= (n − 1)(n − 2) · · · (n − d)
∫

T

Pn,k(u)f(u)du. (1.11)
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It is a multivariate generalization of the univariate Baskakov-Durrmeyer operators given in
(1.2) and can be considered as a tool to approximate the function in Lp(T).

2. Main Result

We will show a direct inequality of Lp approximation by the Baskakov-Durrmeyer operator
given in (1.10). By means of K-functional and modulus of smoothness defined in [5], we will
extend (1.4) to the case of higher dimension by using a decomposition technique.

Fox x ∈ T , we define the weight functions

ϕi(x) =
√
xi(1 + |x|), 1 ≤ i ≤ d. (2.1)

Let

Dr
i =

∂r

∂xr
i

, r ∈ N, Dk = Dk1
1 Dk2

2 · · ·Dkd
d
, k ∈ N

d
0 (2.2)

denote the differential operators. For 1 ≤ p < ∞, we define the weighted Sobolev space as
follows:

W
r,p
ϕ (T) =

{
f ∈ Lp(T) : Dkf ∈ Lloc

(
Ṫ
)
, ϕr

i D
r
i f ∈ Lp(T)

}
, (2.3)

where |k| ≤ r, k ∈ N
d
0 , and Ṫ denotes the interior of T . The Peetre K-functional on Lp(T)

(1 ≤ p < ∞), are defined by

Kr
ϕ

(
f, tr

)
p = inf

{
∥∥f − g

∥∥
p + tr

d∑

i=1

∥∥ϕr
iD

r
i g

∥∥
p

}

, t > 0, (2.4)

where the infimum is taken over all g ∈ W
r,p
ϕ (T).

For any vector e in R
d, we write the rth forward difference of a function f in the

direction of e as

Δr
hef(x) =

⎧
⎪⎪⎨

⎪⎪⎩

r∑

i=0

⎛

⎝
r

i

⎞

⎠(−1)if(x + ihe), x, x + rhe ∈ T,

0, otherwise.

(2.5)

We then can define the modulus of smoothness of f ∈ Lp(T)(1 ≤ p < ∞), as

ωr
ϕ

(
f, t

)
p = sup

0<h≤t

d∑

i=1

∥∥Δr
hϕieif

∥∥
p
, (2.6)

where ei denotes the unit vector in R
d, that is, its ith component is 1 and the others are 0.

In [5], the following result has been proved.
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Lemma 2.1. There exists a positive constant, dependent only on p and r, such that for any f ∈ Lp(T),
1 ≤ p < ∞

1
const.

ωr
ϕ

(
f, t

)
p ≤ Kr

ϕ

(
f, tr

)
p ≤ const. ωr

ϕ

(
f, t

)
p. (2.7)

Now we state the main result of this paper.

Theorem 2.2. If f ∈ Lp(T), 1 ≤ p < ∞, then there is a positive constant independent of n and f such
that

∥
∥Mn,df − f

∥
∥
p ≤ const.

(

ω2
ϕ

(
f,

1√
n

)

p

+
1
n

∥
∥f

∥
∥
p

)

. (2.8)

Proof. Our proof is based on an induction argument for the dimension d. We will also use
a decomposition method of the operator Mn,df . We report the detailed proof only for two
dimensions. The higher dimensional cases are similar.

Our proof depends on Lemma 2.1 and the following estimates:

∥∥Mn,2f − f
∥∥
p ≤ const.

⎧
⎪⎪⎨

⎪⎪⎩

∥∥f
∥∥
p, f ∈ Lp(T),

1
n

(
2∑

i=1

∥∥ϕ2
i D

2
i f

∥∥
p
+
∥∥f

∥∥
p

)

, f ∈ W
2,p
ϕ (T).

(2.9)

The first estimate is evident as the Mn,df are positive and linear contractions on
Lp(T)(1 ≤ p < ∞). We can demonstrate the second estimate by reducing it to the one
dimensional inequality

∥∥Mn,1f − f
∥∥
p ≤ const.

n

(∥∥∥ϕ2f ′′
∥∥∥
p
+
∥∥f

∥∥
p

)
, (2.10)

which has been proved in [3]
Now we give the following decomposition formula:

Mn,2
(
f, x

)
=

∞∑

k1=0

∞∑

k2=0

Pn,k1(x1)Pn+k1,k2

(
x2

1 + x1

)
(n − 1)(n − 2)

×
∫∫∞

0
Pn,k1(u1)Pn+k1,k2

(
u2

1 + u1

)
f(u1, u2)du1 du2

=
∞∑

k1=0

Pn,k1(x1)(n − 2)
∫∞

0
Pn−1,k1(u1)

∞∑

k2=0

Pn+k1,k2

(
x2

1 + x1

)

× (n + k1 − 1)
∫∞

0
Pn+k1,k2(t)f(u1, (1 + u1)t)dt du1

=
∞∑

k1=0

Pn,k1(x1)(n − 2)
∫∞

0
Pn−1,k1(u1)Mn+k1,1

(
gu1 , z

)
du1,

(2.11)
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where

gu1(t) = f(u1, (1 + u1)t), 0 ≤ t < ∞, z =
x2

1 + x1
, (2.12)

which can be checked directly and will play an important role in the following proof.
From the decomposition formula, it follows that

Mn,2
(
f, x

) − f(x) =
∞∑

k1=0

Pn,k1(x1)(n − 2)

×
{∫∞

0
Pn−1,k1(u1)

(
Mn+k1,1

(
gu1 , z

) − gu1(z)
)
du1

}
+M∗

n,1(h(·), x1) − h(x1)

:= J + L,

(2.13)

where

h(u1) := h(u1, x) := f

(
u1, (1 + u1)

x2

1 + x1

)
, 0 ≤ u1 < ∞,

M∗
n,1

(
g, y

)
=

∞∑

l=0

Pn,l

(
y
)
(n − 2)

∫∞

0
Pn−1,l(t)g(t)dt.

(2.14)

Then by the Jensen’s inequality, we have

‖J‖pp ≤
∫

T

∞∑

k1=0

Pn,k1(x1)
∣∣∣∣(n − 2)

∫∞

0
Pn−1,k1(u1)(Mn+k1,1(gu1 , z) − gu1(z))du1

∣∣∣∣

p

dx

≤
∫

T

∞∑

k1=0

Pn,k1(x1)(n − 2)
∫∞

0
Pn−1,k1(u1)

∣∣(Mn+k1,1
(
gu1 , z

) − gu1(z)
)∣∣pdu1dx

=
∫∞

0

∞∑

k1=0

Pn,k1(x1)(1 + x1)dx1(n − 2)
∫∫∞

0
Pn−1,k1(u1)

× ∣∣(Mn+k1,1
(
gu1 , z

) − gu1(z)
)∣∣pdzdu1

≤
∞∑

k1=0

n + k1 − 1
n − 1

∫∞

0
Pn−1,k1(u1)

∫∞

0

∣∣(Mn+k1,1
(
gu1 , z

) − gu1(z)
)∣∣pdzdu1

≤ const.
∞∑

k1=0

n + k1 − 1
n − 1

∫∞

0
Pn−1,k1(u1)

(
1

n + k1

)p(∥∥∥ϕ2g ′′
u1

∥∥∥
p

p
+
∥∥gu1

∥∥p

p

)
du1.

(2.15)

However, by definition, one also has

ϕ2(t)g ′′
u1
(t) = t(1 + t)(1 + u1)2D2

2f(u1, (1 + u1)t) =
(
ϕ2
2D

2
2f

)
(u1, (1 + u1)t). (2.16)
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Therefore,

‖J‖pp ≤ const.
∞∑

k1=0

n + k1 − 1
(n − 1)(n + k1)

p

∫∫∞

0
Pn−1,k1(u1)

×
(∣∣
∣
(
ϕ2
2D

2
2f

)
(u1, (1 + u1)t)

∣
∣
∣
p
+
∣
∣f(u1, (1 + u1)t)

∣
∣p
)
dt du1

= const.
∞∑

k1=0

n + k1 − 1
(n − 1)(n + k1)

p

∫∞

0

1
1 + u1

Pn−1,k1(u1)

×
∫∞

0

(∣∣
∣(ϕ2

2(u1, u2)D2
2f(u1, u2)

∣
∣
∣
p
+
∣
∣f(u1, u2)

∣
∣p
)
du1 du2

≤ const.
np

∞∑

k1=0

∫∞

0
Pn,k1(u1)

∫∞

0

(∣∣
∣
(
ϕ2
2(u1, u2)D2

2f(u1, u2)
)∣∣
∣
p
+
∣
∣f(u1, u2)

∣
∣p
)
du1 du2

=
const.
np

(∥∥∥ϕ2
2D

2
2f

∥∥∥
p

p
+
∥∥f

∥∥p

p

)
.

(2.17)

To estimate the second term L, we use a similar method as to estimate (2.10) (see [3])
and can get

‖L‖p ≤ const.
n

(∥∥∥ϕ2h′′
∥∥∥
p
+ ‖h‖p

)
. (2.18)

Denoting ϕ12(x) = ϕ21(x) :=
√
x1x2, D2

12 := ∂2/(∂x1∂x2), and D2
21 := ∂2/(∂x2∂x1), we

have

∣∣∣ϕ2(s)h′′(s)
∣∣∣

=

∣∣∣∣∣
s(1 + s)

(

D2
1f +

x2

1 + x1
D2

12f +
x2

1 + x1
D2

21f +
x2
2

(1 + x1)2
D2

22f

)

×
(
s, (1 + s)

x2

1 + x1

)∣∣∣∣∣

=
∣∣∣∣

(
1 + x1

1 + x1 + x2
ϕ2
1D

2
1f + ϕ2

12D
2
12f + ϕ2

21D
2
21f +

s

1 + s

x2

1 + x1 + x2
ϕ2
2D

2
2f

)(
s, (1 + s)

x2

1 + x1

)∣∣∣∣.

(2.19)

Recalling that ϕ12(x) is no bigger than ϕ1(x) or ϕ2(x), and the fact

∣∣∣D2
12f(x)

∣∣∣ ≤ sup
(∣∣∣D2

1f(x)
∣∣∣,
∣∣∣D2

2f(x)
∣∣∣
)

(2.20)

proved in [6] (see [6, Lemma 2.1]), we obtain

∥∥∥ϕ2h′′
∥∥∥
p
≤ const.

2∑

i=1

∥∥∥ϕ2
i D

2
i f

∥∥∥
p
, (2.21)
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and hence

‖L‖p ≤ const.
n

(
2∑

i=1

∥
∥
∥ϕ2

i D
2
i f

∥
∥
∥
p
+
∥
∥f

∥
∥
p

)

. (2.22)

The second inequality of (2.9) has thus been established, and the proof of Theorem 2.2 is
finished.
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