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Let {U1, U2, . . . , Un} be a sequence of independent and identically distributed U[0, 1]-distributed
random variables. Define the uniform empirical process as αn(t) = n−1/2 ∑n

i=1(I{Ui ≤ t} − t), 0 ≤
t ≤ 1, ‖αn‖ = sup0≤t≤1|αn(t)|. In this paper, we get the exact convergence rates of weighted infinite
series of E‖αn‖2I{‖αn‖ ≥ ε(logn)1/β}.

1. Introduction and Main Results

Let {X,Xn;n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random
variables with zero mean. Set Sn =

∑n
i=1 Xi for n ≥ 1, and logx = ln(x ∨ e). Hsu and Robbins

[1] introduced the concept of complete convergence. They showed that

∞∑

n=1

P{|Sn| ≥ εn} < ∞, ε > 0 (1.1)

if EX = 0 and EX2 < ∞. The converse part was proved by the study of Erdös in [2]. Obviously,
the sum in (1.1) tends to infinity as ε ↘ 0. Many authors studied the exact rates in terms of ε
(cf. [3–5]). Chow [6] studied the complete convergence of E{|Sn| − εnα}+, ε > 0. Recently, Liu
and Lin [7] introduced a new kind of complete moment convergence which is interesting,
and got the precise rate of it as follows.
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Theorem A. Suppose that {X,Xn;n ≥ 1} is a sequence of i.i.d. random variables, then

lim
ε↘0

1
− log ε

∞∑

n=1

1
n2

ES2nI{|Sn| ≥ εn} = 2σ2 (1.2)

holds, if and only if EX = 0, EX2 = σ2, and EX2log+|X| < ∞.

Other than partial sums, many authors investigated precise rates in some different
cases, such as U-statistics (cf. [8, 9]) and self-normalized sums (cf. [10, 11]). Zhang and
Yang [12] extended the precise asymptotic results to the uniform empirical process. We
suppose U1, U2, · · · , Un is the sample of U[0, 1] random variables and En(t) is the empirical
distribution function of it. Denote the uniform empirical process by αn(t) =

√
n(En(t) − t),

0 ≤ t ≤ 1, and the norm of a function f(t) on [0, 1] by ‖f‖ = sup0≤t≤1|f(t)|. Let B(t), t ∈ [0, 1]
be the Brownian bridge. We present one result of Zhang and Yang [12] as follows.

Theorem B. For any δ > −1, one has

lim
ε↘0

ε2δ+2
∞∑

n=1

(
logn

)δ

n
P

{

‖αn‖ ≥ ε
√
logn

}

=
E‖B‖2δ+2
δ + 1

. (1.3)

Inspired by the above conclusions, we consider second moment convergence rates for
the uniform empirical process in the law of iterated logarithm and the law of the logarithm.
Throughout this paper, let C denote a positive constant whose values can be different from
one place to another. [x] will denote the largest integer ≤ x. The following two theorems are
our main results.

Theorem 1.1. For 0 < β ≤ 2, δ > 2/β − 1, one has

lim
ε↘0

εβ(δ+1)−2
∞∑

n=2

(
logn

)δ−2/β

n
E‖αn‖2I

{
‖αn‖ ≥ ε

(
logn

)1/β
}
=

βE‖B‖β(δ+1)
β(δ + 1) − 2

. (1.4)

Theorem 1.2. For 0 < β ≤ 2, δ > 2/β − 1, one has

lim
ε↘0

εβ(δ+1)−2
∞∑

n=3

(
log logn

)δ−2/β

n logn
E‖αn‖2I

{
‖αn‖ ≥ ε

(
log logn

)1/β
}
=

βE‖B‖β(δ+1)
β(δ + 1) − 2

. (1.5)
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Remark 1.3. It is well known that P{‖B‖ ≥ x} = 2
∑∞

k=1 (−1)k+1e−2k
2x2

, x > 0 (see Csörgő and
Révész [13, page 43]). Therefore, by Fubini’s theorem we have

E‖B‖β(δ+1) = β(δ + 1)
∫∞

0
xβ(δ+1)−1P{‖B‖ ≥ x}dx

= 2β(δ + 1)
∫∞

0
xβ(δ+1)−1

∞∑

k=1

(−1)k+1e−2k2x2
dx

=
β(δ + 1)Γ

(
β(δ + 1)/2

)

2β(δ+1)/2

∞∑

k=1

(−1)k+1k−β(δ+1).

(1.6)

Consequently, explicit results of (1.4) and (1.5) can be calculated further.

2. The Proofs

In order to prove Theorem 1.1, we present several propositions first.

Proposition 2.1. For β > 0, δ > −1, one has

lim
ε↘0

εβ(δ+1)
∞∑

n=2

(
logn

)δ

n
P
{
‖B‖ ≥ ε

(
logn

)1/β
}
=

E‖B‖β(δ+1)
δ + 1

. (2.1)

Proof. We calculate that

lim
ε↘0

εβ(δ+1)
∞∑

n=2

(
logn

)δ

n
P
{
‖B‖ ≥ ε

(
logn

)1/β
}

= lim
ε↘0

εβ(δ+1)
∫∞

2

(
logy

)δ

y
P
{
‖B‖ ≥ ε

(
logy

)1/β
}
dy

= β

∫∞

0
tβ(δ+1)−1P{‖B‖ ≥ t}dt

=
E‖B‖β(δ+1)

δ + 1
.

(2.2)

Proposition 2.2. For β > 0, δ > −1, one has

lim
ε↘0

εβ(δ+1)
∞∑

n=2

(
logn

)δ

n

∣
∣
∣P

{
‖αn‖ ≥ ε

(
logn

)1/β
}
− P

{
‖B‖ ≥ ε

(
logn

)1/β
}∣
∣
∣ = 0. (2.3)
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Proof. Following [4], set A(ε) = [exp(M/εβ)], where M > 1. Write

∞∑

n=2

(
logn

)δ

n

∣
∣
∣P

{
‖αn‖ ≥ ε

(
logn

)1/β
}
− P

{
‖B‖ ≥ ε

(
logn

)1/β
}∣
∣
∣

=
∑

n≤A(ε)

(
logn

)δ

n

∣
∣
∣P

{
‖αn‖ ≥ ε

(
logn

)1/β
}

− P
{
‖B‖ ≥ ε

(
logn

)1/β
}∣
∣
∣

+
∑

n>A(ε)

(
logn

)δ

n

∣
∣
∣P

{
‖αn‖ ≥ ε

(
logn

)1/β
}
− P

{
‖B‖ ≥ ε

(
logn

)1/β
}∣
∣
∣

=: I1 + I2.

(2.4)

It is wellknown that αn(·) d→ B(·) (see Csörgő and Révész [13, page 17]). By continuous

mapping theorem, we have ‖αn‖ d→ ‖B‖. As a result, it follows that

Δn := sup
x

|P{‖αn‖ ≥ x} − P{‖B‖ ≥ x}| −→ 0, as n −→ ∞. (2.5)

Using the Toeplitz’s lemma (see Stout [14, pages 120-121]), we can get limε↘0ε
β(δ+1)I1 = 0. For

I2, it is obvious that

I2 ≤
∑

n>A(ε)

(
logn

)δ

n
P
{
‖B‖ ≥ ε

(
logn

)1/β
}
+

∑

n>A(ε)

(
logn

)δ

n
P
{
‖αn‖ ≥ ε

(
logn

)1/β
}

=: I3 + I4.

(2.6)

Notice that A(ε) − 1 ≥
√
A(ε), for a small ε. Via the similar argument in [4] we have

εβ(δ+1)I3 ≤ εβ(δ+1)
∑

n>A(ε)

(
logn

)δ

n
P
{
‖B‖ ≥ ε

(
logn

)1/β
}

≤ C

∫∞

(M/2)1β
yβ(δ+1)−1P

{‖B‖ ≥ y
}
dy −→ 0, as M −→ ∞.

(2.7)

From Kiefer and Wolfowitz [15], we have

P{‖αn‖ ≥ x} ≤ Ce−Cx
2
. (2.8)
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Therefore,

εβ(δ+1)I4 ≤ Cεβ(δ+1)
∑

n>A(ε)

(
logn

)δ

n
exp

{
−Cε2(logn)2/β

}

≤ Cεβ(δ+1)
∫∞
√

A(ε)

(
logx

)δ

x
exp

{
−Cε2(logx)2/β

}
dx

≤ C

∫∞

C(M/2)2/β
yβ(δ+1)/2−1e−ydy −→ 0, as M −→ ∞.

(2.9)

From (2.6), (2.7), and (2.9), we get limε↘0ε
β(δ+1)I2 = 0. Proposition 2.2 has been proved.

Proposition 2.3. For β > 0, δ > 2/β − 1, one has

lim
ε↘0

εβ(δ+1)−2
∞∑

n=2

(
logn

)δ−2/β

n

∫∞

ε(logn)1/β
2yP

{‖B‖ ≥ y
}
dy =

2E‖B‖β(δ+1)
(δ + 1)

(
β(δ + 1) − 2

)) . (2.10)

Proof. The calculation here is analogous to (2.1), so it is omitted here.

Proposition 2.4. For 0 < β ≤ 2, δ > 2/β − 1, one has

lim
ε↘0

εβ(δ+1)−2
∞∑

n=2

(
logn

)δ−2/β

n

∣
∣
∣
∣
∣

∫∞

ε(logn)1/β
2yP

{‖αn‖ ≥ y
}
dy −

∫∞

ε(logn)1/β
2yP

{‖B‖ ≥ y
}
dy

∣
∣
∣
∣
∣
= 0.

(2.11)

Proof. Like [4] and Proposition 2.2, we divide the summation into two parts,

∞∑

n=2

(
logn

)δ−2β

n

∣
∣
∣
∣
∣

∫∞

ε(logn)1/β
2yP

{‖αn‖ ≥ y
}
dy −

∫∞

ε(logn)1/β
2yP

{‖B‖ ≥ y
}
dy

∣
∣
∣
∣
∣

=
∑

n≤A(ε)

(
logn

)δ−2β

n

∣
∣
∣
∣
∣

∫∞

ε(logn)1/β
2yP

{‖αn‖ ≥ y
}
dy −

∫∞

ε(logn)1/β
2yP

{‖B‖ ≥ y
}
dy

∣
∣
∣
∣
∣

+
∑

n>A(ε)

(
logn

)δ−2/β

n

∣
∣
∣
∣
∣

∫∞

ε(logn)1/β
2yP

{‖αn‖ ≥ y
}
dy −

∫∞

ε(logn)1/β
2yP

{‖B‖ ≥ y
}
dy

∣
∣
∣
∣
∣

=: J1 + J2.

(2.12)
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First, consider J1,

J1 ≤
∑

n≤A(ε)

(
logn

)δ−2/β

n

∫∞

ε(logn)1/β
2y

∣
∣P

{‖αn‖ ≥ y
} − P

{‖B‖ ≥ y
}∣
∣dy

≤
∑

n≤A(ε)

(
logn

)δ

n

∫∞

0
2(x + ε)

∣
∣
∣P

{
‖αn‖ ≥ (x + ε)

(
logn

)1/β
}
− P

{
‖B‖ ≥ (x + ε)

(
logn

)1/β
}∣
∣
∣dx

≤
∑

n≤A(ε)

(
logn

)δ

n

(∫ (logn)−1/βΔ−1/4
n

0
2(x + ε)

∣
∣
∣P

{
‖αn‖ ≥ (x + ε)

(
logn

)1/β
}

−P
{
‖B‖ ≥ (x + ε)

(
logn

)1/β
}∣
∣
∣dx

+
∫∞

(logn)−1/βΔ−1/4
n

2(x + ε)P
{
‖B‖ ≥ (x + ε)

(
logn

)1/β
}
dx

+
∫∞

(logn)(−1/β)Δ−1/4
n

2(x + ε)P
{
‖αn‖ ≥ (x + ε)

(
logn

)1/β
}
dx

)

=:
∑

n≤A(ε)

(
logn

)δ

n
(J11 + J12 + J13).

(2.13)

Since n ≤ A(ε)means ε < (M/ logn)1/β, it follows

(
logn

)2/β
J11 ≤

(
logn

)2/β
∫ (logn)−1/βΔ−1/4

n

0
2(x + ε)Δndx

≤ (
logn

)2/βΔn

((
logn

)−1/βΔ−1/4
n +

(
logn

)−1/β
M1/β

)2

≤
(
Δ1/4

n +M1/βΔ1/2
n

)2 −→ 0, as n −→ ∞.

(2.14)

By Lemma 2.1 in Zhang and Yang [12], we have P{‖B‖ ≥ x} ≤ 2e−2x
2
. For J12, it is easy to get

(
logn

)2/β
J12 ≤

(
logn

)2/β
∫∞

ε(logn)1/β+Δ−1/4
n

(
logn

)−2/β · 2yP{‖B‖ ≥ y
}
dy

≤ C

∫∞

Δ−1/4
n

2y exp
{
−2y2

}
dy

≤ C exp
{
−2Δ−1/2

n

}
−→ 0, as n −→ ∞.

(2.15)
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In the same way, by the inequality P{‖αn‖ ≥ x} ≤ Ce−Cx
2
, we can get

(
logn

)2/β
J13 ≤ C exp

{
−CΔ−1/2

n

}
−→ 0, as n −→ ∞. (2.16)

Put the three parts together, we get that (logn)2/β(J11 + J12 + J13) → 0 uniformly in ε as
n → ∞. Using Toeplitz’s lemma again, we have limε↘0ε

β(δ+1)−2J1 = 0.
In the sequel, we verify limε↘0ε

β(δ+1)−2J2 = 0. It is easy to see that

J2 ≤
∑

n>A(ε)

(
logn

)δ−2/β

n

∫∞

ε(logn)1/β
2xP{‖B‖ ≥ x}dx

+
∑

n>A(ε)

(
logn

)δ−2/β

n

∫∞

ε(logn)1/β
2xP{‖αn‖ ≥ x}dx

=: J21 + J22.

(2.17)

We estimate J22 first, by noticing 0 < β ≤ 2 and (2.8), it follows

J22 ≤
∑

n>A(ε)

(
logn

)δ−2/β

n

∫∞

n

2ε
(
logy

)1/β
P
{
‖αn‖ ≥ ε

(
logy

)1/β
} ε

βy

(
logy

)1/β−1
dy

≤ C

∫∞

A(ε)

(
logx

)δ−2/β

x

∫∞

x

ε2
(
logy

)2/β−1

y
exp

{
−Cε2(logy)2/β

}
dy dx

≤ C

∫∞

A(ε)

ε2
(
logy

)2/β−1

y
exp

{
−Cε2(logy)2/β

}(
logy

)δ−2/β+1
dy

≤ Cε2
∫∞

A(ε)

(
logy

)δ

y
exp

{
−Cε2 logy

}
dy

≤ Cε2
logδ(A(ε))

(A(ε))Cε
2 ≤ Cε2−βδ.

(2.18)

Therefore, we get limε↘0ε
β(δ+1)−2J22 = 0. So far, we only need to prove limε↘0ε

β(δ+1)−2J21 = 0.
Use the inequality P{‖B‖ ≥ x} ≤ 2e−2x

2
again and follow the proof of J22, we can get this

result. The proof of the proposition is completed now.

Proof of Theorem 1.1. According to Fubini’s theorem, it is easy to get

EXI{X ≥ a} = aP{X ≥ a} +
∫∞

a

P{X ≥ x}dx, (2.19)
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for a > 0. Therefore, we have

E‖αn‖2I
{
‖αn‖ ≥ ε

(
logn

)1/β
}
= ε2

(
logn

)2/β
P
{
‖αn‖ ≥ ε

(
logn

)1/β
}

+
∫∞
ε(logn)1/β 2yP

{‖αn‖ ≥ y
}
dy.

(2.20)

From Proposition 2.1– 2.4, we have

lim
ε↘0

εβ(δ+1)−2
∞∑

n=2

(
logn

)δ−2/β

n
E‖αn‖2I

{
‖αn‖ ≥ ε

(
logn

)1/β
}

= lim
ε↘0

εβ(δ+1)
∞∑

n=2

(
logn

)δ

n
P
{
‖αn‖ ≥ ε

(
logn

)1/β
}

+ lim
ε↘0

εβ(δ+1)−2
∞∑

n=2

(
logn

)δ−2/β

n

∫∞

ε(logn)1/β
2yP

{‖αn‖ ≥ y
}
dy

=
βE‖B‖β(δ+1)
β(δ + 1) − 2

.

(2.21)

a

Proof of Theorem 1.2. From (2.19), we have

εβ(δ+1)−2
∞∑

n=3

(
log logn

)δ−2/β

n logn
E‖αn‖2I

{
‖αn‖ ≥ ε

(
log logn

)1/β
}

= εβ(δ+1)−2
∞∑

n=3

(
log logn

)δ−2/β

n logn

∫∞

ε(log logn)1/β
2yP

{‖αn‖ ≥ y
}
dy

+ εβ(δ+1)
∞∑

n=3

(
log logn

)δ

n logn
P
{
‖αn‖ ≥ ε

(
log logn

)1/β
}
.

(2.22)

Via the similar argument in Proposition 2.1 and 2.2,

lim
ε↘0

εβ(δ+1)
∞∑

n=3

(
log logn

)δ

n logn
P
{
‖αn‖ ≥ ε

∥
∥log logn

∥
∥1/β

}
=

E‖B‖β(δ+1)
δ + 1

. (2.23)

Also, by the analogous proof of Proposition 2.3 and 2.4,

lim
ε↘0

εβ(δ+1)−2
∞∑

n=3

(
log logn

)δ−2/β

n logn

∫∞

ε(log logn)1/β
2yP

{‖αn‖ ≥ y
}
dy =

2E‖B‖β(δ+1)
(δ + 1)

(
β(δ + 1) − 2

)) .

(2.24)

Combine (2.22), (2.23), and (2.24)together, we get the result of Theorem 1.2.
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