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Let pg, 7, and p;™ denote the Marcinkiewicz integral, the parameterized area integral, and
the parameterized Littlewood-Paley g} function, respectively. In this paper, the authors give a
characterization of BMO space by the boundedness of the commutators of yq, %, and ™ on
the generalized Morrey space LP¥(R").

1. Introduction

Let S"! = {x € R" : |x| = 1} be the unit sphere in R" equipped with the Lebesgue measure
do. Suppose that Q satisfies the following conditions.

(a) Qis the homogeneous function of degree zero on R” \ {0}, that is,

Q(ux) =Q(x), forany u>0, xeR"\ {0}. (1.1)

(b) Q has mean zero on S"7!, that is,

f Q(x)do(x') = 0. (12)
Sn—l
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(c) Q € Lip(S™™), that is,

|Q(xX) -Q)| < |x' -y/|, forany x,y €S". (1.3)

In 1958, Stein [1] defined the Marcinkiewicz integral of higher dimension g as

Ha(f) (x) = <j |f@tcxn2dt)ln, (1.4)

where

Qx-y)

[x-yl<t |x— |

Fo(x) =f T f(y)dy. (1.5)

We refer to see [1, 2] for the properties of pgo.
Let 0 <@ < nand A > 1. The parameterized area integral ;g and the parameterized
Littlewood-Paley g} function ;' are defined by

1/2
dydt
pr+l > 4 (16)

1 Qy - z)
“ 4[|y z|<t | f( )

:<”mt y—z|"

where I'(x) = {(y,t) € R*!: |x —y| <t}, and

An
w7 f) = <HR¢” <m>

respectively. u¥ and yy” play very important roles in harmonic analysis and PDE (e.g., see
[3-8]).

Before stating our result, let us recall some definitions. For b € Lj,c(R"), the
commutator [b, po] formed by b and the Marcinkiewicz integral o are defined by

- 1/2
[b, uo] f(x) = <f0 f3> ) (1.8)

3| 2=2) ¢

g ly - z|"

/2
dydt
1.7
@ g+l > 4 ( )

[ 20D -y ey

feeyist |x =y
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Let 0 <@ < nand A > 1. The commutator [b, %] of ¥ and the commutator [b, ] of p™

are defined, respectively, by
(v-2) h
Q(y - dydt
J‘ 1. _nw tn+1 > 4 (1.9)

(b, uS]f(x) = <Ijr(x yeslst [y =27
[b, 7] f(x) = <H <t+|x y|> n

= (b(x) =b(z2)) f(Z)dZ

(1.10)
Q( 2 dyd 1/2
1
< | O=2) (0 pe s YY)
y-zl<t |y - 2| t
Let b € Ljo.(R™). It is said that b € BMO(RR") if
[Pl == sup M(b, B) < oo, (1.11)
BCR»
where B = B(x,r) denotes the ball in R" centered at x and with radius r,
1
M(b,B) = —j |b(x) — bg|dx, (1.12)
Bl J 5

and bg = (1/|B]) [; b(y)dy.

There are some results about the boundedness of the commutators formed by BMO
functions with pq, uT, and p (see 7,9, 10]).

Many important operators gave a characterization of BMO space. In 1976, Coifman et
al. [11] gave a characterization of BMO space by the commutator of Riesz transform; in 1982,
Chanillo [12] studied the commutator formed by Riesz potential and BMO and gave another
characterization of BMO space.

The purpose of this paper is to give a characterization of BMO space by the
boundedness of the commutators of puq, pZ, and u;” on the generalized Morrey space
L9 (R™).

Definition 1.1. Let 1 < p < oo. Suppose that ¢ : (0,00) — (0,00) be such that ¢(t) is
nonincreasing and t!/P¢(t) is nondecreasing. The generalized Morrey space L is defined

by

LPP(R™) = {f € LiocR") : || f|l e < 0}, (1.13)

where

1/p
— 1 1 P
||f||U"P - xeR (p(|B(x T)D <|B(X,T)| Blor) |f(y)| dy> : (114)
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We refer to see [13, 14] for the known results of the generalized Morrey space LP¥
for some suitable ¢. Noting that ¢(t) = "1/, we get the Lebesque space LP(R"). For ¢(t) =
t/n=D/p (0 < A < n), LP#(R™) coincides with the Morrey space LP*(R").

The main result in this paper is as follows.

Theorem 1.2. Assume that @(t) is nonincreasing and t'/P¢(t) is nondecreasing. Suppose that [b, pg)
is defined as (1.8), Q satisfies (1.1), (1.2), and

C
(log(2/|x' - y'|)"”

|Q(x) - Q(y)]| < C1>0,y>1, x,y e S"™. (1.15)

If [b, ug] is bounded on LP¥(R™) for some p (1 < p < oo), then b € BMO(R™).

Theorem 1.3. Let 0 < @ < nand 1 < p < co. Assume that ¢(t) is nonincreasing and t'/Po(t) is
nondecreasing. Suppose that [b, ug | is defined as (1.9), Q satisfies (1.1), (1.2), and (1.15). If [b, u7 |
is a bounded operator on LP¥ (R™) for some p (1 < p < o), then b € BMO(R™).

Theorem 1.4. Let 0 < w < n, A > 1, and 1 < p < oo. Assume that ¢(t) is nonincreasing and
t\/Po(t) is nondecreasing. Suppose that [b, //tjl’(”] is defined as (1.10), Q satisfies (1.1), (1.2), and
(1.15). If [b, 4 | is on LP#(R") for some p (1 < p < o), then b € BMO(R").

Remark 1.5. Tt is easy to check that [b, uZ](f)(x) < 2Y"[b, uy"](f)(x) (see, e.g., the proof
of (19) in [15, page 89]), we therefore give only the proofs of Theorem 1.2 for [b, po] and
Theorem 1.3 for [b, < |.

Remark 1.6. It is easy to see that the condition (1.15) is weaker than Lip,(S*™) for 0 < < 1.
In the proof of Theorems 1.2 and 1.3, we will use some ideas in [16?. However, because
Marcinkiewicz integral and the parameterized Littlewood-Paley operators are neither the
convolution operator nor the linear operators, hence, we need new ideas and nontrivial
estimates in the proof.

2. Proof of Theorem 1.2

Let us begin with recalling some known conclusion.
Similar to the proof of [17], we can easily get the following.

Lemma 2.1. If Q satisfies conditions (1.1), (1.2), and (1.15), let p > 0, then for |x| > 2|y|, we have

C
=[xl log(xl/ [y])

Qx-y) Q)
-yl

(2.1)

Now let us return to the proof of Theorem 1.2. Suppose that [b, uq] is a bounded
operator on LP¥(R™), we are going to prove that b € BMO(R").
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We may assume that ||[b, pa]ll; 1o = 1. We want to prove that, for any x, € R" and
r € R,, the inequality

1

N=—— _
|B(.X'(), T)| B(xo,r

)Ib(y) —aoldy < A(p,Qn,Y) (2.2)

holds, where ag = |B(xo,7)|™" fB(xO,r) b(y)dy. Since [b — ao, pa] = [b, po], we may assume that
ap = 0. Let

f(y) = [sgn(b(y)) - col xBexor (V). (2.3)

where ¢y = (1/|B(xo,71)|) fB(xO,r) sgn(b(y))dy. Since (1/|B(xo,1)|) fB(xO,r) b(y)dy = ap = 0, we
can easily get |co| < 1. Then, f has the following properties:

ANl <2, (2.4)

supp f C B(xo, 1), (2.5)

JRn f(y)dy =0, (2.6)
fW)b(y) >0, y€B(xy,r), 2.7)
B(;Tr” fw f()b(y)dy = N. (2.8)

In this proof for j = 1,...,15, A; is a positive constant depending only on Q, p, n, y, and
A; (1 <1i<j).Since Q satisfies (1.2), then there exists an A; such that 0 < A; <1 and

’ n-1 ., ’ 2C1
o<{x eSS Q(x) > —(log(Z/A1))Y }> >0, (2.9)

where o is the measure on S"~! which is induced from the Lebesgue measure on R". By the
condition (1.15), it is easy to see that

o ! n-1 . ! 2C1
A= {x esm: Qx) > —(1og(2/A1))Y} (2.10)

is a closed set. We claim that

. _ o C
if X € A and v € S™!, satisfying |x' - y'| < A;, then Q(y) > ——. )
y ying [x' - y'| <A ) log/any @
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In fact, since |Q(x') — Q(y')| < C1/(log(2/|x' - y'| ))" < C1/(log(2/A1))?, note that Q(x') >
2(C1/(log(2/A1))"), we can get Q(y') > C1/(log(2/A1))". Taking Az > 3/ A4, let

G={xeR":|x-xo| > Aor, (x-x0) € A}. (2.12)
For x € G, we have
|[b, po] f ()] > [pa(bf) (x)] = [b(0)l|paf ()]
2 1/2
= ((—w) dt
Arl 2w @
0 [Jpyiet |x—y|"!
(2.13)
<( ) ) 1/2
[¢'e) X — y
= [b(x)] I f ——— = f(y)dy
0 -yt |x -yl
= Il - 12.
For I, noting that if y € B(xo,r), then |x — xo| > A|y — xo| for x € G. Thus, we have
0| 2
|(x y)' - (x - xo)’ | <2 £ <AL (2.14)

| = xo| ~ Az

Using (2.11), we get Q((x —y)") > C1/(log(2/A1))". Noting that |x — xo| = |x — y|, it follows
from (2.5), (2.7), (2.8), and Holder’s inequality that

1/2

© Q((x-y) )b 2
L > f f (6=v) n(j)f(y))(uxy«}(y)dy d_st
B(xo,) | '

ER

J‘ f Q((x-y) >b(y)f(y) Lt <f°° dt>_1/2
= Xllx-ylstydY -3 3
|x=xo| ¥/ B(x0,r) |x—y| ! 3 =20l £

olf( |x - y|‘"”b(y)f(y)f|x —xl<t t3 y

[x-yl<t

|2c=2co]

(2.15)

> —
- (log(2/A1))Y

> ;pc
~ (log(2/Ay))!

= A3Nr"|x — xo| ™"

xl [ b))y
B(xq,r)
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For x € G, by Q € L*(S"!), (24), (2.5), (2.6), the Minkowski inequality, and Lemma 2.1, we

obtain
Q(x-y Qx —x

I = |b(x)] f f(y)< ( n)l)(ux ylst) — (—nozx {x-xol<t) >dy
| |2 = o

[2G-y)| "
< [b(x)| |f () |dy
|x y|<t<|x—x0| |x— |
1/2
|Q(x — x0)||f( )| >
\x Xo|<t<|x—y| |X X0 |
| 1f@)]d >
Q- y)] < dt>”2
b — d
<| (x)'{fmr) e 0] ny«m T ay
1/2
12(x — x0)| xol dt
— d
+f B(xo,r) |X— |f( )|<I|x—y|>t2|x—xg t3> v
S Q(x 9 oexl(f -
B(xo, r) n ! |x—x0|"‘1 l‘;‘:}ﬂétt t3 y

| (x)'<r sean =202 7 Vot Tt —xol" Qlog(lx —xol/0)T Y

n x—xo|\ "
< Adbo) I - xo ™ (10g 20

1/2
dt}

1/2
Q(x-y) Q(x xo

e—y["" x-

|x Xo|<t
lx-yl<t

Let

AN x=x0]\'
F:{xeG: |b(x)| > 224 <10g| p 0|> , |x—x0|<N1/"r}.

(2.16)

(2.17)

Without loss of generality, we may assume that N > A, > 1, otherwise, we get the desired
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result. Since ¢(t) is nonincreasing, it follows that ¢(|B(xo, NYr))) < @(|B(xo,7)|) = (r"). By
(2.13), (2.15), and (2.16), we have

AN 2 11 (B el £

1
= (o(1B(xo, NV )P [B (o, N7

( |, pa] £ ()Pl
|x—xo|<N/nr

> ;”J‘ <1A3Nr"|x—x0|">pdx
(p(r™) N1 ) (G\F)nflx-sxol<N1/rr)
p
> ;ﬁ’_]‘ <1A3Nr”|x—x0|_") dx (2.18)
(@(rm)PNT™ J | As(1Fi+ A2y /<=0l <N )G
_ Wp-1 < A3NT" >P J‘Nl/"r t—pn+n—1dt
(p(rm)'Nr\ 2 A5 (IF+(A2m) "
(N (As/27 (NP0 — AT (I + (A2r)") ')
~ (p(rm) n-np
Thus,
(I + (A2r)") ' < ANPF" 0P (14 9P [| £ ][5, (2.19)
Now, we claim that
C
I £ll e < e (2.20)
where C is independent of r. In fact,
1 1 v
p
L, =su d . 2.21
||f||LP<P xgﬂ%p"(PqB(xrt)D (IB(X,[’)| B(xf) |f(y)| y> ( )
Now, we consider the L”# norm of f in the following two cases.
Case 1 (t > r). Since s/ Pip(s) is nondecreasing in s, then
1 1 1 1
(2.22)

p(IBCe DD [BGx, 7~ 9) 777
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Thus,

1/p
11 )
”f”LI“ﬂ S su p(p(rn) rn/p <J B(x ) |f(y)| dy>

t>

11 1
= sup—— —— Pd
xelig3 (P(rn) rn/p (IB(x,t)ﬂB(xo,r) |f(y)| y)

>0
C

< .
~ ()

Case 2 (t < r). Since ¢(s) is nonincreasing in s, then

11
P(IB(x, D) = (™)

Thus,

1 1 o\
Il < 00 s (e [, Py

C
p(rm)

<
Now, (2.20) is established. Then, by (2.19) and (2.20), we get
|F| + (Azr)" > A7N7’n.
If N <2A;' A, then Theorem 1.2 is proved. If N > 2A ' A7, then
|F| > %N .

Let g(y) = xB(xo,r) (y)- For x € F, we have

© Q((x-vy) ’
[t

|[b, kel § 0] 2 b()| f

0 |-yt |x-y

J:o flx—y|§t |§C(ic_| )> (y) (y) Y %

= K1 — Kz.

1/2

1/2

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Noting that if y € B(xo,r) and x € F, we get |(x —y)' - (x — x0)'| < A;. Applying (2.11), we
have Q((x - y)") > C1/(log(2/A1))". Since |x — y| = |x — xo| when y € B(xo,r) and x € F, it
follows that

o((x-v) w]”
% (x-y) dt
kizbeold [ ([ Sy | 5
|2c=2xo| B(xo,r) |x - |
Q((x-y)) at /(= ar\ "
.| e gendy <f —>
[x=xo[ 7 B(x0,r) |x ]/| ! N £ | =20l £
(2.29)
Cy|b(x)| —n+l dt
> — L _|x - x| e =yI™ | e T
(log(2/ A1) B(xo,7) eyt

> Aglb(x)lx - xo] ™ f dy
B(xo 7‘)

= Agr"|b(x)l|x — xo| ™

By Q € L*(S"1), |x—xo| = |x—y| when y € B(xo,r) and x € F and the Minkowski inequality,
we have

b
Kzscf | (y)lndy
Bl |X =y
i 2.30
< Aglx - xo f 1b(y)|dy (230
B(xo,r)

= AgNr"|x — x| ™"

Thus, by (2.28), (2.29), and (2.30), we get, for x € F,
|[b, ua] g(x)| = Asr"|b(x)||x — x0|™ = AgNT"|x — x0| ™. (2.31)

Similar to the proof of (2.20), we can easily get [|gll,,, < C/¢(r"). Thus, by (2.31),
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@(N1") < (r"), and |b(x)| > (N A3/2A4)(log(|x — x0|/7))" when x € F, we have

Aq
A gl 2 I il

1 r
> b, x)|Pdx
(p(NT”)(NTn)l/p <J‘x—x0|<N1/"r | [ #Q]g( )l >

1 o
> - b, (x)|dx j dx
(p(r")(Nr")l/p 4[|xx0<N1/”r| [ #Q]g | < |x—2xo|<N1/nr >

. WL' [b, po] g (x)|dx .
s % L'b(x)”x- Xo| "dox ~ % L | — xo| "dx
> <p1?r1'1) . (10g |x _TXO| >Y|x ol
- % fF | — xo| " dx
=L - L.

We first estimate L,. Since Asr < |x — xo| < N'/"r for x € F, we have

Nl/"r
L < Aoy pldp < Aqp

2200 A, p(rm)

log N. (2.33)

Now, the estimate of L, is divided into two cases, namely, 1: y > n;2: 1 <y <.

Case 1 (y > n). Since the function log s/s is decreasing for s > 3 and 3r < Ayr < |x — xp| <
NY"r for x € F, by (2.27), we get

L, =Aur” <108(|x — xol/7) )" <1og Jac = xo| >Yndx

- (™) Jr |x = xo|/7 r
A7A11 y-n log Nl/n "
> ALK (logN)".

~ ()
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Case 2 (1 < y < n). Since the function (logs)’/s" is decreasing for s > 3 and 3r < A,r <
|x — x0| < N¥"r for x € F, by (2.27), we have

_Apr™ (- (log(lx - xol/7))"

L =
YT S (= xol/n)"
A7Ay  (log NV/m)! (2.35)
= 2¢p(rm) N

Ay
> —(log N)".
p(rm) (log N)
From Cases 1 and 2, we know that there exists a constant 7 > 1 such that
Ars T
Li>——(logN)". 2.36
12 0m (log N) (2.36)

So by (2.32), (2.33), and (2.36), we get

A10 > A15 (log N)T - A12 IOg N. (237)
Then, N < A(Q,p,n,y). Theorem 1.2 is proved.

3. Proof of Theorem 1.3

Similar to the proof of Theorem 1.2, we only give the outline.

Suppose that [b, u¢ ] is a bounded operator on LP#(IR"), we are going to prove that
b € BMO(R").

We may assume that [|[b, uT
r € R,, the inequality

o pe = 1. We want to prove that, for any xo € R” and

1

= b —apg|ldy < B(Q,p,n, @ 3.1
B0 D] )y P Y) ~ 0l < B pme) S

holds, where ag = |B(xo,7)|™ J'B(XM) b(y)dy. Since [b - ag, | = [b, uT ], we may assume that
ap = 0. Let f(y) be as (2.3), then (2.4)~(2.8) hold. In this proof for j = 1,...,13, B; is a positive
constant depending only on Q,p, n, @, and B; (1 < i < j). Since Q satisfies (1.2), then there
exists a B; such that 0 < B; < 1 and

/ n-1 . ! 2Cl
o({x eSS Q(x) > —(log(Z/Bl))Y }> >0, (3.2)
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where o is the measure on S"~! which is induced from the Lebesgue measure on R". By the

condition (1.15), it is easy to see that

— ! n-1 . ! 2—(:1
A = {x es Q(x) 2 (log(Z/Bl))Y}

is a closed set. As the proof of (2.11), we can get the following:

if ' € A and y' € S™!, satistying |x' - y/| < By, €1

Taking B, > 3/B; +1, let
G={xeR":|x-x| > Bor, (x—x0) € A}.

For x € G, we have

[[b,uS]f(x)| = <J’:° fxy|<t
(e

2|x—xo|<|y—x0|<3|x—x0|

? dydt

tn+1+2w-

Ofv —
f } |(Y—Z)<b<x> ~ b(2)) f(2)dz
y-z|<

n-w
y—z|

1/2
dydt
tn+1+2w

Jf 2 I"’)”(b(x) b Fe]

ly—zl<t |y -

J‘ ) f
— t
Ax—xo| [x=yl<

2|x—xo|<|y—x0|<3|x—x0l, (y—x0)'€A

{

oy -2) ayar \”
y- ydt
X —— - b(z)f(z)dz
'[Iy 2l<t |y _ |n @ ( )f( ) tn+1+2w>
” Qy -2)
- b
| (x)|<,[4x—xo| J‘2|x—x0|<|);_—yx|§|t<3|x—xo| J|y <t |y —z|"7 T e f(2)dz

= 11 - Iz.

(3.3)

(3.4)

(3.5)

>1/2

(3.6)
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For I, noting that if |z — xg| < 7, |x — xo| > Ba|z — x¢], and |y — xg| > 2B,|z — x|, then we get

|z—x| _ 1
< — < Bj. 3.7
ly-x| "B 47

|(y-2) - (y-x0)| <2

Then by (3.4), we get Q((y — z)") > C1/(log(2/By))". Since 4|x—xo| > |y—xo|+|z—x0| > |[y—2z| >
|ly—xo0|—|z—2x0| > 2|x—x0|—|x—2x0|/2 = 3|x—2x0|/2 and 4|x—xo| > [x—y| > [y—x0|—|x—2x0| > |x—2x0,
we get 4|x — xo| > |y — z| > 3]x — x0|/2 and 4|x — x| > |x — y| > |x — x¢|. Thus, by (2.5), (2.7),
(2.8), and the Holder inequality, we get

” Qy-=2) dydt
I > C —b s d I
e le—me‘ Ie-yI<t (y—xo)' €A J Beon |y 2" @ E)xity-=hn 4z i

2|xc=20| <[y —x0|<3|x—xo|

~1/2
* dydt

X D —————
dx—xo| J | PYI<t (y-xo)'en  pn+le2w

2]x=x0|<|y—20|<3|x—x0]

dtd
2w-n —y
> C|X - x0| J‘B b(Z)f(Z) ’[ (y-x0)'€A dlx—xol<t, |x-y|<t n+142@ z (3 8)
(xo,r) 2]=x0|<|y—x0|<3|x~2xo| ly—zl<t ‘
dtd
=Clx - xO|2w—nf b(z)f(z) TeA I n+1+2ywr =
B(X[),T) (]/—xo) € 4\x—x0|<t t

2|x—xo|<|y—x0|<3|x—x0|

> C|x—x0|_"J‘ b(z)f(z)dz

B(xo,r)

= B3N7"|x — x| ™".

By (2.5) and (2.6), we have

b= () (f:f -

2|xc—2x|<[y—x0[<3|x=x0]

Q(y -z) Q(y - xo)
X f <—n_wX{|yz<t1 - = Xlly-xkt) ) f(2)dz
B\ |y - 2| |y = xo

2 1/2
dydt
tn+1+2w
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Pe-yl<t

[e'e]
<bl( [
420l 2|x—x|<|y—x0|<3|x—2xq|

y f Qy - =)
AN L

|ly—xo|<t

+|b(x)] J:xxof

[*e]

[x=yl<t
2|x—x|<|y—x0|<3|x—x0]|

sl |

4]x—x| xe=yl<t

2|xc=2xp|<[y—x0|<3|x—xo|

=L +I5+1.

In 122, we have t < |y — xp| < 3|x — xp| and t > 4|x — xg|. In Ig’
= 0. Now, we estimate I}, by Q € L®(5"), the

and t > 4|x — xg|. It is easy to see that IZ2 =

15
1/2
Q(y - d dt
_Q(y x(ﬂ) F(z)dz| At
|y _ xOln (4 tn+1+2w
2 1/2
Q(y -z) dydt
|ly—z|<t | |n Wf(z)dz +l+2w
ly—xol>t
) 1/2
Q(y - xo) dydt
[y—z|>t | | f( z)dz pn+1+2w
ly—xo|<t
(3.9)

,we gett < |y —z| < 4|x — x|

Minkowski inequality, Lemma 2.1 for |y — xo| > 2|z — x¢|, and (2.4), we get

Becbel| el | |
: B(xo,r)l | 2|x—2x0|<|y—2x0]<3|x—2x0] Abexolst, [y-z|<t

[y—xol<t, |x-yl<t

/2
1 dtdy > (3.10)

|y X0 |2(n w) (log(|y xOl/T))ZY r+1+2w

< Ba|b(x)[7"|x — xo|™ (log Ix x°|>

From (3.9) and (3.10), we get

Ir < Ba|b(x)|r"|x — x0|-"<1og| x0|)

Let

(3.11)

(3.12)

_ ¥
F:{xeG:| (x)| > 3N<og|x rx0|>,|x—x0|<N1/"r}.
B,
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Without loss of generality, we may assume that N > B, > 1, otherwise, we get the desired
result. Since ¢(t) is nonincreasing, we have ¢(|B(xo, N'/"r)|) < ¢(|B(xo,7)|) = ¢(r"). Then by,
(3.6), (3.8), and (3.11), we get

1A 2 1B ST A e

1
>
~ (p(IB(xo, Nmr) )P B (xo, NVMT) [ Jpeesefeniins

|[o, 1) £ ) Pl

1

1 p
2 TV N ~ByNr"|x - x0|-"> dx
((P(Tn))ern J‘(G\F)ﬁ[|x—xo|<N1/"r} (2

1

1 B 14
2 —pNI i <§B3NT"|x‘x0| ) dx
(@(rm) N1 ) {Bs(Fl+(Bor)") /" <lx=x0|<N1/7710G

n\p NY"r
_ nl . - <B312\TT ) J‘ . t—prﬁn—ldtj. ](xl)do_(xl)
(p(rm))"Nr B (IFI+(Bar)") A
1 - (B /2);7 — — 1-p)n 1-
e, nyp-1123 1-p.n(1-p) _ p-p) ny\1-p
> ((p(rn))po(A)(Nr e (N'7r B (F|+ (Bar)")' ).
(3.13)
Thus,
(I + (Bor)")' ™ < BeN'Pr0) (14 (o)) | £1I7,.). (3.14)
Then, by (2.20) and (3.14), we get
|F|+ (Byr)" > B;NT™. (3.15)

If N < ZB;lB;’, then Theorem 1.3 is proved. If N > 2B;1B§, then

|F| > %Nr". (3.16)
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Let g(v) = YB(x,r) (v). For x € F, we have

2 1/2
dydt
pn+l+2w

2 1/2
dydt
tn+1+2w

[[b, 5] g(x)| = <f:o I|x—y<t
2 <f ::c—ml ,[ My

2|¢-2¢0 | <|y-2x0 | <32¢-2x|

> [b(x) <f [ o

2|oexo Kyx0 3| x-2x0l, (yx0) €A

oo}
J‘4|x—x0 I beyl<t

2|xc=2xp|<[y—x0[<3|x—xq|

Oy —
f L0 2) ) - b(=)g(2)dz
ly—z|<t |]/

(b(x)-b(2))g(2)dz

J Q(y-z)
|

nw
yz|<t |y—Z|

fl Q=2) ¢ (2ydz

nw
it |y—2|

f -2 ez

n-w
y-zi<t |y — z|

2 1/2
dydt
pn+l+2w

(3.17)

= K1 - Kz.

For K3, as above mentioned, we have Q((y — z)") > C1/(log(2/By))". Since 4|x—xo| > |y —z| >
3|x — x0]/2 and 4|x — x| > |x — y| > |x — x|, it follows the Holder inequality that

P 1/2
* Q(y-z) dydt
Ki=|b — 1Az | —S——
1 I (X)I {J‘4|X—x0 I [x—yl|<t, (y—xo0) €A <J‘B(xo,r) |y_zln—w X{(Iy- [t} Z> tn+1+2w

2|xx—x0|<[y—x0|<3[ox=2xo|

* Q(y -z) dydt
2 [b(x)] I eyl (y-x)/ A L Ty = 2] X< 42 et

- -z
el il * B [

-1/2
* dyadt
X D ————
4Jx—x0)| [x-y|<t, (y-x0)'eA  n+1+2w

2|x—xg|<|y—x0|<3|x—x0]|

n dtd
> Clb(x)lx - xoP™ f Y

4
B(xo,r) (y=x0)'eA 4[4xx0|<t prvlvie
"7 2lx=xo|<[y—x0|<3|x—xo]

> BgN|x—x0|_"I dz
B(xo,r)

= BsNr"|x — xo| ™.
(3.18)
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By Q € L*(5"!), the Minkowski inequality, and |x—xo| = |[y—z| for 2|x—x,| < [y—x0| < 3|x—x0|
and z € B(xq,r), we get
1/2
dydt
142w

<f4|x xg-[ |x—y|<t
1/2
C @ dtdy
< —WJ |b(z)|d=z <J‘ J‘ 12w
lx — xo] B(xo,7) 2x-xo|<ly—-xol<3]x-xo| J 4lx—xo|

f @y -2) ——=b(2) X {ly-z<t)dz
2fx=xol<ly—xo|<Blx-xo| I P
< Bolx — xo| " f Ib(2)ldz

B(xo,r)

on |y =27

= BoNr"|x — x| ™
(3.19)

Thus, by (3.17), (3.18), and (3.19), we get, for x € F,
|[b, uT] g(x)| > Bsr"|b(x)||x = xo|™ — BoNT"|x — x0| " (3.20)

Thus, by (3.20), p(N7") < ¢(r"), |b(x)| > (NB3/2Bs)(log(|x — x0|/7))" when x € F and the
Holder inequality, we have

B

o> gl > b E

1 r
b, u@] e(x)|Pdx
(p(Nr")(Nr")l/P <I|x—xg|<N1/”r|[ #ilg | >

“1/p
1 f J‘
> b, ud | g(x)|dx dx
p(r") (Nrn)l/p |x*xo|<N1/”1’| [ s ]g( )l < Jx—2xo|<N1/ny >

1
2 SN L| [b, 1518 (x)|dx (3.21)

BgT
T p(r")Nr"

_ Y
> Bu j <log M) | — xo| "dx
‘P(T") F r

f I = xo| "dx

f|b<x)||x xol"dx - f|x ol "dx

(r”)Nr”

90(r")
= L1 — L2.
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As the proof of (2.33) and (2.36), we can get that there exists a constant 7 > 1 such that

B12 T
Li>——(logN)’,
1 (P(rn)( g )

(3.22)
L, < B log N
~ ()
So, by (3.21) and (3.22), we get
BlO > B12 (log N)T - Bl3 log N. (323)

Then, N < B(Q,p,n,w). Theorem 1.3 is proved.
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