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We establish a generalization of the inequality introduced by Mitrinovi¢ and Pecari¢ in 1988.
We prove mean value theorems of Cauchy type for that new inequality by taking its difference.
Furthermore, we prove the positive semidefiniteness of the matrices generated by the difference
of the inequality which implies the exponential convexity and logarithmic convexity. Finally, we
define new means of Cauchy type and prove the monotonicity of these means.

1. Introduction

Let K(x,t) be a nonnegative kernel. Consider a function u : [a,b] — R, where u € U (v, K),
and the representation of u is

b
u(x) =f K(x, t)ov(t)dt (1.1)

for any continuous function v on [a, b]. Throughout the paper, it is assumed that all integrals
under consideration exist and that they are finite.
The following theorem is given in [1] (see also [2, page 235]).

Theorem 1.1. Let u; € U(v,K) (i =1,2) and r(t) > 0 forall t € [a,b]. Also let ¢ : R* — Rbea
function such that ¢(x) is convex and increasing for x > 0. Then
b b )
f r(x)¢< )dx < I s(x)gb( ) )dx, (1.2)
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where
s(x) = v, (x)f Mdt, uy () #0. (1.3)

The following definition is equivalent to the definition of convex functions.

Definition 1.2 (see [2]). Let I C R be an interval, and let ¢ : I — R be convex on I. Then, for
s1,52,83 € I such that 51 < s, < s3, the following inequality holds:

$(s1)(53 = 52) + P(52) (51 — 53) + P(53) (52 — 51) > 0. (1.4)

Let us recall the following definition.
Definition 1.3 (see [3, page 373]). A function h : (a,b) — R is exponentially convex if it is

continuous and

> &idih(xi+x;) >0 (1.5)

ij=1

for all n € N and all choices of §; € R,x; + x; € (a,b), i,j=1,...,n
The following proposition is useful to prove the exponential convexity.
Proposition 1.4 (see [4]). Let h: (a,b) — R. The following statements are equivalent.

(i) h is exponentially convex.

(ii) h is continuous, and

S eh (x’ +x’> >0 (1.6)

i,j=1

for everyn € N¢; € (a,b), and x; € (a,b), 1 <i< n.

Corollary 1.5. If h: (a,b) — R™ is exponentially convex, then h is log-convex; that is,
h(Ax + (1-1)y) < h(ac)*h(y)kA Vx,y € (a,b), A€ [0,1]. (1.7)

This paper is organized in this manner. In Section 2, we give the generalization
of Mitrinovi¢-Peari¢ inequality and prove the mean value theorems of Cauchy type. We
also introduce the new type of Cauchy means. In Section 3, we give the proof of positive
semidefiniteness of matrices generated by the difference of that inequality obtained from the
generalization of Mitrinovi¢-Pecari¢ inequality and also discuss the exponential convexity. At
the end, we prove the monotonicity of the means.
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2. Main Results

Theorem 2.1. Let u; € U(v,K) (i = 1,2), and r(x) > 0 for all x € [a,b]. Also let I C R be an
interval, let ¢ : I — R be convex, and let uy(x)/uz(x), v1(x)/v2(x) € I. Then

f (5 ) f 99 ) 2.1)

where

r(HK(t,x)
u(t)

4(x) = va(x) f dt, w(t) £0. 2)

Proof. Since uy = f K (x,t)v1(t)dt and v, (t) > 0, we have

[on(z2)oc il
- f§r<x>¢< o [ K24 > 23)

b b
= I r(x)(;b< K £)oa(t) 21(f) dt> dx.

u(x)  va(t)

By Jensen’s inequality, we get

Joreon(iey Yo [ oo ([ XS 0 (g )
([ ey (8
[ oY ([ R Y
- [ a0a(20 )

Remark 2.2. 1f ¢ is strictly convex on I and v;(x) /v2(x) is nonconstant, then the inequality in
(2.1) is strict.

(2.4)

O
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Remark 2.3. Let us note that Theorem 1.1 follows from Theorem 2.1. Indeed, let the condition
of Theorem 1.1 be satisfied, and let #; € U (|v|, K); that is,

b
i (x) =J' K (x, B)|or ()|dt. (2.5)

So, by Theorem 2.1, we have

[[acn (|29 ax = [ an (12w [ rp (D ar. 29

On the other hand, ¢ is increasing function, we have
p(BO) <y (s [ Kepntoar
0 (x) w) J,

> ¢<ﬁ > 2.7)
COR

v1(x)

(x)

\%

b
f K(x, )vr (t)dt

)

1 (x)
us (x)

From (2.6) and (2.7), we get (1.2).

If f € C([a,b]) and a > 0, then the Riemann-Liouville fractional integral is defined by
1500 = o [ fO6 o ar 28
¢ T ), ' '

We will use the following kernel in the upcoming corollary:

(x _ t)a—l
Ki(x,t) = I'(a)
0, x<t<b.

<t <
astsx (2.9)

Corollary 2.4. Let u; € C([a,b]) (i = 1,2), and r(x) > O for all x € [a,b]. Also let I C R be
an interval, let ¢ : I — R be convex, uy(x)/uz(x), I5ui(x)/I5us(x) € I, and uy(x), ux(x) have
Riemann-Liouville fractional integral of order a > 0. Then

f r(x )4)( Ex;>dx§fj(,‘b(Zlg;)QI(t)dt, (2.10)

where

ITuy(x) #0. (2.11)

Cw() (Pr)(e-p*!
00 =g J, i
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Let AC([a, b]) be space of all absolutely continuous functions on [a, b]. By AC"([a, b]),
we denote the space of all functions g € C"([a, b]) with ¢V € AC([a,b]).

Let a € R* and g € AC"([a,b]). Then the Caputo fractional derivative (see [5, p. 270])
of order a for a function g is defined by

(n)
§"(s)
Dg,g(t) = (2.12)
g r(n a) (t S)ac —n+1
where n = [a] + 1; the notation of [a] stands for the largest integer not greater than a.
Here we use the following kernel in the upcoming corollary:
_ pyn-a-1
CoD _ acicx,
Kp(x,t) =4 Tn-a) (2.13)
0, x<t<b.

Corollary 2.5. Let u; € AC"([a,b]) (i =1,2), and r(x) > 0 for all x € [a,b]. Also let I C R be an
interval, let ¢ : I — R be convex, uln)(t)/uzn)(t) D% uy(x)/D%,uy(x) € I, and uy(x), upx(x) have
Caputo fractional derivative of order a > 0. Then

b D2, u1 (x) b
Lr(x)qb( Diu z(x)>dx<f ¢<u§")() Qp(t)dt, (2.14)

where

w1 (" rEE-pT

Qo(t) = I'n-a) ), DS us(x)

dx, D%,ux(x)#0. (2.15)

Let Li(a, b) be the space of all functions integrable on (a, b). For f € R*, we say that
f € Li(a,b) has an L, fractional derivative Dg fin [a, b] if and only if Dg_k f € C([a,b]) for
k=1,...,[f1+1, D" f € AC([a,b]), and D’ € L.,(a, b).

The next lemma is very useful to give the upcoming corollary [6] (see also [5, p. 449]).

Lemma 2.6. Let p>a >0, f € Li(a,b) has an L, fractional derivative Dgf in [a,b], and
DI*fa)=0, k=1,...,[f] +1. (2.16)
Then

Dif(s) = )f (s— < Dhf(tdt 217)

F(p-a

foralla<s<b.
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Clearly
Djf isin AC([a,b]) for p-—a>1,
(2.18)
D f isin C([a,b]) for p—a e (0,1),
hence
Dif € Lo(a,b),
(2.19)
D%f € Li(a,b).
Now we use the following kernel in the upcoming corollary:
p-a-1
%/ a S t S s,
Ki(s,t) =4 T(p-a) (2.20)
0, s<t<b

Corollary 2.7. Let p > a >0, u; € L1(a,b) (i =1,2) has an L, fractional derivative Dgui in [a,b],
and r(x) > 0 forall x € [a,b]. Alsolet DY *u;(a) =0fork=1,...,[fl+1 (i=1,2),letd: I — R
be convex, and D%u1(x)/D%usy(x), ijul(x)/Dguz(x) € 1. Then

D%u; (x) Dhuy (t)
I r(x )¢<D“u (x)>dx§fa¢<Dﬁu2( )>Q (t)dt, (2.21)

where

Dhus(t) (¥ r(x)(x —1)f !

Qult) = T(p-a) ), Dim(x)

dx, Dauy(x)#0. (2.22)

Lemma 2.8. Let f € C2(I), and let I be a compact interval, such that

m< f'(x) <M, VYxel. (2.23)

Consider two functions ¢1, ¢, defined as

2
i) = X

i (2.24)

$a(x) = f(x) - .

Then ¢y and ¢y are convex on I.
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Proof. We have

¢y (x) = M- f"(x) 20,
$5(x) = f'(x) —m 20,

(2.25)

that is ¢, ¢ are convex on I. O

Theorem 2.9. Let f € C2(I), let I be a compact interval, u; € U(v,K) (i = 1,2), and r(x) > 0 for
all x € [a,b]. Also let uy(x)/uz(x), vi(x)/v2(x) € I, v1(x)/v2(x) be nonconstant, and let g(x) be
given in (2.2). Then there exists & € I such that

(o) o2
(oo ()

Proof. Since f € C2(I) and I is a compact interval, therefore, suppose that m = min f”, M =
max f"”. Using Theorem 2.1 for the function ¢; defined in Lemma 2.8, we have

[ (3 Ga) () o< Lo (3 () 1 (26) ) e
From Remark 2.2, we have

,[b <q(x)<28>2 - ’(x)<%>2>dx >0. (2.28)

Therefore, (2.27) can be written as

(2.26)

b
2%(‘1(x)f(01(x)/772(x)) =7 (x) f(u1(x) /uz(x)) ) dx <M. (2.29)
J2 (60 (@1(x) /02(x))? = 1) (11 (x) /142(x))° ) dx

We have a similar result for the function ¢, defined in Lemma 2.8 as follows:

2[7(q(x) f (01 (x) /02(x)) — 7(x) f (11 (x) / (%)) ) dx -

b 2 (2.30)
f2 (60 @1 (x) /02(2))? = 7 () (w1 (x) /102 (x))? ) dx
Using (2.29) and (2.30), we have
20 f @) /02(0) ~ @) f (1) fwa()x a1

(a0 @) /2@ - 10 () /wa(x)))dx
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By Lemma 2.8, there exists ¢ € I such that

Ja (G0)f (01(0) /02(x)) = () f (11 () /() )dx " (§)
fs <11(x)(v1(x)/vz(x))2 —7r(x) (ul(x)/uz(X))2>dx 2

(2.32)

This is the claim of the theorem. O

Let us note that a generalized mean value Theorem 2.9 for fractional derivative was
given in [7]. Here we will give some related results as consequences of Theorem 2.9.

Corollary 2.10. Let f € C*(I), let I be a compact interval, u; € C([a,b]) (i = 1,2), and r(x) > 0
forall x € [a,b]. Also let ui(x)/ux(x), Ifui(x)/I5ux(x) € I, let uy(x)/uz(x) be nonconstant, let
Qr(t) be given in (2.11), and uy (x), uz(x) have Riemann-Liouville fractional integral of order a > 0.
Then there exists ¢ € I such that

f (s (8) - ref (e ) )ax
2 o) o) o

Corollary 2.11. Let f € C3*(I), let I be compact interval, u; € AC"([a,b]) (i = 1,2), and
r(x) > 0 for all x € [a,b]. Also let ul” (£) /ul" (t), D% (x) / D%us (x) € I, let 1 (x) /" (x) be
nonconstant, let Qp(t) be given in (2.15), and ul(x) uy (x) have Caputo derivative of order a > 0.
Then there exists ¢ € I such that

b (n)

[ <QD<x)f<—Z}n)E3> r(x >f(g:,“fg;)>dx

a 2 *a
_&Ib AT CA )<D“u1(x)> .
= . D (n)( ) r(x D,‘fauz(x) X.

Corollary 2.12. Let > a >0, f € C*(I), let I be a compact interval, u; € L1(a,b) (i =1,2) has an
L., fractional derivative, and r(x) > 0 for all x € [a,b]. Let Dgikui(a) =0fork=1,...,[]+1 (i=
1,2), D%uy(x)/D%uy(x), Dgul (x)/Dguz(x) € I, let Dgul(x)/Dguz(x) be nonconstant, and let
QL (t) be given in (2.22). Then there exists ¢ € I such that

Dguy (x) D%uq(x)
f (QL(X)f< auz(x)>_ e )f<Da” (x)>>dx
L0 (g D5”1<x>>2_r<x) (),
2 )\~ DPuy(x) Dgus(x)

(2.33)

(2.34)

(2.35)
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Theorem 2.13. Let f, g € C?(I), let I be a compact interval, u; € U(v, K) (i = 1,2), and r(x) > 0
forall x € [a,b]. Also let ui(x)/us(x), v1(x)/v2(x) € I, vi(x)/v2(x) be nonconstant, and let
q(x) be given in (2.2). Then there exists ¢ € I such that

o q(x) f (01(x) /v2(x))dax = [ 7(x) f (1 (x) /ua(x))dx ()

=—=. (2.36)
fo 4()g(01(x)/02(x))ddx = [ 7(x)g (w1 (x) /ux (x))dx  &'(6)
It is provided that denominators are not equal to zero.
Proof. Let us take a function h € C*(I) defined as
h(x) = c1f(x) — c2g(x), (2.37)
where
(" v1(x) ’ u1(x)
o= [ aws(5igy ) [ rs (g ) o s,
(o S |
o= [ as (5 )= [ rns (G )
By Theorem 2.9 with f = h, we have
0=(27@-28'®) jb (2 >2dx - 0 (”1(x))2dx (239)
Y 28 T\ o) FERANTYES) ' '
Since
’ o)\ (° u1(x) \?
Jya (o) ax- [, (g ) a0 (240
so we have
cf'(§) —cg"(§) =0. (241)
This implies that
a_f1©)
ERFIo) -
This is the claim of the theorem. O

Let us note that a generalized Cauchy mean-valued theorem for fractional derivative
was given in [8]. Here we will give some related results as consequences of Theorem 2.13.
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Corollary 2.14. Let f, g € C*(I), let I be a compact interval, u; € C([a,b]) (i =1,2), and r(x) >0
forall x € [a,b]. Also let ui(x)/uy(x), I5u1(x)/Ifux(x) € 1, let ui(x)/us(x) be nonconstant,
let Qg (t) be given in (2.11), and uq(x), uz(x) have Riemann-Liouville fractional derivative of order
a > 0. Then there exists ¢ € I such that

17 Q1) f (1 (%) /ua(x))dx = [7 7 () f (1201 (x) / I3z (x) ) dx A
17 Qr(x) g (w1 (x) /ua(x))dx — [7 7 (x) g(I3u1 (x) / I3un (x))dx~ 8"(6)

(2.43)

It is provided that denominators are not equal to zero.

Corollary 2.15. Let f,g € C?(I), let I be a compact interval, u; € AC"([a,b]) (i = 1,2), and
r(x) > 0 for all x € [a,b]. Also let u\"™ (t) /u{” (t), D% 1 (x) / D% uz(x) € I, let ul™ (x) /ul” (x)
be nonconstant, let Qp(t) be given in (2.15), and uy(x), uz(x) have Caputo fractional derivative of
order a > 0. Then there exists ¢ € I such that

Ja Qo0 f (1" (0 /15" (x) ) dax = [ 7 (x) f (D (x) / Dz (X)) oy
f2 Qo ()8 (1" () /" (x) ) dx = [£ 7(x) g (D1 (x) / Digun(x))dxe -~ 8"(6)

(2.44)

It is provided that denominators are not equal to zero.

Corollary 2.16. Let > a >0, f,g € C*(I), let I be a compact interval, u; € L1(a,b) (i =1,2) has
an L, fractional derivative Dgu,- in [a,b], and r(x) > 0 for all x € [a, b]. Also let Dg_kui(a) =0 for
k=1,...,[f] +1 (i = 1,2), D%u; (x)/D%us(x), Douy (x) / Diusy (x) € 1, let DPuy (x) / Db uy () be
nonconstant, and let Qr (t) be given in (2.22). Then there exists ¢ € I such that

fs QL(x)f<D5u1(x)/DZuZ(x))dx - fsr(x)f(DZul(x)/DZ‘uz(x))dx - fll(g)
f2 Qu(x)g (Dl (x)/ Dl (x) ) dx = [ 7 (x)g (Dus (x)/ Diup (x))dx -~ 8")°

(2.45)

It is provided that denominators are not equal to zero.

Corollary 2.17. Let I C R*, let I be a compact interval, u; € U(v,K) (i = 1,2), and r(x) > 0 for
all x € [a,b]. Let ui(x)/uz(x),v1(x)/va(x) € I, let v1(x)/va(x) be nonconstant, and let q(x) be
given in (2.2). Then, for s,t € R\ {0,1} and s #t, there exists ¢ € I such that

s(s —1) Jo 4(0)(@1(x)/v2(x)) dx - [, 7(x) (w1 (x) /ua () dx e
. . b : (2.46)
HE=1) (7 g(x) (01(x) /0 (x)) dx = [ 7(x) (ur (x) /ua (x)) *elx
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Proof. We set f(x) = x' and g(x) = x5, t#s, 5,t#0,1. By Theorem 2.13, we have

Jo 400 (@1 (x) /02 () dlx — [ () (i (x) /a(x)) ' p(t — 1)et2
f2 800 @1 (x)/02(0))"dx = [[ r(0) 10 (x) /ua(0)) el S =DE

This implies that

_s(s=1) Jaq(0) @1 (0)/02(x)) dx = 2 r(x) (s () /12 (x))'dx
HE=T1) 12 () (01 (x) /02(x)) e — [0 7(x) (1 (x) [ () el

gt—s

This implies that

&= s(s-1) js q(x)(v1 (x)/Uz(x))tdx - LI; r(x) (w1 (x)/uz(x))tdx 1/(t-s)
HE=1) 7 (x) (01(x) /02(x)) dx = [} 7(x) (1 (x) / un (x)) "l '

Remark 2.18. Since the function ¢ — ¢'7% is invertible and from (2.46), we have

< s(s-1) fs g(x)(v1(x) /v2(x)) " dx - J's () (ur (x) /up (%)) dx 1/(t=s) .
AN fsq(x)(vl (x)/v2(x)) dx — fsr(x)(ul(x)/uz(x))sdx -

Now we can suppose that f”/g" is an invertible function, then from (2.36) we have

. < f )-l 12 q(x) (01(x) /02(x))dx = [ 7(x) (11 (x) /2 () dx
8 12 q(x) (01(x) /02(x))dx = [© 7() (1 (%) /12 (x))°dx

11

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

We see that the right-hand side of (2.49) is mean, then for distinct s, t € R it can be written as

=

1/(t-s)
o= (2)

=

(2.52)
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as mean in broader sense. Moreover, we can extend these means, so in limiting cases for
s, t#0,1,

<Ll: g(x)A(x)° log 4 (x)dx — Ll: r(x)B(x)*log B(x)dx  2s-1 >
= exp 4

12 gy (x)*dx - [ r(x)B(x) dx s(s—1)

lim M s
s—0

M 2 q()log? et (x)dx - [7 r(x)log?B(x)dx
= 0,0 = exXp )

z[f: q(x) log o4 (x)dx - [ r(x) log B(x)dx

lim Mg s
s—1
= Mj,

, , (2.53)
|2 q(x)e#(x)log” o4 (x)dx — | r(x)B(x)logB(x)dx
= ex - 7

2[[5 q(x)A(x) log A (x)dx — f: r(x)B(x) log B(x)dx]

}imMs,t
b b (1/s)
M [ q(x)A(x)°dx — [ r(x)B(x) dx
— ,O —
’ [L}j q(x)log o4 (x)dx - fﬁ r(x) logB(x)dx]s(s -1)

limMs,t

t—1

= Ms,l

b b 1/(1-s)
[ja G(x)A4(x) log A(x)dx — [ 7(x)B(x) log B(x)dx]s(s ~1)

2 g(x) o (x)dix — [° r(x)B(x)*dx

where 4 (x) = v1(x)/v2(x) and B(x) = uy (x) /uz(x).

Remark 2.19. In the case of Riemann-Liouville fractional integral of order a > 0, we well use
the notation Ms,t instead of M, and we replace v;(x) with u;(x), u;(x) with I5u;(x), and
q(x) with Q1 (x).
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Remark 2.20. In the case of Caputo fractional derivative of order & > 0, we well use the

notation Ms,t instead of M,; and we replace v;(x) with ulf") (x), ui(x) with D$,u;(x), and
q(x) with Qp(x).

Remark 2.21. In the case of L, fractional derivative, we will use the notation ]\7Is,t instead of
M and we replace v;(x) with D‘Zui(x), u;(x) with D5u;(x), and g(x) with Qp (x).

3. Exponential Convexity
Lemma 3.1. Let s € R, and let @5 : R* — R be a function defined as
xS

s(s—1)’
s (x) = —log x, s=0, (3.1)

s#0,1,

xlogx, s=1

Then s is strictly convex on R* for each s € R.

Proof. Since ¢ (x) = x*72 > 0 for all x € RY, s € R, therefore, ¢ is strictly convex on R* for each
seR. O

Theorem 3.2. Let u; € U(v,K) (i =1,2), ui(x),vi(x) >0 (i=1,2), r(x) >0 forall x € [a,b],
let q(x) be given in (2.2), and

A = Iq(x) t<v1§x;) J'jr(x)(p(%)dx. (3.2)

Then the following statements are valid.

(a) Forme Nands; € R, i =1,...,n, the matrix [/\(SiJrSj)/z]Zj:l is a positive semidefinite
matrix. Particularly

k
det I:/\(s,-+s]-)/2:| o >0 fork=1,...n. (3.3)

(b) The function s — \, is exponentially convex on R.

(c) The function s — |\, is log-convex on R, and the following inequality holds, for —co < r <
s<t<oo:

N <ANSNT (3.4)
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Proof. (a) Here we define a new function p,

k
p(x) = Zaiaf(PSij (x), (3.5)

ij=1

fork=1,...,n,a; €R, s;; € R, where s;; = (s; +5;)/2,

2
n n

W' (x) = D aiapx®i = <Zaix(sf/2)‘1> >0. (3.6)
i=1

ij=1

This shows that p(x) is convex for x > 0. Using Theorem 2.1, we have

k
> aia /\Si/_ > 0. (3.7)

ij=1

From the above result, it shows that the matrix [/\ s, /2]:’],71 is a positive semidefinite matrix.
Specially, we get
d ‘ v
et [ Neos /2] 20 k=l (3.8)
(b) Since

hm/\s = /\1’

s—1

hm/\s = /\0’

s—0

(3.9)

it follows that A, is continuous for s € R. Then, by using Proposition 1.4, we get the
exponential convexity of the function s — A..

(c) Since A\, is continuous for s € R and using Corollary 1.5, we get that A, is log-
convex. Now by Definition 1.2 with f(t) = log A, and r,s,t € R such that r < s < t, we
get

log /\t: <log /\;ﬁs +log /\ffr, (3.10)

which is equivalent to (3.4). O
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Corollary 3.3. Let u; € C([a,b]) (i =1,2), and r(x) > 0 for all x € [a,b]. Also let ui(x)/uy(x),
Ifui(x) /15usx(x) € RY, uy(x), up(x) have Riemann-Liouville fractional integral of order a > 0, let
Qi (t) be given in (2.11), and

R fom(er [ om(GetNar o

Then the statement of Theorem 3.2 with |\, instead of )\, is valid.

Corollary 3.4. Let u; € AC"([a,b]) (i = 1,2), and r(x) > O for all x € [a,b]. Also let
ui")(t)/u(")(t) D% ui(x)/D3usx(x) € RY, ug(x), uax(x) have Caputo fractional derivative of order
a >0, let Qp(t) be given in (2.15), and

(") b a
f Op(x )(Pt< (n)i ;>dx—J r(x)tp(%ig;)dx. (3.12)

Then the statement of Theorem 3.2 with N\, instead of \; is valid.

Corollary 3.5. Let > a >0, u; € Ly (a,b) (i =1,2) has L, fractional derivative, and r(x) > 0
for all x € [a,b]. Also let D “ui(a) = 0 fork = 1,...,[f] +1 (i = 1,2), D%uy(x)/D%us(x),
Dgul(x)/Dguz(x) € R, let Q(t) be given in (2.22), and

~ (" Dhuy (%) b D2uy (x)
A= f Q)i <Dgu2<x) )dx - f a r(x)tpt< o )dx. (3.13)

Then the statement of Theorem 3.2 with |\, instead of )\, is valid.

In the following theorem, we prove the monotonicity property of M, defined in
(2.52).

Theorem 3.6. Let the assumption of Theorem 3.2 be satisfied, also let |\, be defined in (3.2), and
t,s,u,v € Rsuch that s < v,t < u. Then the following inequality is true:

My < My, (3.14)
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Proof. For a convex function ¢, using the Definition 1.2, we get the following inequality:

(x2) —g(x1) _ ¢(y2) —9(11)

< (3.15)
X2 — X1 Y2—1

with x1 < y1, x2 < Y2, x1#x, and y; # 1. Since by Theorem 3.2 we get that /\, is log-convex.
Weset ¢(t) =log \;, x1 =5, x2 =t, 11 =0, Yo = u, s#t, and v # u. Terefore, we get

log A\, ~log \s _ log /\, ~log A\,

t—s - u—7ov

(3.16)
1/(t=s) 1/(u-v)
()" e ().
S v
which is equivalent to (3.14) for s #¢, v # u.
For s = t, v = u, we get the required result by taking limit in (3.16). O

Corollary 3.7. Let u; € C([a,b]) (i =1,2), and let the assumption of Corollary 3.3 be satisfied, also
let \; be defined by (3.11). For t,s,u,v € R such that s < v, t < u, then the following inequality
holds:

Ms,t S Mv,u- (317)

Corollary 3.8. Let u; € AC"([a,b]) (i = 1,2) and let the assumption of Corollary 3.4 be satisfied,
also let )\, be defined by (3.12). For t,s,u,v € R such that s < v, t < u, then the following inequality
holds:

Ms,t S Mv,u- (318)

Corollary 3.9. Let p > a > 0, u; € Li(a,b) (i = 1,2) and the assumption of Corollary 3.5 be
satisfied, also let |\, be defined by (3.13). For t,s,u,v € R such that s < v, t < u. Then following
inequality holds

Ms,t S Mv,u- (319)
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