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We consider an iterative scheme for approximating the common fixed points of two asymptotically
quasi-nonexpansive mappings in the intermediate sense in Banach spaces. The present results
improve and extend some recent corresponding results of Lan (2006) and many others.

1. Introduction

Let C be a nonempty subset of a real Banach space E. Let T : C → C be a mapping. We use
F(T) to denote the set of fixed points of T . Recall that a mapping T : C → C is said to be
generalized asymptotically quasi-nonexpansive with respect to {σn} and {δn} if there exists
the sequences {σn} and {δn} ⊂ [0, 1) with σn → 0 and δn → 0 as n → ∞ such that

∥
∥Tn(x) − p

∥
∥ ≤ (1 + σn)

∥
∥x − p

∥
∥ + δn‖x − Tn(x)‖ (1.1)

for all x ∈ C, p ∈ F(T) and n ≥ 1. It is clear that if F(T) is nonempty, then the
asymptotically nonexpansive mapping, the asymptotically quasi-nonexpansive mapping,
and the generalized quasi-nonexpansive mapping are all the generalized asymptotically
quasi-nonexpansive mapping.

Recall also that a mapping T : C → C is said to be asymptotically quasi-nonexpasnive
in the intermediate sense provided that T is uniformly continuous and

lim sup
n→∞

sup
x∈C,p∈F(T)

(∥
∥Tn(x) − p

∥
∥ − ∥

∥x − p
∥
∥
) ≤ 0. (1.2)
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Remark 1.1. From the above definition, if F(T) is nonempty, it is easy to see that the
generalized asymptotically quasi-nonexpansive mapping must be the asymptotically quasi-
nonexpasnive mapping in the intermediate sense.

It is well known that the concept of asymptotically nonexpansive mapping, which
is closely related to the theory of fixed points in Banach spaces, is introduced by Goebel
and Kirk [1]. An early fundamental result due to Goebel and Kirk [1] proved that every
asymptotically nonexpansive mapping of a nonempty closed bonded and convex subset
of a uniformly convex Banach space has a fixed point. Since 1972, the weak and strong
convergence problems of iterative sequences (with errors) for nonexpansive mappings,
asymptotically nonexpansive mappings in the setting of Hilbert space or Banach space, have
been studied by many authors; please see, for example, [1–29] and the references therein.
Recently, Zhou et al. [30] introduced a class of new generalized asymptotically nonexpansive
mappings and gave a sufficient and necessary condition for the modified Ishikawa and
Mann iterative sequences to converge to fixed points for the class of mappings. Define the
Ishikawa iterative process involving the generalized asymptotically nonexpansive mappings
in a Banach space E as follows.

xn+1 = (1 − αn)xn + αnT
(

yn

)

,

yn =
(

1 − βn
)

xn + βnT(xn), n = 1, 2, . . .
(1.3)

where {αn}∞n=0 and {βn}∞n=0 are two real sequences in [0, 1] satisfying some conditions. For
details, we can refer to [31–33]. Very recently, Lan [3] introduced a new class of iterative
procedures as follows:

Let Ti : C → C (i = 1, 2) be given mappings. Then, for arbitrary ω ∈ C and x1 ∈ C, the
sequence {xn} in C defined by

yn =
(

1 − βn
)

ω + βnT
n
2 (xn),

xn+1 = (1 − αn)ω + αnT
n
1

(

yn

)

, n = 1, 2, . . . ,
(1.4)

is called the generalized modified Ishikawa iterative sequence.
Further, Lan [3] remarked that the above iterative processes include many iterative

processes as special cases and he gave a sufficient and necessary condition for the iterative
sequence to converge to the common fixed points for two generalized asymptotically quasi-
nonexpansive mappings.

It is our purpose in this paper that we will extend the above iterative processes to
the more general iterative processes and give a sufficient and necessary condition for two
asymptotically quasi-nonexpasnive mapping in the intermediate sense. Our result extends
the corresponding results of Lan [3], Zhou et al. [30], and many others.
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2. Preliminaries

Let C be a nonempty closed convex subset of a real Banach space E. Let Ti : C → C (i = 1, 2)
be given mappings. For given x1 ∈ C, the sequence {xn} in C defined iteratively by

yn =
(

1 − βn
)

ωn + βnT
n
2 (xn),

xn+1 = (1 − αn)νn + αnT
n
1

(

yn

)

, n = 1, 2, . . .
(2.1)

is called the more general modified Ishikawa iterative sequence, where {ωn} and {νn} are
sequences in C, and {αn} and {βn} are sequences in [0, 1] satisfying some conditions.

If we replace ωn and νn in all the iteration steps by ω, then the sequence {xn} defined
by (2.1) becomes to (1.4)which is studied by Lan [3].

If we replace ωn and νn in all the iteration steps by xn and ω, respectively, then the
sequence {xn} defined by (2.1) becomes to

yn =
(

1 − βn
)

xn + βnT
n
2 (xn),

xn+1 = (1 − αn)ω + αnT
n
1

(

yn

)

, n = 1, 2, . . . .
(2.2)

If we replace ωn and νn in all the iteration steps by xn, then the sequence {xn} defined
by (2.1) becomes to

yn =
(

1 − βn
)

xn + βnT
n
2 (xn),

xn+1 = (1 − αn)xn + αnT
n
1

(

yn

)

, n = 1, 2, . . . .
(2.3)

If βn = vn = 0 in (2.1), then the sequence {xn} defined by

xn+1 = (1 − αn)νn + αnT
n
1 (xn), n = 1, 2 (2.4)

is called the more general modified Mann iterative sequence.
It is clear that the iterative processes (2.1) include many iterative processes as special

cases.
In the sequel, we need the following lemmas for the main results in this paper.

Lemma 2.1 (see [32]). Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤ (1 + δn)an + bn. (2.5)

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞, then limn→∞an exists. In particular, if {an} has a subsequence
converging to zero, then limn→∞an = 0.
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3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Banach space E. Let Ti : C →
C (i = 1, 2) be asymptotically quasi-nonexpansive mappings in the intermediate sense such that
F(T1) ∩ F(T2)/= ∅. Let ωn ∈ C, νn ∈ C be two bounded sequences. For any given x1 ∈ C, let the
sequences {xn} and {yn} be defined by (2.1). Put

Gn = max

{

sup
p∈F(T1)∩F(T2),n≥1

(∥
∥Tn

2 (xn) − p
∥
∥ − ∥

∥xn − p
∥
∥
) ∨ 0,

sup
p∈F(T1)∩F(T2),n≥1

(∥
∥Tn

1

(

yn

) − p
∥
∥ − ∥

∥yn − p
∥
∥
) ∨ 0

}

.

(3.1)

Assume that
∑∞

n=1 Gn < ∞,
∑∞

n=1(1 − αn) < ∞ and
∑∞

n=1(1 − βn) < ∞.
Then the sequence {xn} converges strongly to a common fixed point p∗ of T1 and T2 if and only

if

lim inf
n→∞

d(xn, F(T1) ∩ F(T2)) = 0, (3.2)

where d(x, F(T1) ∩ F(T2)) denotes the distance between x and the set F(T1) ∩ F(T2).

Proof. The necessity is obvious and so it is omitted.
Now, we prove the sufficiency. For any p ∈ F(T1) ∩ F(T2), from (2.1), we have

∥
∥yn − p

∥
∥ =

∥
∥
(

1 − βn
)

ωn + βnT
n
2 (xn) − p

∥
∥

≤ (

1 − βn
)∥
∥ωn − p

∥
∥ + βn

∥
∥Tn

2 (xn) − p
∥
∥

=
(

1 − βn
)∥
∥ωn − p

∥
∥ + βn

(∥
∥Tn

2 (xn) − p
∥
∥ − ∥

∥xn − p
∥
∥
)

+ βn
∥
∥xn − p

∥
∥

≤ βn
∥
∥xn − p

∥
∥ + βnGn +

(

1 − βn
)∥
∥ωn − p

∥
∥,

(3.3)

∥
∥xn+1 − p

∥
∥ =

∥
∥(1 − αn)νn + αnT

n
1

(

yn

) − p
∥
∥

≤ (1 − αn)
∥
∥νn − p

∥
∥ + αn

∥
∥Tn

1

(

yn

) − p
∥
∥

= (1 − αn)
∥
∥νn − p

∥
∥ + αn

(∥
∥Tn

1

(

yn

) − p
∥
∥ − ∥

∥yn − p
∥
∥
)

+ αn

∥
∥yn − p

∥
∥

≤ αn

∥
∥yn − p

∥
∥ + αnGn + (1 − αn)

∥
∥νn − p

∥
∥.

(3.4)

Substituting (3.3) into (3.4) and simplifying, we have

∥
∥xn+1 − p

∥
∥ ≤ αnβn

∥
∥xn − p

∥
∥ + αn

(

1 + βn
)

Gn

+ αn

(

1 − βn
)∥
∥ωn − p

∥
∥ + (1 − αn)

∥
∥νn − p

∥
∥

≤ ∥
∥xn − p

∥
∥ + bn,

(3.5)
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where

bn = αn

(

1 + βn
)

Gn + αn

(

1 − βn
)∥
∥ωn − p

∥
∥ + (1 − αn)

∥
∥νn − p

∥
∥. (3.6)

We note that
∑∞

n=1 Gn < ∞,
∑∞

n=1(1 − βn) < ∞,
∑∞

n=1(1 − αn) < ∞ and ‖ωn − p‖, ‖νn − p‖ are
bounded; therefore, we have

∑∞
n=1 bn < ∞. Then, from (3.5), we have

d(xn+1, F(T1) ∩ F(T2)) ≤ d(xn, F(T1) ∩ F(T2)) + bn. (3.7)

By Lemma 2.1, we know that limn→∞d(xn, F(T1) ∩ F(T2)) exists. Because
lim infn→∞d(xn, F(T1) ∩ F(T2)) = 0, then

lim
n→∞

d(xn, F(T1) ∩ F(T2)) = 0. (3.8)

Next we prove that {xn} is a Cauchy sequence in C.
It follows from (3.5) that for any m ≥ 1, for all n ≥ n0, for all p ∈ F(T1) ∩ F(T2),

∥
∥xn+m − p

∥
∥ ≤ ∥

∥xn+m−1 − p
∥
∥ + bn+m−1 ≤

∥
∥xn+m−2 − p

∥
∥ + (bn+m−1 + bn+m−2)

≤ · · · ≤ ∥
∥xn − p

∥
∥ +

n+m−1∑

k=n

bk.
(3.9)

So we have

‖xn+m − xn‖ ≤ ∥
∥xn+m − p

∥
∥ +

∥
∥xn − p

∥
∥ ≤ 2

∥
∥xn − p

∥
∥ +

∞∑

k=n

bk. (3.10)

Then, we have

‖xn+m − xn‖ ≤ 2d(xn, F(T1) ∩ F(T2)) +
∞∑

k=n

bk, ∀n ≥ n0. (3.11)

For any given ε > 0, there exists a positive integer n1 ≥ n0 such that for any n ≥ n1,
d(xn, F(T1) ∩ F(T2)) < ε/4 and

∑∞
k=n bk < ε/2. Thus when n ≥ n1, ‖xn+m − xn‖ < ε. So we

have that

lim
n→∞

‖xn+m − xn‖ = 0. (3.12)

This implies that {xn} is a Cauchy sequence in E. Thus, the completeness of E implies that
{xn}must be convergent. Assume that xn → p∗ as n → ∞.

Now we have to prove that p∗ is a common fixed point of T1 and T2. Indeed, we
know that the set F(T1) ∩ F(T2) is closed. From the continuity of d(x, F(T1) ∩ F(T2)) = 0
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with limn→∞d(xn, F(T1) ∩ F(T2)) = 0 and limn→∞xn = p∗, we get

d
(

p∗, F(T1) ∩ F(T2)
)

= 0, (3.13)

and so p∗ ∈ F(T1) ∩ F(T2). This completes the proof.

We can conclude immediately Theorem 3.1 in [3], which can be reviewed as a corollary
of Theorem 3.1.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Banach space E and for i = 1, 2, let
Ti : C → C be a generalized asymptotically quasi-nonexpansive mapping with respect to {σin} and
{δin} such that F(T1)∩F(T2)/= ∅ inC, and

∑∞
n=1(σn+2δn)/(1−δn) < ∞, where σn = max{σ1n, σ2n}

and δn = max{δ1n, δ2n}. Assume that
∑∞

n=1(1 − αn) < ∞ and
∑∞

n=1(1 − βn) < ∞.
Then the iterative sequence {xn} defined by (1.4) converges strongly to a common fixed point

p∗ of T1 and T2 if and only if

lim inf
n→∞

d(xn, F(T1) ∩ F(T2)) = 0, (3.14)

where d(x, F(T1) ∩ F(T2)) denotes the distance between x and the set F(T1) ∩ F(T2).

Proof. We note that condition
∑∞

n=1(σn+2δn)/(1−δn) < ∞ implies
∑∞

n=1 σn < ∞ and
∑∞

n=1 δn <
∞. From the boundedness of {xn}, {yn}, and (1.1), we can obtain

∑∞
n=1 Gn < ∞. It is easy

to see that all conditions of Theorem 3.1 are satisfied; it follows from Theorem 3.1; we can
conclude our desired result. This completes the proof.

Theorem 3.3. LetC be a nonempty closed convex subset of a real Banach space E. Let Ti : C → C(i =
1, 2) be asymptotically quasi-nonexpansive mappings in the intermediate sense such that F(T1) ∩
F(T2)/= ∅. For any given x1 ∈ C, let the sequences {xn} and {yn} be defined by (2.3). Assume that
∑∞

n=1 αn < ∞.
Then the sequence {xn} converges strongly to a common fixed point p∗ of T1 and T2 if and only

if

lim inf
n→∞

d(xn, F(T1) ∩ F(T2)) = 0. (3.15)

Proof. The necessity is obvious and so it is omitted.
Now, we prove the sufficiency. For any p ∈ F(T1) ∩ F(T2), it follows from (1.2) that for

any given ε > 0, there exists a positive integer n1 such that for n ≥ n1, we have

max

{

sup
p∈F(T1)∩F(T2),n≥n1

(∥
∥Tn

2 (xn)−p
∥
∥−∥∥xn−p

∥
∥
)

,

sup
p∈F(T1)∩F(T2),n≥n1

(∥
∥Tn

1

(

yn

)− p
∥
∥− ∥

∥yn − p
∥
∥
)

<ε

}

.

(3.16)
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From (2.3), we have

∥
∥yn − p

∥
∥ ≤ (

1 − βn
)∥
∥xn − p

∥
∥ + βn

(∥
∥Tn

2 (xn) − p
∥
∥ − ∥

∥xn − p
∥
∥
)

+ βn
∥
∥xn − p

∥
∥

≤ ∥
∥xn − p

∥
∥ + βnε,

(3.17)

∥
∥xn+1 − p

∥
∥ ≤ (1 − αn)

∥
∥xn − p

∥
∥ + αn

(∥
∥Tn

1

(

yn

) − p
∥
∥ − ∥

∥yn − p
∥
∥
)

+ αn

∥
∥yn − p

∥
∥

≤ (1 − αn)
∥
∥xn − p

∥
∥ + αnε + αn

∥
∥yn − p

∥
∥.

(3.18)

Substituting (3.17) into (3.18), we have

‖xn+1 − p‖ ≤ ‖xn − p‖ + αn

(

1 + βn
)

ε = ‖xn − p‖ + bn, (3.19)

where
∑∞

n=1 bn =
∑∞

n=1 αn(1 + βn)ε < ∞. The rest proof follows as those of Theorem 3.1 and
therefore is omitted. This completes the proof.

From Theorem 3.1, we can obtain the following results.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Banach space E. Let T : C → C be
asymptotically quasi-nonexpansive mappings in the intermediate sense such that F(T)/= ∅. Let νn ∈ C
be bounded sequence. For any given x1 ∈ C, let the sequence {xn} be defined by (2.4). Put

Gn = sup
p∈F(T),n≥1

(‖Tn(xn) − p‖ − ‖xn − p‖) ∨ 0. (3.20)

Assume that
∑∞

n=1 Gn < ∞ and
∑∞

n=1(1 − αn) < ∞.
Then the sequence {xn} converges strongly to a fixed point p∗ of T if and only if

lim inf
n→∞

d(xn, F(T)) = 0. (3.21)

Remark 3.5. Constructing iterative algorithms for approximating (common) fixed points of
some nonlinear operators has been studied extensively. It is worth mentioning that our
iterative scheme (2.1) appears to be a new one, which includes many iterative schemes as
special cases. Our results improve and extend the corresponding results of Lan [3], Chang et
al. [4], Xu and Noor [7], Zhou et al. [30], and many others.
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