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This paper is devoted to the analysis of stochastic equations describing the motions of a large
class of incompressible linear viscoelastic fluids in two-dimensional subject to periodic boundary
condition and driven by random external forces. To do so we distinguish two cases, and for each
case a global existence result of probabilistic weak solution is expounded in this paper. We also
prove that under suitable hypotheses on the external random forces the solution turns out to be
unique. As concrete examples, we consider the stochastic equations for the Maxwell and Oldroyd
fluids that are of great importance in the investigation towards the understanding of the elastic
turbulence.

1. Introduction

The study of turbulent flows has attracted many prominent researchers from different
fields of contemporary sciences for ages. For in-depth coverage of the deep and fascinating
investigations undertaken in this field, the abundant wealth of results obtained, and
remarkable advances achieved we refer to the monographs [1–3] and references therein.
Recent study, see, for instance [4], has showed that the non-Newtonian elastic turbulence
can be well understood on basis of known viscoelastic models such as the Oldroyd fluids or
the Maxwell fluids. Indeed, by computational investigations of the two-dimensional periodic
Oldroyd-B model the authors in [4] found that there is a considerable agreement between
their numerical results and the experimental observations of elastic turbulence.

The hypothesis relating the turbulence to the “randomness of the background field”
is one of the motivations of the study of stochastic version of equations governing the
motion of fluids flows. The introduction of random external forces of noise type reflects
(small) irregularities that give birth to a new random phenomenon, making the problem
more realistic. Such approach in the mathematical investigation for the understanding of the
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Newtonian turbulence phenomenon was pioneered by Bensoussan and Temam in [5] where
they studied the Stochastic Navier-Stokes Equation (SNSE). Since then stochastic partial
differential equations and stochastic models of fluid dynamics have been the object of intense
investigations which have generated several important results. We refer to [6–13], just to
cite a few. Similar investigations for Non-Newtonian elastic fluids have not almost been
undertaken except in very few works; we refer, for instance, to [14–19] for some example
of computational studies of stochastic models of polymeric fluids and to [20–23] for their
mathematical analysis. It should be noted that the models investigated in these papers occur
very naturally from the kinetic theory of polymer dynamics. Indeed they arise from the
reformulation of Fokker-Planck or diffusion equations as stochastic differential equations
(3.45). We also notice that they model some nonlinear viscoelastic models such as the FENE
models which are very different from the models we shall treat in this paper. We refer to
volume 2 of [24] for the conventional approach to kinetic theory which consists of deriving
the deterministic partial differential equations for the polymer configurational distribution
function (diffusion equation) and to volume 1 of [24] for the existing linear and nonlinear
viscoelastic models.

In this paper we provide a detailed investigation of the system stochastic partial
differential equations:

du + (u · ∇)udt +∇Pdt = divσ dt + F(u, t)dt +G(u, t)dW,

divu = 0,
∫
D

u(x)dx = 0, u|t=0 = u0,
(1.1)

t ∈ [0, T], T ∈ (0,∞]. This system describes the motion of a large class of incompressible
linear viscoelastic fluids driven by random external forces and filling a periodic square D =
[0, L]2 ⊂ R

2, L > 0. Here u,P,and W represent, respectively, a random periodic in space
random velocity with period L in each direction, a random scalar pressure and an R

m -valued
standard Wiener process, m ∈ {1, 2, 3, . . .}. The tensor σ = (σij) is the deviator of the stress
tensor of the fluid; we assume throughout that it is a traceless tensor (trσ = 0). In this work
we should distinguish the case

σ = KD, (1.2)

σ = 2νD +KD, (1.3)

where

D =
(
1
2

)(∇u +∇tu
)
, (1.4)

and the operator K is a continuous mapping satisfying some hypotheses (see (2.22)–(2.24)).
The problem (1.1) also can be taken as a turbulent version of linear viscoelastic models for
polymeric fluids. For some examples of classical models of turbulence, we refer to [2, 4, 19, 25]
and references therein.

The mathematical works on some linear viscoelastic fluids undertaken by the Soviet
mathematician Oskolkov in [26–28] and by Ladyzhenskaya in [29] have influenced the
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emergence of the paper [30]where a global solvability result of the deterministic counterpart
of the system (1.1), (1.2) (resp., (1.1), (1.3)) subject to the periodic boundary condition (resp.,
nonslip boundary condition) was given. To the best of our knowledge similar investigations
for the two general stochastic models (1.1), (1.2) and (1.1), (1.3) have not been undertaken
yet. The purpose of this paper is to prove that under suitable conditions on K, F, and G
each of our stochastic model is well posed (see Theorems 3.3, 3.4, 4.2, and 4.3). In view of
the technical difficulties involved, we provide full details of the proof of our results. Due to
nontrivial difficulties that arise from the nature of the nonlinearities involved in (1.1) other
mathematical issues such as existence, uniqueness of the invariant measure, and its ergodicity
are beyond of the scope of this work; we leave these questions for future investigation.

The layout of this paper is as follows. In addition to the current introduction this article
consists of three other sections. In Section 2 we give some notations, necessary backgrounds
of probabilistic or analytic nature. Section 3 is devoted to the detailed analysis of the problem
(1.1), (1.2). We prove the existence and pathwise uniqueness of its probabilistic weak solution
which yields the existence of a unique probabilistic strong solution. In the very same section
we consider the stochastic equations for randomly forced generalized Maxwell fluids as a
concrete example. In Section 4 we only state the main theorems related to (1.1), (1.3) and
apply the obtained results to the stochastic model for the generalized viscoelastic Oldroyd
fluids; we refer to the previous section for the details of the proofs.

2. Preliminaries and Notations

This section is devoted to the presentation of notations and auxiliary results needed in
the work. Let O be an open bounded subset of R

2, let 1 ≤ p ≤ ∞, and let k be a
nonnegative integer. We consider the well-known Lebesgue and Sobolev spaces Lp(O) and
Hk(O), respectively. We refer to [31] for detailed information on Sobolev spaces. Let L be a
nonnegative number and let D = [0, L]2 be a periodic box of side length L. We denote by
Hk(D) the spaces consisting of those functions u that are in Hk

Loc(R
2) and that are periodic

with period L:

u(x + Lri) = u(x), i = 1, 2, (2.1)

where {r1, r2} represents the canonical basis of R2. Here the space Hk
Loc(R

2) is the space of
functions u such that u|O is an element of the Sobolev space Hk(O) for every bounded set
O ⊂ R

2. For functions v of zero space average, that is,

∫
D

v dx = 0, (2.2)

the following Poincaré’s inequality holds:

|v|sc ≤ P‖v‖sc ∀v ∈ H1(D), (2.3)
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where | · |sc denotes the L2-norm, P > 0 is Poincaré’s constant, and ‖ · ‖sc denotes the
seminorm generated by the scalar product:

((u, v))sc =
∫
D

∇u · ∇v dx =
2∑
i=1

∫
D

∂u

∂xi

∂v

∂xi
dx, (2.4)

in which ∇ is the gradient operator. From now we denote byH1
0(D) the space

H1
0(D) :=

{
u : u ∈ H1(D) and

∫
D

udx = 0
}
. (2.5)

Thanks to (2.3), we can endowH1
0(D)with the norm ‖ · ‖sc. Besides Poincaré’s inequality, we

also have

c|u|H1(D) ≤ | curlu|sc ≤ c‖u‖sc, (2.6)

which holds for any divergence free fields. For β ∈ Rwe can define the spaceHβ(D) via their
expansion in Fourier series so that we also have the space

H
β

0 (D) :=
{
u : u ∈ Hβ(D) and

∫
D

udx = 0
}
. (2.7)

We refer to [32] (see also [1, 33]) for more details about these spaces. We proceed with the
definitions of additional spaces frequently used in this paper.

For any Banach space X and any integer M > 0 we set

X⊗M = X × · · · ×X︸ ︷︷ ︸,
M times

X = X ×X. (2.8)

If | · |X is the norm on X, then |u|2
X⊗M =

∑M
i=1 |ui|2X.

We introduce the spaces

V =
{
u ∈

[
C∞
per(D)

]⊗2
: divu = 0 and

∫
D

udx = 0
}
,

V = closure of V in H
1
0(D),

H = closure of V in L
2(D),

(2.9)

where C∞
per(D) denotes the space of infinitely differentiable periodic function with period L.

We denote by (·, ·) (resp., | · |) the inner product (resp., the norm) induced by the inner
product (resp., the norm) in L

2(D) onH. Thanks to Poincaré’s inequality (2.3), we can endow
V with the norm ‖ · ‖, which is defined by ‖u‖2 =

∑2
i=1 ‖ui‖2sc. From now on, we identify the

space H with its dual space H� via the Riesz representation and we have the Gelfand triple:

V ⊂ H ⊂ V
�, (2.10)
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where each space is dense in the next one and the inclusions are continuous. It follows that
we can make the identification

(v,w) = 〈v,w〉, (2.11)

for any v ∈ H and w ∈ V. Here 〈·, ·〉 denotes the duality product V∗,V.
Next we define some probabilistic evolution spaces necessary throughout the paper.

Let (Ω,F, (Ft)0≤t≤T , P) be a given stochastic basis; that is, (Ω,F, P) is a complete probability
space and (Ft)0≤t≤T is an increasing sub-σ-algebras of F such that F0 contains every P -
null subset of Ω. For any real Banach space (X, | · |X), for any r, p ≥ 1 we denote by
Lp(Ω,F, P ;Lr(0, T ;X)) the space of processes u = u(ω, t)with values inX defined onΩ×[0, T]
such that

(1) u is measurable with respect to (ω, t) and for each t, ω �→ u(ω, t) is Ft-measurable;

(2) u(ω, t) ∈ X for almost all (ω, t) and

‖u‖Lp(Ω,F,P ;Lr(0,T ;X)) =

⎛
⎝E

(∫T

0
‖u‖rXdt

)p/r
⎞
⎠

1/p

< ∞, (2.12)

where E denotes the mathematical expectation with respect to the probability
measure P .

When r = ∞, we write

‖u‖Lp(Ω,F,P ;L∞(0,T ;X)) =

(
E sup
0≤t≤T

‖u‖pX
)1/p

< ∞. (2.13)

For p ≥ 1, we also consider the space Lp(0, T ;X) of X-valued measurable functions u defined
on [0, T] such that

‖u‖Lp(0,T ;X) =

(∫T

0
‖u‖pXdt

)1/p

< ∞. (2.14)

LetW be a standard Wiener process defined on the stochastic basis (Ω,F, (Ft)0≤t≤T , P)
and taking its values in R

m. Given a measurable and Ft-adapted X⊗m-valued process f such
that

E

∫T

0

∣∣f(t)∣∣2X⊗mdt < ∞, (2.15)

the process

I
(
f
)
(t) =

∫ t

0
f(s)dW(s), 0 ≤ t ≤ T, (2.16)
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is well defined and is a continuous martingale. Moreover it satisfies

EI
(
f
)
(t) = 0, 0 ≤ t ≤ T,

E
∣∣I(f)(t)∣∣2X = E

∫ t

0

∣∣f(s)∣∣2Xds, 0 ≤ t ≤ T.
(2.17)

We refer to [34, 35] (see also [36]) for further reading on probability theory and stochastic
calculus.

Let X be a separable complete metric space and B(X) its Borel σ-field. A family Πk of
probability measures on (X,B(X)) is relatively compact if every sequence of elements of Πk

contains a subsequence Πkj which converges weakly to a probability measure Π, that is, for
any φ bounded and continuous function on Ω,

∫
φ(s)dΠkj −→

∫
φ(s)dΠ. (2.18)

The family Πk is said to be tight if, for any ε > 0, there exists a compact set Kε ⊂ Ω such that
P(Kε) ≥ 1 − ε, for every P ∈ Πk.

We have the well-known result.

Theorem 2.1 (Prokhorov). Assume thatX is a Polish space; then the familyΠk is relatively compact
if and only if it is tight.

We will use the following useful theorem due to Skorokhod.

Theorem 2.2 (Skorokhod). For any sequence of probability measures Πk on Ω which converges to
a probability measureΠ, there exists a probability space (Ω′,F′, P ′) and random variables Xk, X with
values in Ω such that the probability law of Xk (resp., X) isΠk (resp.,Π) and limk→∞Xk = XP ′-a.s.

We refer to [36] for the proofs of these two theorems.
The following result is very important in Section 3.2.2 where we prove a probabilistic

compactness result; its proof can be found in [37].

Theorem 2.3. Let X,B, Y be three Banach spaces such that the following embedding are continuous:

X ⊂ B ⊂ Y. (2.19)

Moreover, assume that the embedding X ⊂ B is compact; then the set F consisting of functions v ∈
Lq(0, T ;B) ∩ L1

loc(0, T ;X), 1 ≤ q ≤ ∞ such that

sup
0≤h≤1

∫ t2

t1

|v(t + h) − v(t)|Ydt −→ 0, as h −→ 0, (2.20)

for any 0 < t1 < t2 < T is compact in Lp(0, T ;B) for any p < q.
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Throughout the symbol σ : σ ′ denotes the summation

σ : σ ′ = tr
(
σσ ′) =

2∑
i,k=1

σikσ
′
ki. (2.21)

We assume that K is a symmetric tensor-valued continuous mapping which satisfies the
following.

(i) K is bounded, that is,

E

∫T

0
|KD|2dt ≤ CE

∫T

0
|D|2dt. (2.22)

(ii) For any D1 and D2 we have

0 ≤ E

∫
[0,T]×D

(KD1 : D1)dx dt, (2.23)

0 ≤ E

∫
D×[0,T]

(KD1 −KD2 : D1 −D2)dx dt, (2.24)

Remark 2.4. The hypothesis (2.23) has a physical meaning since it implies that the dissipation
of energy is positive (see [30, Section 1] and [38, Chapters 2-3]). The assumption (2.24) is a
mathematical assumption which allows us to prove the well posedness of the models. It is
fulfilled at least for general viscoelastic flows generated by the linear rheological equations of
the type (see [24, Section 5.2])

σ =
∫ t

0
K(t − τ)D(x, τ)dτ. (2.25)

We also notice that (2.24) and (2.23) are equivalent if K is linear.

3. Analysis of the Stochastic Equation of the Type (1.1), (1.2)

In this section we investigate the stochastic equations (1.1), (1.2). The first subsection is
devoted to the statement of the main results which is going to be proved in the second
subsection.

3.1. Hypotheses and Statement of the Main Results

Throughout this section we suppose the following.

(HYP 1) The mapping F induces a nonlinear operator from H × [0, T] into V which is
assumed to bemeasurable (resp., continuous)with respect to its second (resp., first)
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variable. We require that there exists constant CF > 0 such that for almost all
t ∈ [0, T] and for each u ∈ H

‖F(u, t)‖ ≤ CF(1 + |u|). (3.1)

(HYP 2) The V⊗m-valued function G defined on H × [0, T] is measurable (resp., continuous)
with respect to its second (resp., first) argument, and it verifies

|G(u, t)|
V⊗m ≤ CG(1 + |u|), (3.2)

for almost everywhere t ∈ [0, T] and for any u ∈ H.

(HYP 3) We assume as well that there exist two positive constants C′
F and C′

G such that

‖F(u, t) − F(v, t)‖ ≤ C′
F |u − v|,

|G(u, t) −G(v, t)|
V⊗m ≤ C′

G|u − v|,
(3.3)

for any u, v ∈ H.

(HYP 4) In addition to (2.22)–(2.24)we assume furthermore that

0 ≤ −(curl div(KD), curl u). (3.4)

Remark 3.1. For a vector u ∈ R
2, the operator curl is defined by

curlu =
∂u2

∂x1
− ∂u1

∂x2
. (3.5)

The divergence of a tensor field D is defined using the recursive relation

div(D) · c = div(c ·D), div v = tr(∇v), (3.6)

where c is an arbitrary constant vector, and v is a vector field.
Karazeeva remarked in [30, Section 5.2] that when K and ∂/∂xk, k = 1, 2, commute,

then (3.4) is a consequence of (2.23). The condition (3.4) is met when K is given by the
equation in Remark 2.4.

We introduce the concept of the solution of the problem (1.1), (1.2).

Definition 3.2. By a probabilistic weak solution of the problem (1.1), (1.2), one means a system

(
Ω,F, P,Ft,W, u

)
, (3.7)
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where

(1) (Ω,F, P) is a complete probability space, and Ft is a filtration on (Ω,F, P);

(2) W(t) is an m-dimensional Ft-standard Wiener process;

(3) u ∈ Lp(Ω,F, P ;L∞(0, T ;V)) ∩ Lp(Ω,F, P ;L∞(0, T ;H));

(4) for almost all t, u(t) is Ft-measurable;

(5) P -a.s. the following integral equation of Itô type holds:

(
u(t) − u(0), φ

)
+
∫ t

0

∫
D

(
KD : ∇φ

)
dx ds −

∫ t

0

((
u.∇φ

)
, u

)
ds

=
∫ t

0

(
F(u(s), s), φ

)
ds +

∫ t

0

(
G(u(s), s), φ

)
dW(s)

(3.8)

for any t ∈ [0, T] and φ ∈ V.

We have the following.

Theorem 3.3. If u0 ∈ V and if the hypotheses (HYP 1), (HYP 2), and (HYP 4) hold, then the problem
(1.1), (1.2) has a solution in the sense of the above definition. Moreover, almost surely the paths of the
solution are V- (resp., H-), valued weakly (resp., strongly) continuous.

Theorem 3.4. Assume that (HYP 1)–(HYP 4) hold and let u1 and u2 be two probabilistic weak
solutions of (1.1), (1.2) starting with the same initial condition and defined on the same stochastic
basis (Ω,F,Ft, P) with the same Winer processW . If one sets v = u1 − u2, then one has v = 0 almost
surely.

3.2. Proof of Theorems 3.3 and 3.4

This subsection is devoted to the proof of the existence and uniqueness results stated in
the previous subsection. We split the proof into four subsections. The proof of the existence
theorem is inspired by the works [6, 30] (see also [10]). Throughout this subsection C will
designate a positive constant which depends only on the data (u0, T, CF, CG).

3.2.1. The Approximate Solution and Some A Priori Estimates

In this subsection we derive crucial a priori estimates from the Galerkin approximation. They
will serve as a toolkit for the proof of the Theorem 3.3.

The operator −Δ is a self-adjoint and positive definite on H, and its inverse is
completely continuous. Therefore H has a complete orthonormal basis consisting of the
eigenfunctions (ei)i≥1 ∈ [C∞(D)]⊗2 of −Δ. The family (ei)i≥1 ∈ [C∞(D)]⊗2 forms an orthogonal
basis in V. We now introduce the Galerkin approximation for the problem (1.1)-(1.2). We
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consider the subset HN = Span(e1, . . . , eN) ⊂ H and we look for a finite-dimensional
approximation of a solution of our problem as a vector uN ∈ HN that can be written as

uN(t) =
N∑
i=1

ciN(t)ei(x). (3.9)

We set

DN = (1/2)
(
∇uN +∇tuN

)
. (3.10)

Let us consider a complete probabilistic system (Ω,A, P ,Ft
,W) such that the filtration {Ft}

satisfies the usual condition and W is an m-dimensional standard Wiener process taking
values in R

m. We denote by E the mathematical expectation with respect to P . We require
uN to satisfy the following:

d
(
uN, ei

)
+
(∫

D

(
KDN : ∇ei

)
dx

)
dt −

((
uN.∇

)
ei, u

N
)
dt

=
(
F
(
uN, t

)
, ei

)
dt +

(
G
(
uN, t

)
, ei

)
dW,

(3.11)

i ∈ {1, . . . ,N}.Here uN
0 is the orthogonal projection of u0 onto the space HN :

uN
0 −→ u0 strongly in as N −→ ∞. H (3.12)

The sequence of continuous functions uN exists at least on a short (possibly random) interval
(0, TN). Indeed the coefficients CiN satisfy

dCiN +
N∑

k,j=1

(
2∑
l=1

∫
D

ejek
∂ei
∂xl

dx

)
CkN(t)CjN(t)dt +

N∑
k=1

(K(CkN∇ek), ei)dt

=
(
F
(
uN, t

)
, ei

)
dt +

(
G
(
uN, t

)
, ei

)
dW,

(3.13)

which is a system of stochastic ordinary differential equations with continuous coefficients.
From the existence theorem stated in [39, page 59] (see also [35, Theorem 4.22, page 323])we
infer the existence of continuous functions CiN on (0, TN). Global existence will follow from
a priori estimates for uN .

Lemma 3.5. One has

E sup
0≤t≤T

∣∣∣uN(t)
∣∣∣p < C, (3.14)

for any 2 ≤ p < ∞ and 1 ≤ N < ∞.
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Proof. Thanks to Itô’s formula we derive from (3.11) that

d
∣∣∣uN

∣∣∣2 + 2
(∫

D

(
KDN : DN

)
dx

)
dt

= 2
((

F
(
uN, t

)
, uN

))
dt +

N∑
i=1

(
G
(
uN, t

)
, ei

)2
dt + 2

(
G
(
uN, t

)
, uN

)
dW,

(3.15)

where we have used the fact that ((u · ∇)v,w) = −((u · ∇w), v) for any u, v,w ∈ V. Thanks to
(2.23)we get

d
∣∣∣uN

∣∣∣2 ≤ 2
∣∣∣(F(uN, t

))∣∣∣
∣∣∣uN

∣∣∣dt +
N∑
i=1

(
G
(
uN, t

)
, ei

)2
dt + 2

(
G
(
uN, t

)
, uN

)
dW. (3.16)

More generally we have

d
∣∣∣uN

∣∣∣p ≤ p
∣∣∣(F(uN, t

))∣∣∣
∣∣∣uN

∣∣∣p−1dt +
(
1
2

)(
p
(
p − 1

)) N∑
i=1

∣∣∣uN
∣∣∣p−2(G(

uN, t
)
, ei

)2
dt

+ p|uN |p−2
(
G
(
uN, t

)
, uN

)
dW,

(3.17)

for all 2 ≤ p < ∞. For any integer M ≥ 1, we introduce the sequence of increasing stopping-
times:

τM =

⎧⎨
⎩
inf

{
t ≥ 0;

∣∣uN(t)
∣∣ ≥ M

}
,

T if
{
t ≥ 0;

∣∣uN(t)
∣∣ ≥ M

}
= ∅.

(3.18)

Owing to Schwarz’s inequality and the assumptions (3.1)-(3.2)we have that

sup
0≤s≤t∧τM

∣∣∣uN(s)
∣∣∣p ≤

∣∣∣uN
0

∣∣∣p + pCF

∫ t∧τM

0

(
1 +

∣∣∣uN
∣∣∣)

∣∣∣uN(s)
∣∣∣p−1ds

+
(
1
2

)
p
(
p − 1

) N∑
i=1

∫ t∧τM

0

∣∣∣uN
∣∣∣p−2(G(

uN, t
)
, ei

)2
ds

+ p sup
0≤s≤t∧τM

∣∣∣∣
∫s

0

∣∣∣uN
∣∣∣p−2(G(

uN, s
)
, uN

)
dW

∣∣∣∣.

(3.19)

Since

N∑
i=1

(
G
(
uN, t

)
, ei

)2 ≤
∣∣∣G(

uN, t
)∣∣∣2

H⊗m
, (3.20)
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we derive from (3.19) and (3.2) that

sup
0≤s≤t∧τM

∣∣∣uN(s)
∣∣∣p ≤ pC

∫ t∧τM

0

∣∣∣uN(s)
∣∣∣pds + C2

Gp
(
p − 1

) ∫ t∧τM

0

∣∣∣uN
∣∣∣p−2

(
1 +

∣∣∣uN
∣∣∣2
)
ds

+
∣∣∣uN

0

∣∣∣p + p sup
0≤s≤t∧τM

∣∣∣∣
∫s

0

∣∣∣uN
∣∣∣p−2(G(

uN, s
)
, uN

)
dW

∣∣∣∣ + CT.

(3.21)

Using Hölder’s inequality and taking the mathematical expectation in both sides of this
estimate yield

E sup
0≤s≤t∧τM

∣∣∣uN(s)
∣∣∣p ≤ E

∣∣∣uN
0

∣∣∣p + CE

∫ t∧τM

0

∣∣∣uN(s)
∣∣∣pds

+ pE sup
0≤s≤t∧τM

∣∣∣∣
∫s

0

∣∣∣uN
∣∣∣p−2(G(

uN, s
)
, uN

)
dW

∣∣∣∣ + pCF.

(3.22)

Let us set

γN = E sup
0≤s≤t∧τM

∣∣∣∣
∫s

0

∣∣∣uN
∣∣∣p−2(G(

uN, s
)
, uN

)
dW

∣∣∣∣. (3.23)

By Burkhölder-Davis-Gundy’s inequality we obtain

pγN ≤ pCE

(∫ t∧τm

0

∣∣∣uN
∣∣∣2p−4(G(

uN, s
)
, uN

)2
ds

)1/2

,

pγN ≤ pCE sup
0≤s≤t∧τM

∣∣∣uN
∣∣∣p/2

(∫ t∧τM

0

∣∣∣uN
∣∣∣p−4(G(

uN, s
)
, uN

)2
ds

)1/2

,

(3.24)

which with the assumption (3.2) implies that

pγN ≤
(
1
2

)
E sup
0≤s≤t∧τM

∣∣∣uN
∣∣∣p +

(
1
2

)
CE

∫ t∧τM

0

∣∣∣uN
∣∣∣p−2(1 +

∣∣∣uN
∣∣∣)2

ds. (3.25)

Out of this and (3.22)we infer that

E sup
0≤s≤t∧τM

∣∣∣uN(s)
∣∣∣p ≤ E

∣∣∣uN
0

∣∣∣p + C
(
p,CF, CG

) ∫ t

0
E sup
0≤r≤s∧τM

∣∣∣uN(r)
∣∣∣pds. (3.26)

Now by Gronwall’s lemma applied to h(t) := Esup0≤s≤t∧τM |uN(s)|p, we obtain that

E sup
0≤s≤t∧τM

∣∣∣uN(s)
∣∣∣p ≤ C

(
p, u0, CF, CG, T

)
, t ∈ (0, T). (3.27)
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It remains to prove that TN = T ; to do so we must prove that τM ↗ T a.s.; This is classic but
we prefer to give the details. From the continuity of uN we infer that uN(τM) ≥ M. For any
t ∈ (0, T), E(1τM<t) = P(τM < t). We also have that

E sup
0≤s≤t∧τM

∣∣∣uN(s)
∣∣∣2 ≥ E

(
sup

0≤s≤τM

(∣∣∣uN(s)
∣∣∣21τM<t

))
≥ M2P(τM < t), t ∈ (0, T). (3.28)

We infer from this, (3.27), and the monotonicity of τM that τM ↗ T a.s. as was required. Since
the constant C in (3.27) is independent of N and M, Fatou’s theorem completes the proof of
the lemma.

The estimate of Lemma 3.5 is not sufficient to pass to the limit in the nonlinear term.
We still need to derive some additional crucial but nontrivial inequalities.

Lemma 3.6. One has

E sup
0≤t≤T

∥∥∥uN(t)
∥∥∥p ≤ C, (3.29)

for any 2 ≤ p < ∞ and 1 ≤ N < ∞.

Proof. Let PN be the orthogonal projection of V∗ onto the span {e1, . . . , eN} that is

PNh =
N∑
j=1

〈
h, ej

〉
ej . (3.30)

Because PNuN = uN , we can rewrite (3.11) in the following formwhich should be understood
as the equality between random variables with values in V

∗:

duN − PN
(
div

(
KDN

))
dt + PN

(
uN · ∇uN

)
dt = PNF

(
uN, t

)
dt + PNG

(
uN, t

)
dW. (3.31)

Applying the operator curl (= ∇∧) to both sides of this equation implies

dζN − ∇ ∧
(
PN

(
div

(
KDN

)))
dt +∇ ∧

(
PN

(
uN · ∇uN

))
dt

= ∇ ∧
(
PNF

(
uN, t

))
dt +∇ ∧

(
PNG

(
uN, t

))
dW,

(3.32)

where ζN = ∇ ∧ uN . Thanks to the regularity of the ei-s, the function ζN is periodic at the
boundary of the square D. Itô’s formula for the function |ζN |2 implies that

d
∣∣∣ζN

∣∣∣2 − 2
(
∇ ∧

(
PN

(
div

(
KDN

)))
, ζN

)
dt − 2

(
∇ ∧

(
PNF

(
uN, t

))
, ζN

)
dt

=
∣∣∣∇ ∧

(
PNG

(
uN, t

))∣∣∣2dt + 2
(
∇ ∧

(
PNG

(
uN, t

))
, ζN

)
dW,

(3.33)
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where we have used the fact that

2
〈
∇ ∧

(
PN

(
uN.∇uN

))
, ζN

〉
= 0 (3.34)

in the periodic boundary condition setting. More generally, the following holds:

d
∣∣∣ζN

∣∣∣p − p
∣∣∣ζN

∣∣∣p−2(∇ ∧
(
PN

(
div

(
KDN

)))
, ζN

)
dt − p

∣∣∣ζN
∣∣∣p−2(∇ ∧

(
PNF

(
uN, t

))
, ζN

)
dt

=
(
1
2

)
p
(
p − 1

)∣∣∣ζN
∣∣∣p−2

∣∣∣∇ ∧
(
PNG

(
uN, t

))∣∣∣2dt + p
∣∣∣ζN

∣∣∣p−2(∇ ∧
(
PNG

(
uN, t

))
, ζN

)
dW,

(3.35)

for 2 ≤ p < ∞. We use the divergence freeness of uN , the periodicity of ζN, and the identities

(
curl v, φ

)
=
(
v, curlφ

)
+
∫
∂D

(v × n)φdx,

curl(curl v) = −Δv +∇(divv), PNΔuN = Δ
(
PNuN

)
= ΔuN,

(3.36)

to reach

(
∇ ∧

(
PN

(
div

(
KDN

)))
, ζN

)
=
(
div

(
KDN

)
,∇ ∧ ζN

)
. (3.37)

By utilizing this, (3.4), and Schwarz’s inequality in (3.35), we obtain that

∣∣∣ζN(t)
∣∣∣p ≤

∣∣∣ζN0
∣∣∣p +

(
1
2

)
p
(
p − 1

) ∫ t

0

∣∣∣ζN
∣∣∣p−2

∣∣∣∇ ∧
(
PNG

(
uN, t

))∣∣∣2ds

+ p

∣∣∣∣∣
∫ t

0

∣∣∣ζN
∣∣∣p−2(∇ ∧

(
PNG

(
uN, t

))
, ζN

)
dW

∣∣∣∣∣

+ p

∫ t

0

∣∣∣ζN
∣∣∣p−1

∣∣∣∇ ∧
(
PNF

(
uN, t

))∣∣∣ds.

(3.38)

Thanks to the estimates (2.6), (3.1), and (3.2) we deduce from the above estimate that

Esup
0≤s≤t

∣∣∣ζN(s)
∣∣∣p ≤ pEsup

0≤s≤t

∣∣∣∣
∫ s

0

∣∣∣ζN∣∣∣p−2(∇ ∧
(
PNG

(
uN, t

))
, ζN

)
dW

∣∣∣∣

+ E
∣∣∣ζN0

∣∣∣p + pE

∫ t

0

∣∣∣ζN
∣∣∣pds + CT.

(3.39)

Let us set

ΓN = pEsup
0≤s≤t

∣∣∣∣
∫ s

0

∣∣∣ζN
∣∣∣p−2(∇ ∧

(
PNG

(
uN, t

))
, ζN

)
dW

∣∣∣∣. (3.40)
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By using Burkhölder-Davis-Gundy’s inequality and Schwarz’s inequality we obtain

pΓN ≤ E

(∫s

0

∣∣∣ζN
∣∣∣2p−4

∣∣∣∇ ∧
(
PNG

(
uN, t

))∣∣∣2
∣∣∣ζN

∣∣∣2ds
)1/2

. (3.41)

We derive from this and the estimates (2.6) (this is allowed since PNG(uN, t)) ∈ HN) and
(3.2) that

pΓN ≤
(
1
2

)
Esup
0≤s≤t

∣∣∣ζN
∣∣∣p + CE

∫ t

0

∣∣∣ζN
∣∣∣pds. (3.42)

From this, (3.39), and Gronwall’s lemma we deduce that

E sup
0≤s≤t

∣∣∣ζN(s)
∣∣∣p ≤ C. (3.43)

Owing to (2.6) the proof of the lemma is finished.

The following result is central in the proof of the forthcoming tightness property of the
Galerkin solution.

Lemma 3.7. For any 0 ≤ δ < 1 one has

Esup
|θ|≤δ

∫T−δ

0

∣∣∣uN(s + θ) − uN(s)
∣∣∣2
V∗

≤ Cδ. (3.44)

Proof. We can rewrite (3.11) in an integral form as the equality between random variables
with values in V

∗

uN −
∫ t

0
PN

(
div

(
KDN

))
ds +

∫ t

0
PN

(
uN · ∇uN

)
ds

= uN
0 +

∫ t

0
PNF

(
uN, t

)
ds +

∫N

0
PNG

(
uN, t

)
dW.

(3.45)

By using the triangle inequality for the norm | · |
V∗ , we deduce from (3.45) that

∣∣∣uN(t + θ) − uN(t)
∣∣∣2
V∗

≤ Cθ

∫ t+θ

t

∣∣∣div(KDN
)∣∣∣2

V∗
ds + Cθ

∫ t+θ

t

∣∣∣(uN.∇uN
)∣∣∣2

V∗
ds

+ Cθ

∫ t+θ

t

∣∣∣F(uN, s
)∣∣∣2ds + C

∣∣∣∣∣
∫ t+θ

t

PNG
(
uN, s

)
dW

∣∣∣∣∣
2

,

(3.46)

for any 0 ≤ θ ≤ δ. The continuity of div as linear operator along with (2.22), (3.1), and
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Lemmas 3.5 and 3.6 implies that

E sup
0≤θ≤δ

∫T−δ

0

∣∣∣uN(t + θ) − uN(t)
∣∣∣2
V∗
dt ≤ Cδ + CδE

∫T−δ

0

∫ t+δ

t

∣∣∣(uN.∇uN
)∣∣∣2

V∗
dsdt

+ C

∫T−δ

0
E sup
0≤θ≤δ

∣∣∣∣∣
∫ t+θ

t

PNG
(
uN, s

)
dW

∣∣∣∣∣
2

dt.

(3.47)

By making use of Martingale inequality, (3.2), and Lemma 3.5 we have that

E sup
0≤θ≤δ

∫T−δ

0

∣∣∣uN(t + θ) − uN(t)
∣∣∣2
V∗
dt ≤ CδE

∫T−δ

0

∫ t+δ

t

∣∣∣(uN.∇uN
)∣∣∣2

V∗
dsdt + Cδ + Cδ2. (3.48)

By the well-known inequality

∣∣∣(uN.∇uN
)∣∣∣2

V∗
≤ CB

∣∣∣uN
∣∣∣2
∥∥∥uN

∥∥∥2
, (3.49)

which holds in the 2-dimensional case, we obtain that

E sup
0≤θ≤δ

∫T−δ

0

∣∣∣uN(t + θ) − uN(t)
∣∣∣2
V∗
dt ≤ Cδ. (3.50)

To complete the proof we use the same argument for negative values of θ.

3.2.2. Tightness Property and Application of Prokhorov’s and Skorohod’s Theorems

We denote by Z the following subset of L2(0, T ;H):

Z =

{
z ∈ L∞(0, T ;V); sup

|θ|≤μM

∫T−μM

0
|z(t + θ) − z(t)|2

V∗ ≤ CνM

}
, (3.51)

for any sequences νM, μM such that νM, μM → 0 as M → ∞ and
∑

M≥0 μM/νM < ∞. The
following result is a particular case of Theorem 2.3 (see also [40, Proposition 3.1, page 45] for
a similar result).

Lemma 3.8. The set Z is compact in L2(0, T ;H).

Next we consider the space S = C(0, T ;Rm) × L2(0, T ;H) endowed with its Borel σ-
algebra B(S) and the family of probability measures ΠN on S, which is the probability
measure induced by the following mapping:

φ : ω �−→
(
W(ω, ·), uN(ω, ·)

)
. (3.52)

That is, for any A ∈ B(S),ΠN(A) = P(φ−1(A)).
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Lemma 3.9. The family (ΠN)N≥1 is tight in S.

Proof. For any ε > 0 andM ≥ 1, we claim that there exists a compact subset Kε of S such that
ΠN(Kε) ≥ 1 − ε. To back our claim we define the sets

Wε =

⎧⎪⎪⎨
⎪⎪⎩
W : sup

t,s∈[0,T]
|t−s|<T/2M

2M/8|W(t) −W(s)| ≤ Jε, ∀M

⎫⎪⎪⎬
⎪⎪⎭
,

Zε =

{
z; sup

0≤t≤T
|z(t)|2 ≤ Kε, sup

0≤t≤T
‖z(t)‖2 ≤ Lε, sup

|θ|≤μM

∫T−μM

0
|z(t + θ) − z(t)|2

V∗dt ≤ RενM

}
,

(3.53)

where Jε,Kε, Lε, and Rε are positive constants to be fixed in the course of the proof. The
sequences νM and μM are chosen so that they are independent of ε, νM, μM → 0 as M → ∞
and

∑
M μM/νM < ∞. It is clear by Ascoli-Arzela’s theorem that Wε is a compact subset of

C(0, T ;Rm), and by Lemma 3.8 Zε is a compact subset of L2(0, T ;H). We have to show that
Pε = ΠN((W,uN)/∈Wε × Zε) < ε. Indeed, we have

Pε ≤ P

⎡
⎣ ∞⋃

M=1

2M⋃
j=1

(
sup
t,s∈Ij

∣∣∣W(t) −W(s)
∣∣∣ ≥ Jε

1
2M/8

)⎤
⎦ + P

(
sup
0≤t≤T

∣∣∣uN(t)
∣∣∣2 ≥ Kε

)

+ P

(⋃
M

{
sup
|θ|≤μM

∫T−μM

0

∣∣∣uN(t + θ) − uN(t)
∣∣∣2
V∗
dt ≥ RενM

})

+ P

(
sup
0≤t≤T

∥∥∥uN(t)
∥∥∥2 ≥ Lε

)
,

(3.54)

where {Ij : 1 ≤ j ≤ 2M} is a family of intervals of length T/2M which forms a partition of the
interval [0, T]. It is well known that for any Wiener process B

E|B(t) − B(s)|2m = Cm|t − s|m for any m ≥ 1, (3.55)

where Cm is a constant depending only on m. From this and Markov’s Inequality

P(ω : ζ(w) ≥ α) ≤ 1
αk

E
(
|ζ(ω)|k

)
, (3.56)



18 Journal of Inequalities and Applications

where ζ(ω) is a random variable on (Ω,F, P) and positive numbers k and α, we obtain

Pε ≤
∞∑

M=1

2M∑
j=1

Cm

(
2M/8

)2m 1
J2mε

(
T

2M

)m

+
1
Kε

E sup
t≤T

∣∣∣uN(t)
∣∣∣2 + 1

Lε
E sup
0≤t≤T

∥∥∥uN(t)
∥∥∥2

+
∑
M

1
RενM

E sup
|θ|≤μM

∫T−μM

0

∣∣∣uN(t + θ) − uN(t)
∣∣∣2
V∗
dt.

(3.57)

Owing to the Lemmas 3.5 and 3.7 and by choosing m = 2, we have

Pε ≤ C2T
2

J4ε

∞∑
M=1

2−(1/2)M + C

(
1
Kε

+
1
Lε

+
1
Rε

∑
M

μM

νM

)

≤ C2T
2

J4ε

(
1 +

√
2
)
+ C

(
1
Kε

+
1
Lε

+
1
Rε

∑
M

μM

νM

)
.

(3.58)

A convenient choice of Jε,Kε, Lε, andRε completes the proof of the claim, and hence the proof
of the lemma.

Now it follows by Prokhorov’s theorem that the family (ΠN)N≥1 is relatively compact
in the set of probability measures (equipped with the weak convergence topology) on S.
Then, we can extract a subsequence ΠNμ that weakly converges to a probability measure
Π. By Skorohod’s theorem, there exists a probability space (Ω,F, P) and random variables
(WNμ, uNμ) and (W,u) on (Ω,F, P)with values in S such that

WNμ −→ W in C(0, T ;Rm) P -a.s.,

uNμ −→ u in L2(0, T ;H) P -a.s.
(3.59)

Moreover, the probability law of (WNμ, uNμ) is ΠNμ and that of (W,u) is Π.
For the filtration Ft, it is enough to choose σ(W(s), u(s) : 0 ≤ s ≤ t).
By the same argument as in [40, Section 3.3] (see also [41, Section 4.3]) we can

prove that the limit process W is a standard m-dimensional Wiener process defined on
(Ω,F, {Ft}0≤t≤T , P).

Theorem 3.10. The pair uNμ,WNμ satisfies the following equation:

(
uNμ(t), ei

)
+
∫ t

0

∫
D

(KD : ∇ei)dx ds +
∫ t

0

((
uNμ.∇ei

)
, uNμ

)
ds

=
(
u
Nμ

0 , ei
)
+
∫ t

0

(
F
(
uNμ(s), s

)
, ei

)
ds +

∫ t

0

(
G
(
uNμ(s), s

)
, ei

)
dWNμ

(3.60)

for almost all ω ∈ Ω, for any t ∈ [0, T] and 1 ≤ i ≤ Nμ.

Proof. The proof follows the same lines as in [6, Section 4.3.4] (see also [41, Section 4.3]), and
so we omit it.
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3.2.3. Passage to the Limit

To back our goal we need to pass to the limit in the terms of the estimate (3.60). From the
tightness property we have

uNμ −→ u in L2(0, T ;H) P -a.s., (3.61)

as Nμ → ∞. Since uNμ agrees with (3.60), then it verifies the same estimates as uN . In
particular the estimate

E sup
0≤t≤T

∣∣∣uNμ

∣∣∣p ≤ C (3.62)

for p ≥ 2 implies that the norm |uNμ |L2(0,T ;H) is uniformly integrable with respect to the
probability measure. Therefore, we can deduce from Vitali’s Convergence Theorem that

uNμ −→ u in L2
(
Ω,F, P, L2(0, T ;H)

)
, (3.63)

asNμ → ∞. It is readily seen that

(
uNμ, ei

)
V

−→ (u, ei)V weakly in L2
(
Ω,F, P ;L2(0, T)

)
. (3.64)

Thanks to the convergence (3.63) and the continuity of Kwe see that

∫
D

(
KDNμ : ∇ei

)
dx −→

∫
D

(KD : ∇ei)dx strongly in L2
(
Ω,F, P ;L2(0, T)

)
, (3.65)

asNμ → ∞. Let χ be an element of L∞(Ω× [0, T], dP ⊗ dt). Thanks to (3.63)we can prove by
arguing as in [42] that

E

∫T

0

((
uNμ · ∇ei

)
, uNμ

)
χdt −→ E

∫T

0
((u · ∇ei), u)χdt, (3.66)

asNμ → ∞. The dense injection

L∞(Ω × [0, T], dP ⊗ dt) ⊂ L2(Ω × [0, T], dP ⊗ dt) (3.67)

together with the relation (3.66) shows that

((
uNμ · ∇

)
ei, u

Nμ

)
⇀ ((u · ∇)ei, u) weakly in L2

(
Ω,F, P ;L2(0, T)

)
, (3.68)

asNμ → ∞.
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It follows from the continuity of F, (3.63), and Vitali’s theorem that

PNμF
(
uNμ(·), ·

)
−→ F(u(·), ·) strongly in L2

(
Ω,F, P ;L2(0, T ;V)

)
, (3.69)

asNμ → ∞. This implies in particular that

(
F
(
uNμ(·), ·

)
, ei

)
−→ (F(u(·), ·), ei) strongly in L2

(
Ω,F, P ;L2(0, T)

)
, (3.70)

asNμ → ∞. We can use the argument in [6, Section 4.3.5] (see also [41, Section 5.1]) to prove
that

∫ t

0

(
G
(
uNμ, s

)
, ei

)
dWNμ ⇀

∫ t

0
(G(u, s), ei)dW weakly in L2

(
Ω,F, P ;L2(0, T)

)
, (3.71)

for any t ∈ (0, T) and as Nμ → ∞.
Combining all these results and passing to the limit in (3.60), we see that u satisfies

(3.8) which holds for almost all ω ∈ Ω, for all t ∈ [0, T]. This proves the first part of
Theorem 3.3. By arguing as in [43] (Chapter 2, Lemma 1.2)we get the continuity result stated
in Theorem 3.3.

3.2.4. Proof of the Uniqueness of the Solution

Let u1 and u2 be two probabilistic weak solutions of (1.1), (1.2) starting with the same initial
condition and defined on the same stochastic basis (Ω,F,Ft, P)with the sameWiener process
W . Set v = u1 − u2 and

Dv =
(
1
2

)(∇v +∇tv
)
,

Di =
(
1
2

)(∇ui +∇tui

)
, i = 1, 2.

(3.72)

It can be shown that the process v satisfies the following equation:

dv(t) − Pdiv(KD1 −KD2)dt + P((u1 · ∇)u1 − (u2 · ∇)u2)dt

= (F(u1(t), t) − F(u2(t), t))dt +G(u1(t), t) −G(u2(t), t)dW,
(3.73)
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where P is the projector from L
2(D) onto H. Thanks to Itô’s formula for |v|2 we have

|v(t)|2 + 2
∫ t

0

∫
D

(KD1 −KD2 : Dv)dx dt + 2
∫ t

0
((v · ∇)u1, v)ds

=
∫ t

0

(
2(F(u1(s), s) − F(u2(s), s), v(s)) + |G(u1(s), s) −G(u2(s), s)|2

)
ds

+ 2
∫ t

0
(G(u1(s), s) −G(u2(s), s), v(s))dW.

(3.74)

Setting σ(t) = exp(
∫ t
0 −η‖u1(s)‖2ds), for all η > 0, we have that

σ(t)|v(t)|2 + 2
∫ t

0
σ(s)

∫
D

(KD1 −KD2 : Dv)dx dt + 2
∫ t

0
σ(s)((v · ∇)u1, v)ds

=
∫ t

0
σ(s)

(
2(F(u1(s), s) − F(u2(s), s), v(s)) + |G(u1(s), s) −G(u2(s), s)|2

)
ds

+ 2
∫ t

0
σ(s)(G(u1(s), s) −G(u2(s), s), v(s))dW − η

∫ t

0
σ(s)‖u1(s)‖2|v(s)|2ds.

(3.75)

By the assumptions on K, F, and G and (3.49) we have

Eσ(t)|v(t)|2 ≤ 2CBE

∫ t

0
σ(s)|v(s)|2‖u1(s)‖ds + 2C′

FE

∫ t

0
σ(s)|v(s)|2ds

+ C
′2
GE

∫ t

0
σ(s)|v(s)|2ds − ηE

∫ t

0
σ(s)‖u1(s)‖2|v(s)|2ds.

(3.76)

which implies

Eσ(t)|v(t)|2 ≤ C2
BE

∫ t

0
σ(s)|v(s)|2‖u1(s)‖2ds + CE

∫ t

0
σ(s)|v(s)|2ds

− ηE

∫ t

0
σ(s)‖u1(s)‖2|v(s)|2ds

(3.77)

By choosing η = C2
B and by making use of Gronwall’s lemma we have

Eσ(t)|v(t)|2 = 0, (3.78)

for any t ≥ 0. Since 0 ≤ σ(t) < ∞, then this completes the proof of Theorem 3.4.
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3.3. Example: The Stochastic Equation for the Maxwell Fluids

Themotion of a randomly forcedMaxwell fluids is given by the system (1.1)-(1.2). The tensor
σ for the Maxwell fluids is given by

(
1 +

L∑
l=1

λl
∂l

∂tl

)
σ = 2μ

(
1 +

L−1∑
l=1

klμ
−1 ∂

l

∂tl

)
D, L = 1, 2, 3, . . . , (3.79)

where λl > 0 and kl > 0 represent the relaxation and retardation times, respectively.
Considering the polynomials

Pm

(
p
)
= μ +

L∑
i=1

(kl − λl)pl,

Q
(
p
)
= 1 +

L∑
l−1

λlp
l.

(3.80)

It is shown in [30] that the operator K for the Maxwell fluids is given by

KD =
L∑
l=1

∫ t

0
β
(m)
l e−αl(t−τ)D(x, τ)dτ, (3.81)

where

β
(m)
l = Pm(−αl)

[
Q′(−αl)

]−1 (3.82)

is assumed to be positive. Here the numbers −αl designate the roots of the polynomialQ. The
result in [30] shows that K satisfies (2.22)–(2.24) and (3.4). Hence the results in Theorems 3.3
and 3.4 can be applied to the stochastic equations (1.1)-(1.2) and (3.81) for the Maxwell fluids
provided that the assumptions (HYP 1)–(HYP 4) hold.

4. Stochastic Equation of Type (1.1), (1.3)

This section is devoted to the investigation of (1.1), (1.3). We omit the details of the proofs
since they can be derived from similar ideas used in Section 3. We state our main results in
the first subsection and we give a concrete example in the second subsection. For this section
we suppose following.

(AF) themapping F induces a nonlinear operator fromH×[0, T] intoHwhich is assumed
to bemeasurable (resp., continuous)with respect to its second (resp., first) variable.
We require that for almost all t ∈ [0, T] and for each u

|F(u, t)| ≤ CF(1 + |u|). (4.1)
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(AG) The H⊗m-valued function G defined on H × [0, T] is measurable (resp., continuous)
with respect to its second (resp., first) argument, and it verifies

|G(u, t)|
H⊗m ≤ CG(1 + |u|), (4.2)

for all t ∈ [0, T] and for any u ∈ H.

(ASFG) We assume as well that

|F(u, t) − F(v, t)| ≤ C′
F |u − v|,

|G(u, t) −G(v, t)|
H⊗m ≤ C′

G|u − v|,
(4.3)

for any u, v ∈ H.

4.1. Statement of the Main Results

We introduce the concept of the solution of the problem (1.1), (1.3).

Definition 4.1. By a probabilistic weak solution of the problem (1.1), (1.3), we mean a system

(
Ω,F, P,Ft,W, u

)
, (4.4)

where

(1) (Ω,F, P) is a complete probability space, Ft is a filtration on (Ω,F, P);
(2) W(t) is an m-dimensional Ft-standard Wiener process;

(3) u ∈ Lp(Ω,F, P ;L2(0, T ;V)) ∩ Lp(Ω,F, P ;L∞(0, T ;H)) for all 2 ≤ p < ∞;

(4) for almost all t, u(t) is Ft-measurable;

(5) P -a.s. the following integral equation of Itô type holds.

(
u(t) − u(0), φ

)
+ ν

∫ t

0

((
u, φ

))
ds +

∫ t

0

∫
D

(
KD : ∇φ

)
dx ds +

∫ t

0

((
u · ∇φ

)
, u

)
ds

=
∫ t

0

(
F(u(s), s), φ

)
ds +

∫ t

0

(
G(u(s), s), φ

)
dW(s)

(4.5)

for any t ∈ [0, T] and φ ∈ V.

We have the following.

Theorem 4.2. If u0 ∈ H and if the hypotheses (AF)-(AG) hold, then the problem (1.1), (1.3) has a
solution in the sense of the above definition. Moreover u is strongly (resp., weakly) continuous in H

(resp., V) with probability one.
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Proof. The proof follows from the Galerkin method; and the compactness method, the
procedure is very similar to the proof of Theorem 3.3, and it is even easier. We just formally
derive the crucial estimates.

The application of Itô’s formula for |u|2 yields

|u|2 + 2ν
∫ t

0
‖u‖2ds + 2

∫ t

0

∫
D

(KD : D)dx dt

≤ 2
∫ t

0
(F(u, t), u)ds +

∫ t

0
|G(u, t)|2ds + |u0|2 + 2

∫ t

0
(G(u, t), u)dW.

(4.6)

More generally

|u|p + pν

∫ t

0
|u|p−2‖u‖2ds + p

∫ t

0
|u|p−2

∫
D

(KD : D)dx dt − p

∫ t

0
|u|p−2(F(u, t), u)ds

≤
(
1
2

)
p
(
p − 1

) ∫ t

0
|u|p−2|G(u, t)|2ds + |u0|p + p

∫ t

0
|u|p−2(G(u, t), u)dW,

(4.7)

for any 2 ≤ p < ∞. Thanks to the assumptions on K, F, and G we obtain that

|u|p + pν

∫ t

0
|u|p−2‖u‖2ds ≤ |u0|p + C

∫ t

0
|u|pds + p

∫ t

0
|u|p−2(G(u, t), u)dW. (4.8)

Standard arguments of Martingale inequality and Gronwall’s inequality yield

E sup
0≤t≤T

|u(t)|p ≤ C. (4.9)

Coming back to (4.6)we can show that

E

(∫T

0
‖u(s)‖2ds

)p/2

. (4.10)

We also have the uniqueness result whose proof follows from similar arguments used
in Theorem 3.4.

Theorem 4.3. Assume that (AF)–(ASFG) hold and let u1 and u2 be two probabilistic weak solutions
of (1.1), (1.3) starting with the same initial condition and defined on the same stochastic basis
(Ω,F,Ft, P). If one sets v = u1 − u2, then one has v = 0 almost surely.
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4.2. Application to the Oldroyd Fluids

The tensor σ for the Oldroyd fluids is given by

(
1 +

L∑
l=1

λl
∂l

∂tl

)
σ = 2μ

(
1 +

L∑
l=1

klμ
−1 ∂

l

∂tl

)
D, L = 1, 2, 3, . . . , (4.11)

where λl > 0 and kl > 0 represent the relaxation and retardation times, respectively. Let

Po

(
p
)
= μ − ν +

L∑
i=1

(kl − νλl)pl,

β
(o)
l = Po(−αl)

[
Q′(−αl)

]−1
.

(4.12)

The latter quantity is assumed to be positive. It is shown in [30] that the operator K for the
Oldroyd fluids is given by

KD =
L∑
l=1

∫ t

0
β
(o)
l e−αl(t−τ)D(x, τ)dτ, (4.13)

and thatK satisfies the assumption (2.22)–(2.24). Therefore Theorems 4.2 and 4.3 hold for the
Oldroyd fluid provided that the assumptions on F and G (see (AF)–(ASFG)) are valid.

Remark 4.4. Theorem 4.2 (resp., Theorem 3.3) holds true for those viscoelastic fluids which
do not satisfy the assumption (ASFG) (resp., (HYP 3)). One example we can consider is the
third-order fluids whose tensor is given by

σ = 2νD + μD3. (4.14)
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