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We give some estimates of integrals with a composition operator, namely, composition of
homotopy, differential, and Green’s operators T ◦ d ◦ G, with the Lipschitz and BMO norms. We
also have estimates of those integrals with a singular factor.

1. Introduction

The purpose of this paper is to establish the Poincaré-type inequalities for the composition
of the homotopy operator T , differential operator d, and Green’s operator G under Lipschitz
and BMO norms. One of the reasons that we consider this composition operator is due to the
Hodge theorem. It is well known that Hodge decomposition theorem plays important role
in studying harmonic analysis and differential forms; see [1–3]. It gives a relationship of the
three key operators in harmonic analysis, namely, Green’s operator G, the Laplacian operator
Δ, and the harmonic projection operator H. This relationship offers us a tool to apply the
composition of the three operators under the consideration to certain harmonic forms and to
obtain some estimates for certain integrals which are useful in studying the properties of the
solutions of PDEs. We also consider the integrals of this composition operator with a singular
factor because of their broad applications in solving differential and integral equations; see
[4].

We first give some notations and definitions which are commonly used in many books
and papers; for example, see [1, 4–12]. We useM to denote a Riemannian, compact, oriented,
and C∞ smooth manifold without boundary on R

n. Let ∧lM be the lth exterior power of the
cotangent bundle, and let C∞(∧lM) be the space of smooth l-forms on M and W(∧lM) =
{u ∈ L1

loc(∧lM) : u has generalized gradient}. The harmonic l-fields are defined byH(∧lM) =
{u ∈ W(∧lM) : du = d�u = 0, u ∈ Lp for some 1 < p < ∞}. The orthogonal complement of
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H in L1 is defined by H⊥ = {u ∈ L1 : 〈u, h〉 = 0 for all h ∈ H}. Then, Green’s operator G
is defined as G : C∞(∧lM) → H⊥ ∩ C∞(∧lM) by assigning G(u) as the unique element of
H⊥ ∩ C∞(∧lM) satisfying Poisson’s equation ΔG(u) = u − H(u), where H is the harmonic
projection operator that maps C∞(∧lM) onto H so that H(u) is the harmonic part of u. In
this paper, we also assume thatΩ is a bounded and convex domain in R

n. The n-dimensional
Lebesgue measure of a set E ⊆ R

n is denoted by |E|. The operator Ky with the case y = 0
was first introduced by Cartan in [3]. Then, it was extended to the following version in [13].
To each y ∈ Ω there corresponds a linear operator Ky : C∞(Ω,∧l) → C∞(Ω,∧l−1) defined
by (Kyu)(x; ξ1, . . . , ξl−1) =

∫1
0 t

l−1u(tx + y − ty;x − y, ξ1, . . . , ξl−1)dt and the decomposition u =
d(Kyu)+Ky(du).A homotopy operator T : C∞(Ω,∧l) → C∞(Ω,∧l−1) is defined by averaging
Ky over all points y ∈ Ω:

Tu =
∫

Ω
φ
(
y
)
Kyudy, (1.1)

where φ ∈ C∞
0 (Ω) is normalized so that

∫
φ(y)dy = 1. We are particularly interested in a class

of differential forms which are solutions of the well-known nonhomogeneous A-harmonic
equation:

d∗A(x, du) = B(x, du), (1.2)

whereA,B : Ω×∧l(Rn) → ∧l(Rn) satisfy the conditions: |A(x, ξ)| ≤ a|ξ|s−1, 〈A(x, ξ), ξ〉 ≥ |ξ|s
and |B(x, ξ)| ≤ b|ξ|s−1 for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a > 0 and b > 0
are constants, and 1 < s < ∞ is a fixed exponent associated with the equation. A significant
progress has been made recently in the study of different versions of the harmonic equations;
see [1, 4–12].

A function f ∈ L1
loc(Ω, μ) is said to be in BMO(Ω, μ) if there is a constant C such

that (1/μ(B))
∫
B |f − fB|dμ ≤ C for all balls B with σB ⊂ Ω, where σ > 1 is a constant.

BMO norm of l-forms is defined as the following. Let ω ∈ L1
loc(M,∧l), l = 0, 1, . . . , n. We say

ω ∈ BMO(M,∧l) if

‖ω‖∗,M = supσQ⊂M|Q|−1∥∥ω −ωQ

∥∥
1,Q < ∞ (1.3)

for some σ ≥ 1. Similar way to define the Lipschitz norm for ω ∈ L1
loc(M,∧l), l = 0, 1, . . . , n,

we say ω ∈ loc Lipk(M,∧l), 0 ≤ k ≤ 1, if

‖ω‖loc Lipk,M
= supσQ⊂M|Q|−(n+k)/n∥∥ω −ωQ

∥∥
1,Q < ∞ (1.4)

for some σ ≥ 1.
We will use the following results.
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Lemma 1.1 (see [7]). If u ∈ C∞(∧l(Rn)), l = 0, 1, . . . , n, 1 < s < ∞, then for any bounded ball
B ⊂ R

n,

‖T ◦ d ◦G(u)‖s,B ≤ C|B|diam(B)‖u‖s,B, (1.5)

‖T ◦ d ◦G(u)‖W1,s(B) ≤ C|B|‖u‖s,B. (1.6)

One also has the Poincaré type inequality:

‖T ◦ d ◦G(u) − (T ◦ d ◦G(u))B‖s,B ≤ C|B|diam(B)‖u‖s,B. (1.7)

Lemma 1.2 (see [5]). Let u ∈ Ls(M,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the A-harmonic
equation in a bounded, convex domain M, and let T be C∞(M,∧l) → C∞(M,∧l−1) the homotopy
operator defined in (1.1). Then, there exists a constant C, independent of u, such that

‖T(u)‖loc Lipk,M
≤ C‖u‖s,M, (1.8)

where k is a constant with 0 ≤ k ≤ 1.

Lemma 1.3 (see [4]). Let u ∈ Ls
loc(Ω,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the

nonhomogeneousA-harmonic equation (1.2) in a bounded domainΩ, letH be the projection operator
and let T be the homotopy operator. Then, there exists a constant C, independent of u, such that

(∫

B

|T(H(u)) − (T(H(u)))B|s
1

|x − xB|α
dx

)1/s

≤ C|B|γ
(∫

σB

|u|s 1

|x − xB|λ
dx

)1/s

(1.9)

for all balls B with σB ⊂ Ω and any real numbers α and λ with α > λ ≥ 0, where γ = 1 + 1/n − (α −
λ)/ns and xB is the center of ball B and σ > 1 is a constant.

2. The Estimates for Lipschitz and BMO Norms

We first give an estimate of the composition operator with the Lipschitz norm ‖ · ‖loc Lipk,M
.

Theorem 2.1. Let u ∈ Ls(M,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of theA-harmonic equation
(1.2) in a bounded, convex domain M, and let T be C∞(M,∧l) → C∞(M,∧l−1) the homotopy
operator defined in (1.1) and G Green’s operator. Then, there exists a constant C, independent of u,
such that

‖T ◦ d ◦G(u)‖loc Lipk,M
≤ C‖u‖s,M, (2.1)

where k is a constant with 0 ≤ k ≤ 1.

Proof. From Lemma 1.1, we have

‖T ◦ d ◦G(u) − (T ◦ d ◦G(u))B‖s,B ≤ C|B|diam(B)‖u‖s,B (2.2)
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for all balls B ⊂ M. By Hölder inequality with 1 = 1/s + (s − 1)/s, we have

‖T ◦ d ◦G(u) − (T ◦ d ◦G(u))B‖1,B

=
∫
|T ◦ d ◦G(u) − (T ◦ d ◦G(u))B|dx

≤
(∫

B

|T ◦ d ◦G(u) − (T ◦ d ◦G(u))B|sdx
)1/s(∫

B

1s/(s−1)dx
)(s−1)/s

= |B|(s−1)/s‖T ◦ d ◦G(u) − (T ◦ d ◦G(u))B‖s,B
≤ |B|1−1/s(C1|B|diam(B)‖u‖s,B

)

≤ C2|B|2−1/s+1/n‖u‖s,B.

(2.3)

By the definition of Lipschitz norm and noticing that 1 − k/n − 1/s + 1/n > 0, we have

‖T ◦ d ◦G(u)‖loc Lipk,M

= supσB⊂M|B|−(n+k)/n‖T ◦ d ◦G(u) − (T ◦ d ◦G(u))B‖1,B
= supσB⊂M|B|−1−k/n‖T ◦ d ◦G(u) − (T ◦ d ◦G(u))B‖1,B
≤ supσB⊂M|B|−1−k/nC2|B|2−1/s+1/n‖u‖s,B
= C2supσB⊂M|B|−1−k/n+2−1/s+1/n‖u‖s,B
≤ C2supσB⊂M|M|1−1/s−k/n+1/n‖u‖s,B
≤ C3supσB⊂M‖u‖s,σB
≤ C3‖u‖s,M.

(2.4)

Theorem 2.1 is proved.

We learned from [5] that the BMO norm and the Lipschitz norm are related in the
following inequality.

Lemma 2.2 (see [5]). If a differential form is u ∈ loc Lipk(Ω,∧l), l = 0, 1, . . . , n, 0 ≤ k ≤ 1, in a
bounded domain Ω, then u ∈ BMO(Ω,∧l) and

‖u‖∗,Ω ≤ C‖u‖loc Lipk,Ω
, (2.5)

where C is a constant.

Applying T(d(G(u))) to (2.5), then using Theorem 2.1, we have the following.
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Theorem 2.3. Let u ∈ Ls(M,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the A-harmonic
equation (1.2) in a bounded, convex domain M, and let T be C∞(M,∧l) → C∞(M,∧l−1) the
homotopy operator defined in (1.1), and let G be the Green’s operator. Then, there exists a constant C,
independent of u, such that

‖T(d(G(u)))‖∗,M ≤ C‖u‖s,M. (2.6)

3. The Lipschitz and BMO Norms with a Singular Factor

We considered the integrals with singular factors in [4]. Here, we will give estimates to
Poincaré type inequalities with singular factors in the Lipschitz and BMO norms. If we use
the formula (1.7) in Lemma 1.1 and follow the same proof of Lemma 3 in [4], we obtain the
following theorem.

Theorem 3.1. Let u ∈ Ls
loc(Ω,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the nonhomogeneousA-

harmonic equation (1.2) in a bounded domain Ω, let G be Green’s operator, and let T be the homotopy
operator. Then, there exists a constant C, independent of u, such that

(∫

B

|T(d(G(u))) − (T(d(G(u))))B|s
1

|x − xB|α
dx

)1/s

≤ C|B|γ
(∫

σB

|u|s 1

|x − xB|λ
dx

)1/s

(3.1)

for all balls B with σB ⊂ Ω and any real numbers α and λ with α > λ ≥ 0, where γ = 1 + 1/n − (α −
λ)/ns and xB is the center of ball B and σ > 1 is a constant.

We extend Theorem 3.1 to the Lipschitz norm with a singular factor and have the
following result.

Theorem 3.2. Let u ∈ Ls
loc(Ω,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the non-homogeneous

A-harmonic equation in a bounded and convex domain Ω, let G be Green’s operator, and let T be the
homotopy operator. Then, there exists a constant C(n, s, α, λ,Ω), independent of u, such that

‖T(d(G(u)))‖loc Lipk,Ω,w1
≤ C(n, s, α, λ,Ω)‖u‖s,Ω,w2

(3.2)

for all balls B with σB ⊂ Ω, σ > 1, where w1 = 1/|x − xB|α and w2 = supσB⊂Ω1/|x − xB|λ, and α, λ
are real numbers with (s − 1)n + λ ≥ αs > λ ≥ 0. Here xB is the center of the ball B.

Proof. Equation (3.2) is equivalent to

supσB⊂Ω|B|−(n+k)/n
∫

B

|T(d(G(u)))−(T(d(G(u))))B|w1dx ≤ C(n, s, α, λ,Ω)
(∫

Ω
|u|sw2dx

)1/s

.

(3.3)



6 Journal of Inequalities and Applications

By using Theorem 3.1, we have

(∫

B

|T(d(G(u))) − (T(d(G(u))))B|
1

|x − xB|α
dx

)

≤
(∫

B

(
|T(d(G(u))) − (T(d(G(u))))B|

1
|x − xB|α

)s

dx

)1/s(∫

B

1s/(s−1)dx
)(s−1)/s

= |B|(s−1)/s
(∫

B

|T(d(G(u))) − (T(d(G(u))))B|s|x − xB|−αsdx
)1/s

≤ C1|B|(s−1)/s|B|γ1
(∫

σB

|u|s|x − xB|−λdx
)1/s

,

(3.4)

where γ1 = 1 + 1/n − (αs − λ)/ns. Notice that −(n + k)/n + (s − 1)/s + 1 + 1/n − (αs − λ)/ns =
(1 − k)/n + (s − 1)/s − (αs − λ)/ns > 0 as (s − 1)n ≥ αs − λ > 0. Thus,

supσB⊂Ω|B|−(n+k)/n
∫

B

|T(d(G(u))) − (T(d(G(u))))B|
1

|x − xB|α
dx

≤ supσB⊂Ω|B|−(n+k)/nC1|B|(s−1)/s|B|γ1
(∫

σB

|u|s|x − xB|−λdx
)1/s

≤ C2supσB⊂Ω|Ω|−(n+k)/n+(s−1)/s+γ1
(∫

σB

|u|s|x − xB|−λdx
)1/s

≤ C3supσB⊂Ω

(∫

σB

|u|s|x − xB|−λdx
)1/s

≤ C4

(∫

Ω
|u|ssupσB⊂Ω|x − xB|−λdx

)1/s

= C4

(∫

Ω
|u|sw2dx

)1/s

.

(3.5)

We have completed the proof of Theorem 3.2.

We also obtain a similar version of the Poincaré type inequality with a singular factor
for the BMO norm.

Theorem 3.3. Let u ∈ Ls
loc(Ω,∧l), l = 1, 2, . . . , n, 1 < s < ∞, be a solution of the non-homogeneous

A-harmonic equation in a bounded and convex domain Ω, let G be Green’s operator, and let T be the
homotopy operator. Then, there exists a constant C(n, s, α, λ,Ω), independent of u, such that

‖T(d(G(u)))‖∗,Ω,w1
≤ C(n, s, α, λ,Ω)‖u‖s,Ω,w2

(3.6)

for all balls B with σB ⊂ Ω, σ > 1, where w1 = 1/|x − xB|α and w2 = supσB⊂Ω1/|x − xB|λ, and α, λ
are real numbers with (s − 1)n + λ ≥ αs > λ ≥ 0. Here xB is the center of the ball B.

We omit the proof since it is the same as the proof of Theorem 3.2.
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4. The Weighted Inequalities

In this section, we introduce weighted versions of the Poincaré type inequality with the
Lipschitz and BMO norms.

Definition 4.1. We say that a weight w belongs to the Ar(M) class, 1 < r < ∞ and write
w ∈ Ar(M), if w(x) > 0 a.e., and

supB

(
1
|B|

∫

B

wdx

)(
1
|B|

∫

B

(
1
w

)1/(r−1)
dx

)r−1
< ∞ (4.1)

for any ball B ⊂ M.

Definition 4.2. We say ω ∈ loc Lipk(Ω,∧l, wα), 0 ≤ k ≤ 1 for ω ∈ L1
loc(Ω,∧l, ωα), l = 0, 1, . . . , n,

if

‖ω‖loc Lipk,Ω,wα = supσQ⊂Ω
(
μ(Q)

)−(n+k)/n∥∥ω −ωQ

∥∥
1,Q,wα < ∞ (4.2)

for some σ > 1, where the measure μ is defined by dμ = w(x)αdx, w is a weight, and α is a
real number. Similarly, for ω ∈ L1

loc(Ω,∧l, wα), l = 0, 1, . . . , n, we write ω ∈ BMO(Ω,∧l, wα) if

‖ω‖∗,Ω,wα = supσQ⊂Ω
(
μ(Q)

)−1∥∥ω −ωQ

∥∥
1,Q,wα < ∞. (4.3)

Lemma 4.3 (see [7]). Let u ∈ Ls
loc(Ω,∧l), l = 0, . . . , n, 1 < s < ∞, be a smooth differential form

satisfying equation (1.2) in a bounded domain Ω, and let T : Ls
loc(Ω,∧l) → Ls

loc(Ω,∧l−1) be the
homotopy operator defined in (1.1). Assume that ρ > 1 and w ∈ Ar(Ω) for some 1 < r < ∞. Then,
there exists a constant C, independent of u, such that

‖T ◦ d ◦G(u) − (T ◦ d ◦G(u))B‖s,B,wα ≤ C|B|diam(B)‖u‖s,ρB,wα (4.4)

for all balls B with ρB ⊂ Ω and any real number α with 0 < α < 1.

We extend the Lemma 4.3 to the version with the Lipschitz norm as the following.

Theorem 4.4. Let u ∈ Ls
loc(Ω,∧l), l = 0, . . . , n, 1 < s < ∞, be a solution of (1.2) in a bounded

domain, convexΩ, and let T be the homotopy operator defined in (1.1), where the measure μ is defined
by dμ = wαdx andw ∈ Ar(Ω) for some r > 1 withw(x) ≥ ε > 0 for any x ∈ Ω. Then, there exists a
constant C, independent of u, such that

‖T ◦ d ◦G(u)‖loc Lipk,Ω,wα ≤ C‖u‖s,Ω,wα , (4.5)

where k and α are constants with 0 ≤ k ≤ 1 and 0 < α < 1.
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Proof. First, by using the Hölder inequality and inequality (4.4), we see that

‖T(d(G(u))) − (T(d(G(u))))B‖1,B,wα

=
∫

B

|T(d(G(u))) − (T(d(G(u))))B|dμ

≤
(∫

|T(d(G(u))) − (T(d(G(u))))B|sdμ
)1/s(

1s/(s−1)dμ
)(s−1)/s

=
(
μ(B)

)(s−1)/s‖T(d(G(u))) − (Td(G(u)))B‖s,B,wα

≤ (
μ(u)

)1−1/s
C1|B|diam(B)‖u‖s,B,wα

≤ C2
(
μ(u)

)1−1/s|B|1+1/n‖u‖s,B,wα .

(4.6)

Since μ(B) =
∫
B w

α dx ≥ ∫
B ε

α dx ≥ C3|B|, we have 1/μ(B) ≤ C4/|B|. Then,

‖T(d(G(u)))‖loc Lipk,Ω,wα = supρB⊂Ω
(
μ(B)

)−(n+k)/n‖T(d(G(u))) − (T(d(G(u))))B‖1,B,wα

≤ supρB⊂Ω
(
μ(B)

)−1−k/n
C2

(
μ(u)

)1−1/s|B|1+1/n‖u‖s,B,wα

= supρB⊂ΩC2
(
μ(B)

)−k/n−1/s|B|1+1/n‖u‖s,B,wα

≤ C5 supρB⊂Ω(|B|)−k/n−1/s+1+1/n‖u‖s,B,wα

≤ C5 supρB⊂Ω|Ω|−k/n−1/s+1+1/n‖u‖s,B,wα

≤ C5|Ω|−k/n−1/s+1+1/nsupρB⊂Ω‖u‖s,B,wα

≤ C6‖u‖s,Ω,wα

(4.7)

due to −k/n−1/s+1+1/n = (1−k)/n+(1−1/s) > 0 and |Ω| < ∞. Theorem 4.4 is proved.

Similarly, we have the weighted version for the BMO norm.

Theorem 4.5. Let u ∈ Ls
loc(Ω,∧l), l = 0, . . . , n, 1 < s < ∞, be a solution of (1.2) in a bounded

domain, convexΩ, and let T be the homotopy operator defined in (1.1), where the measure μ is defined
by dμ = wαdx andw ∈ Ar(Ω) for some r > 1 withw(x) ≥ ε > 0 for any x ∈ Ω. Then, there exists a
constant C, independent of u, such that

‖T ◦ d ◦G(u)‖∗,Ω,wα ≤ C‖u‖s,Ω,wα , (4.8)

where α is a constant with 0 < α < 1.

Proof. We only need to prove that

‖T(d(G(u)))‖∗,Ω,wα ≤ C‖T(d(G(u)))‖loc Lipk,Ω,wα . (4.9)
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As a matter of fact,

‖T(d(G(u)))‖∗,Ω,wα = supρB⊂Ω
(
μ(B)

)−1‖T(d(G(u))) − (T(d(G(u))))B‖1,B,wα

= supρB⊂Ω
(
μ(B)

)k/n(
μ(B)

)−(n+k)/n‖T(d(G(u))) − (T(d(G(u))))B‖1,B,wα

≤ supρB⊂Ω
(
μ(Ω)

)k/n(
μ(B)

)−(n+k)/n‖T(d(G(u))) − (T(d(G(u))))B‖1,B,wα

≤ (
μ(Ω)

)k/nsupρB⊂Ω
(
μ(B)

)−(n+k)/n‖T(d(G(u))) − (T(d(G(u))))B‖1,B,wα

≤ C1supρB⊂Ω
(
μ(B)

)−(n+k)/n‖T(d(G(u))) − (T(d(G(u))))B‖1,B,wα

= C1‖T(d(G(u)))‖loc Lipk,Ω,wα .

(4.10)

5. Applications

Example 5.1. We consider the homogeneous case of (1.2) as B(x, du) = 0 and A(x, ξ) = ξ|ξ|s−2,
s > 1. Let u be a 0-form. Then, the operator A satisfies the required conditions of (1.2) and
(1.2) is reduced to the s-harmonic equation:

div
(
∇u|∇u|s−2

)
= 0. (5.1)

For example, u = |x|(s−n)/(s−1) ∈ R
n, as 2− 1/n < s < n and u = − log |x| as s = n is a solution of

s-harmonic equation (5.1). Then, u also satisfies the results proved in the Theorems 2.1–4.5.
Let us consider a special case. Set s = 2, n = 3, and letΩ be the unit sphere in R

3. In particular,
one could think of u as square root of an attraction force between two objects of masses m
andM, respectively. Then, u2 = mMg/(x2

1 + x2
2 + x2

3), where g is the gravitational constant. It
would be very complicated to estimate the ‖T(d(G(u)))‖loc Lipk,Ω or ‖T(d(G(u)))‖∗,Ω directly.
To estimate their upper bounds by estimating ‖u‖s is much easier. As a matter of fact, by
using the spherical coordinates, we have

‖u‖2,Ω =
√
mMg

(∫

Ω
|x|−2dx

)1/2

=
√
mMg

(

2π
∫π

0

∫1

0
ρ−2+2 sinφdρ dφ

)1/2

= 2
√
mMgπ.

(5.2)

Example 5.2 (see [5]). Let f(x) = (f1, f2, . . . , fn) : Ω → R
n be a K-quasiregular mapping,

K ≥ 1; that is, if fi are in the Sobolev class W1,n
loc (Ω), for i = 1, 2, . . . , n, and the norm of the

corresponding Jacobi matrix |Df(x)| = max{|Df(x)h| : h = 1} satisfies |Df(x)|n ≤ KJ(x, f),
where J(x, f) = detDf(x) is the Jacobian determinant of the f , then, each of the functions
u = fi(x), i = 1, 2, . . . , n or u = log |f(x)|, is a generalized solution of the quasilinear elliptic
equation:

divA(x,∇u) = 0, A = (A1, A2, . . . , An) (5.3)
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in Ω − f−1(0), where Ai(x, ξ) = ∂/∂ξi(
∑n

i,j=1 θi,j(x)ξiξj)
n/2 and θi,j are some functions that

satisfy C1(K)|ξ|2 ≤ ∑n
i,j θi,j ξiξj ≤ C2(K)|ξ|2 for some constants C1(K), C2(K) > 0. Then, all of

functions u defined here also satisfy the results in Theorems 2.1–4.5.
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