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This paper investigates the existence of solutions and nonnegative solutions for prescribed variable
exponent mean curvature impulsive system initialized boundary value problems. The proof of our
main result is based upon Leray-Schauder’s degree. The sufficient conditions for the existence of
solutions and nonnegative solutions have been given.

1. Introduction

The theory of impulsive differential equations describes processes which experience a
sudden change of their state at certain moments. On the Laplacian impulsive differential
equations boundary value problems, there are many results (see [1–5]). Because of the
nonlinearity of p-Laplacian, the results about p-Laplacian impulsive differential equations
boundary value problems are rare (see [6]). In [7, 8], the authors discussed the existence
of solutions of p(r)-Laplacian system impulsive boundary value problems. Recently, the
existence and asymptotic behavior of solutions of curvature equations have been studied
extensively (see [9–15]). In [16], the authors generalized the usual mean curvature systems
to variable exponent mean curvature systems. In this paper, we consider the existence of
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solutions and nonnegative solutions for the prescribed variable exponent mean curvature
system

−(ϕ(r, u′))′ + f
(
r, u, u′) = 0, r ∈ (0, T), r /= ri, (1.1)

where u : [0, T] → R
N , with the following impulsive initialized boundary value condi-

tions

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = Ai

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

, i = 1, . . . , k, (1.2)

lim
r→ r+i

ϕ
(
r, u′(r)

) − lim
r→ r−i

ϕ
(
r, u′(r)

)
= Bi

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

, i = 1, . . . , k, (1.3)

u′(0) = u(0) = 0, (1.4)

where

ϕ(r, x) =
|x|p(r)−1x

(
1 + |x|q(r)p(r)

)1/q(r)
, ∀r ∈ [0, T], x ∈ R

N, (1.5)

p, q ∈ C([0, T],R+) are absolutely continuous, where p, q satisfy p(r) ≥ 1, q(r) ≥ 1,
−(ϕ(r, u′))′ is called the variable exponent mean curvature operator, 0 < r1 < r2 < · · · <
rk < T and Ai, Bi ∈ C(RN × R

N,RN).
For any v ∈ R

N , vj will denote the jth component of v; the inner product in R
N will be

denoted by 〈·, ·〉; | · | will denote the absolute value and the Euclidean norm on R
N . Denote

that J = [0, T], J ′ = [0, T] \ {r0, r1, . . . , rk+1}, and J0 = [r0, r1], Ji = (ri, ri+1], i = 1, . . . , k, where
r0 = 0, rk+1 = T . Denote that Joi is the interior of Ji, i = 0, 1, . . . , k. Let

PC
(
J,RN

)
=

⎧
⎨

⎩
x : J −→ R

N

∣∣∣∣
∣∣

x ∈ C
(
Ji,R

N
)
, i = 0, 1, . . . , k,

lim
r→ r+i

x(r) exists for i = 1, . . . , k

⎫
⎬

⎭
,

PC1
(
J,RN

)
=

⎧
⎨

⎩
x ∈ PC

(
J,RN

)
∣∣∣∣∣∣

x′ ∈ C
(
Joi ,R

N
)
,

lim
r→ r+i

x′(r) and lim
r→ r−i+1

x′(r) exist for i = 0, 1, . . . , k

⎫
⎬

⎭
.

(1.6)

For any u(r) = (u1(r), . . . , uN(r)) ∈ PC(J,RN), denote that |ui|0 = sup{|ui(r)| | r ∈ J ′}.
Obviously, PC(J,RN) is a Banach space with the norm ‖u‖0 = (

∑N
i=1 |ui|20)1/2, and PC1(J,RN)

is a Banach space with the norm ‖u‖1 = ‖u‖0 + ‖u′‖0. In the following, PC(J,RN) and
PC1(J,RN) will be simply denoted by PC and PC1, respectively. Denote that L1 = L1(J,RN),
and the norm in L1 is ‖u‖L1 = [

∑N
i=1(

∫T
0 |ui(r)|dr)2]1/2.

The study of differential equations and variational problems with variable exponent
conditions is a new and interesting topic. For the applied background on this kind of
problems we refer to [17–19]. Many results have been obtained on this kind of problems,



Journal of Inequalities and Applications 3

for example, [20–35]. If p(r) ≡ p (a constant) and q(r) ≡ q (a constant), then (1.1) is the well-
known mean curvature system. Since problems with variable exponent growth conditions
are more complex than those with constant exponent growth conditions, many methods and
results for the latter are invalid for the former; for example, if Ω ⊂ R

n is a bounded domain,
the Rayleigh quotient

λp(x) = inf
u∈W1,p(x)

0 (Ω)\{0}

∫
Ω

(
1/p(x)

)|∇u|p(x)dx
∫
Ω

(
1/p(x)

)|u|p(x)dx
(1.7)

is zero in general, and only under some special conditions λp(x) > 0 (see [25]), but the fact
that λp > 0 is very important in the study of p-Laplacian problems.

In this paper, we investigate the existence of solutions for the prescribed variable
exponent mean curvature impulsive differential system initialized boundary value problems;
the proof of our main result is based upon Leray-Schauder’s degree. This paper was
motivated by [6, 13, 36].

Let N ≥ 1, then the function f : J × R
N × R

N → R
N is assumed to be Caratheodory;

by this we mean that

(i) for almost every t ∈ J the function f(t, ·, ·) is continuous,
(ii) for each (x, y) ∈ R

N × R
N the function f(·, x, y) is measurable on J ,

(iii) for each R > 0 there is a βR ∈ L1(J,R) such that, for almost every t ∈ J and every
(x, y) ∈ R

N × R
N with |x| ≤ R, |y| ≤ R, one has

∣∣f
(
t, x, y

)∣∣ ≤ βR(t). (1.8)

We say a function u : J → R
N is a solution of (1.1) if u ∈ PC1 with ϕ(r, u′) absolutely

continuous on Joi , i = 0, 1, . . . , k, which satisfies (1.1) a.e. on J .
This paper is divided into three sections; in the second section, we present some

preliminary. Finally, in the third section, we give the existence of solutions and nonnegative
solutions for system (1.1)–(1.4).

2. Preliminary

In this section, we will do some preparation.

Lemma 2.1 (see [16]). ϕ is a continuous function and satisfies the following.

(i) For any r ∈ J, ϕ(r, ·) is strictly monotone, that is,

〈
ϕ(r, x1) − ϕ(r, x2), x1 − x2

〉
> 0, for any x1, x2 ∈ R

N, x1 /=x2. (2.1)

(ii) For any fixed r ∈ J , ϕ(r, ·) is a homeomorphism from R
N to

E =
{
x ∈ R

N | |x| < 1
}
. (2.2)
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For any r ∈ J , denote by ϕ−1(r, ·) the inverse operator of ϕ(r, ·), then

ϕ−1(r, x) =
(
1 − |x|q(r)

)−1/p(r)q(r)
|x|1/p(r)−1x, for x ∈ E \ {0}, ϕ−1(r, 0) = 0. (2.3)

Let one now consider the following simple problem:

(
ϕ
(
r, u′(r)

))′ = h(r), r ∈ (0, T), r /= ri, (2.4)

with the following impulsive boundary value conditions:

lim
r→ r+i

u(r) − lim
r→ r−i

u(ri) = ai, i = 1, . . . , k,

lim
r→ r+i

ϕ
(
r, u′(r)

) − lim
r→ r−i

ϕ
(
r, u′(r)

)
= bi, i = 1, . . . , k,

u′(0) = u(0) = 0,

(2.5)

where ai, bi ∈ R
N,

∑k
i=1 |bi| < 1; h ∈ L1.

Obviously, u′(0) = 0 implies that ϕ(0, u′(0)) = 0. If u is a solution of (2.4) with (2.5), by
integrating (2.4) from 0 to r, then one finds that

ϕ
(
r, u′(r)

)
=

∑

ri<r

bi +
∫ r

0
h(t)dt, ∀r ∈ J ′. (2.6)

Define a = (a1, . . . , ak) ∈ R
kN, b = (b1, . . . , bk) ∈ R

kN , and operator F : L1 → PC as

F(h)(r) =
∫ r

0
h(t)dt, ∀h ∈ L1. (2.7)

From the definition of ϕ, one can see that

sup
r∈J

∣∣∣∣∣

∑

ri<r

bi + F(h)(r)

∣∣∣∣∣
< 1. (2.8)

Denote that

Db =

{

h ∈ L1

∣∣∣∣∣
sup
r∈J

∣∣∣∣∣

∑

ri<r

bi + F(h)(r)

∣∣∣∣∣
< 1

}

. (2.9)

By (2.6), one has

u(r) =
∑

ri<r

ai + F

{

ϕ−1
[

r,

(
∑

ri<r

bi + F(h)

)]}

(r), ∀r ∈ J. (2.10)
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Denote that W = R
2kN × L1 with the norm

‖w‖W =
k∑

i=1

|ai|+
k∑

i=1

|bi| + ‖h‖L1 , ∀w = (a, b, h) ∈ W, (2.11)

thenW is a Banach space.
Let one define the nonlinear operator Kb : Db → PC1 as

Kb(h)(r) = F

{

ϕ−1
[

r,

(
∑

ri<r

bi + F(h)

)]}

(r), ∀r ∈ J. (2.12)

Lemma 2.2. The operator Kb is continuous and sends closed equiintegrable subsets of Db into
relatively compact sets in PC1.

Proof. It is easy to check that Kb(h)(·) ∈ PC1, for all h ∈ Db. Since

Kb(h)
′(t) = ϕ−1

{

t,

[
∑

ri<t

bi + F(h)

]}

, ∀t ∈ J, (2.13)

it is easy to check that Kb is a continuous operator from Db to PC1.
Let now U be a closed equiintegrable set in Db, then there exists η ∈ L1, such that, for

any u ∈ U,

|u(t)| ≤ η(t) a.e. on J. (2.14)

We want to show that Kb(U) ⊂ PC1 is a compact set.
Let {un} is a sequence in Kb(U), then there exists a sequence {hn} ∈ U such that

un = Kb(hn). For any t1, t2 ∈ J , we have that

|F(hn)(t1) − F(hn)(t2)| ≤
∣∣∣∣∣

∫ t2

t1

η(t)dt

∣∣
∣∣∣
. (2.15)

Hence the sequence {F(hn)} is uniformly bounded and equicontinuous. By Ascoli-
Arzela theorem, there exists a subsequence of {F(hn)} (which we rename the same) that is
convergent in PC. Then the sequence

ϕ
(
t,Kb(hn)

′(t)
)
=

∑

ri<t

bi + F(hn) (2.16)

is convergent according to the norm in PC. Since

Kb(hn)(t) = F

{

ϕ−1
[

t,

(
∑

ri<t

bi + F(hn)

)]}

(t), ∀t ∈ J, (2.17)
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according to the continuity of ϕ−1, we can see that Kb(hn) is convergent in PC. Thus we
conclude that {un} is convergent in PC1. This completes the proof.

We denote thatNf(u) : PC1 → L1 is the Nemytski operator associated to f defined by

Nf(u)(r) = f
(
r, u(r), u′(r)

)
, a.e. on J. (2.18)

Define K : PC1 → PC1 as

K(u)(r) = F

{

ϕ−1
[

r,

(
∑

ri<r

Bi + F
(
Nf(u)

)
)]}

(r), ∀r ∈ J, (2.19)

where Bi = Bi(limr→ r−i u(r), limr→ r−i u
′(r)).

Lemma 2.3. u is a solution of (1.1)–(1.4) if and only if u is a solution of the following abstract
equation:

u =
∑

ri<r

Ai +K(u), (2.20)

where Ai = Ai(limr→ r−i u(r), limr→ r−i u
′(r)), Bi = Bi(limr→ r−i u(r), and limr→ r−i u

′(r)).

Proof. (i) If u is a solution of (1.1)–(1.4), since u′(0) = 0 implies that ϕ(0, u′(0)) = 0, by
integrating (1.1) from 0 to r, then we find that

ϕ
(
r, u′(r)

)
=

∑

ri<r

Bi +
∫ r

0
f
(
t, u, u′)dt, ∀r ∈ J ′. (2.21)

Thus

u =
∑

ri<r

Ai +K(u). (2.22)

Hence u is a solution of (2.20).
(ii) If u is a solution of (2.20), then it is easy to see that (1.2) is satisfied. Let r = 0, then

we have

u(0) = 0. (2.23)

From (2.20)we also have

ϕ
(
r, u′) =

∑

ri<r

Bi + F
(
Nf(u)

)
(r), r ∈ (0, T), r /= ri, (2.24)

(
ϕ(r, u′)

)′ = f
(
r, u, u′), r ∈ (0, T), r /= ri. (2.25)
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From (2.24), we can see that (1.3) is satisfied. Let r = 0, from (2.24), then we have

ϕ
(
0, u′(0)

)
= 0. (2.26)

Since ϕ(r, x) = |x|p(r)−1x/(1 + |x|q(r)p(r))1/q(r) = 0, we must have x = 0; thus,

u′(0) = 0. (2.27)

Hence u is a solution of (1.1)–(1.4). This completes the proof.

3. Main Results and Proofs

In this section, we will apply Leray-Schauder’s degree to deal with the existence of solutions
for (1.1)–(1.4).

We assume that

(H0)
∑k

i=1 |Bi(u, v)| < 1/2, for all (u, v) ∈ R
N × R

N.

Theorem 3.1. If (H0) is satisfied, then 0 ∈ Ω is an open bounded set in PC1 such that the following
conditions hold.

(10) For any u ∈ Ω, the mapping r → f(r, u, u′) belongs to {v ∈ L1 | ‖v‖L1 < 1/3}.
(20) For each λ ∈ (0, 1), the problem

(
ϕ
(
r, u′))′ = λf

(
r, u, u′), r ∈ (0, T), r /= ri,

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = λAi

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

, i = 1, . . . , k,

lim
r→ r+i

ϕ
(
r, u′(r)

) − lim
r→ r−i

ϕ
(
r, u′(r)

)
= λBi

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

, i = 1, . . . , k,

u′(0) = u(0) = 0

(3.1)

has no solution on ∂Ω.
Then (1.1)–(1.4) has at least one solution on Ω.

Proof. Denote that

Ai = Ai

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

, Bi = Bi

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

. (3.2)

For any λ ∈ [0, 1], define Kλ : PC1 → PC1 as

Kλ(u)(r) = F

{

ϕ−1
[

r,

(
∑

ri<r

λBi + F
(
λNf(u)

)
)]}

(r), ∀r ∈ J. (3.3)

Denote that Ψ(u, λ) := λ
∑

ri<r
Ai +Kλ(u).



8 Journal of Inequalities and Applications

We know that (1.1)–(1.4) has the same solutions of

u = Ψ(u, 1) =
∑

ri<r

Ai +K1(u). (3.4)

Since f is Caratheodory, it is easy to see that Nf(·) is continuous and sends bounded
sets into equiintegrable sets. According to Lemma 2.2, we can conclude that Ψ is compact
continuous onΩ for any λ ∈ [0, 1]. We assume that for λ = 1 (3.4) does not have a solution on
∂Ω; otherwise, we complete the proof. Now from hypothesis (20), it follows that (3.4) has no
solution for (u,λ) ∈ ∂Ω × (0, 1].

When λ = 0, (3.1) is equivalent to the following usual problem:

−(ϕ(r, u′))′ = 0, u′(0) = u(0) = 0, (3.5)

where obviously 0 is the unique solution to this problem.
Since 0 ∈ Ω, we have proved that (3.4) has no solution (u,λ) on ∂Ω×[0, 1], then we get

that, for each λ ∈ [0, 1], Leray-Schauder’s degree dLS[I − Ψ(·, λ),Ω, 0] is well defined. From
the homotopy invariant property of that degree, we have

dLS[I −Ψ(u, 1),Ω, 0] = dLS[I −Ψ(u, 0),Ω, 0] = 1. (3.6)

This completes the proof.

In the following, we will give an application of Theorem 3.1.
Denote that σ = 4T/(4T + 1) and

Ωε =
{
u ∈ PC1

∣∣∣∣max
1≤j≤N

(∣∣∣uj
∣∣∣
0
+
∣∣∣∣
(
uj

)′∣∣∣∣
0

)
< ε

}
. (3.7)

Obviously, Ωε is an open subset of PC1.
Assume that

(H1) f(r, u, v) = δg(r, u, v), where δ is a positive parameter, and g is Caratheodory.

(H2)
∑k

i=1 |Ai(u, v)|≤ (σ/2)ε,
∑k

i=1 |Bi(u, v)| ≤ {min
r∈I

|ε/(4T + 1)|p(r)/2(1+|Nε|q(r)p(r))1/q(r),
1/2}, for all (u, v) ∈ R

N × R
N .

Theorem 3.2. If (H1)-(H2) are satisfied, then problem (1.1)–(1.4) has at least one solution on Ωε,
when positive parameter δ is small enough.

Proof. Let one consider the problem

u = Ψ(u, λ) = λ
∑

ri<r

Ai +Kλ(u), (3.8)

where Kλ(·) is defined in (3.3).
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Obviously, u is a solution of (1.1)–(1.4) if and only if u is a solution of the abstract
equation (3.8) when λ = 1. We only need to prove that the conditions of Theorem 3.1 are
satisfied.

(10) When positive parameter δ is small enough, for any u ∈ Ωε, we can see that the
mapping r �→ δg(r, u, u′) belongs to {u ∈ L1 | ‖u‖L1 < 1/3}.

(20)We shall prove that for each λ ∈ (0, 1) the problem

(
ϕ
(
r, u′))′ = λf

(
r, u, u′), r ∈ (0, T), r /= ri,

lim
r→ r+i

u(r) − lim
r→ r−i

u(r) = λAi

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

, i = 1, . . . , k,

lim
r→ r+i

ϕ
(
r, u′(r)

) − lim
r→ r−i

ϕ
(
r, u′(r)

)
= λBi

(

lim
r→ r−i

u(r), lim
r→ r−i

u′(r)

)

, i = 1, . . . , k,

u′(0) = u(0) = 0

(3.9)

has no solution on ∂Ωε.
If it is false, then there exists a λ ∈ (0, 1) and u ∈ ∂Ωε is a solution of (3.8). Then there

exists an j ∈ {1, . . . ,N} such that |uj |0 + |(uj)′|0 = ε.
(i) Suppose that |uj |0 ≥ σε, then |(uj)′|0 ≤ (1 − σ)ε. For any r ∈ J, since u(0) = 0,

according to (H2) and (1.2), we have

∣∣∣uj(r)
∣∣∣ =

∣∣∣uj(r) − uj(0)
∣∣∣ =

∣∣∣∣∣

∫ r

0

(
uj

)′
(t)dt +

∑

0<ri<r

Ai

∣∣∣∣∣

≤
∫T

0

∣∣∣∣
(
uj

)′
(t)

∣∣∣∣dt +
∑

0<ri<r
|Ai|

≤
∫T

0
(1 − σ)εdr+

k∑

i=1

|Ai|

≤ σ

4
ε +

σ

2
ε =

3σ
4
ε.

(3.10)

It is a contradiction.
(ii) Suppose that |uj |0 < σε, (1−σ)ε < |(uj)′|0 ≤ ε. This implies that |(uj)′(r∗)| > (1−σ)ε =

(1/(4T + 1))ε for some r∗ ∈ J .
Denote that

ϕj(r, u′)(r) =
|u′|p(r)−1(uj

)′(r)
(
1 + |u′|q(r)p(r)

)1/q(r)
. (3.11)
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Since u′(0) = 0, we have

ϕj(r∗, u′)(r∗) = λ

∫ r∗

0
fj(r, u, u′)dr + λ

∑

0<ri<r∗

B
j

i . (3.12)

According to (H1)-(H2), when positive parameter δ is small enough, we have

|ε/(4T + 1)|p(r∗)
(
1 + |Nε|q(r∗)p(r∗)

)1/q(r∗)
≤

∣
∣∣ϕj(r∗, u′)(r∗)

∣
∣∣ ≤ λ

∫ r∗

0

∣
∣∣fj(r, u, u′)

∣
∣∣dr + λ

∣
∣
∣∣
∣

∑

0<ri<r∗

B
j

i

∣
∣
∣∣
∣

≤ δ

∫T

0
βNε(r)dr+

k∑

i=1

|Bi| <
|ε/(4T + 1)|p(r∗)

(
1 + |Nε|q(r∗)p(r∗)

)1/q(r∗)
.

(3.13)

It is a contradiction.
Summarizing this argument, for each λ ∈ (0, 1), the problem (3.8) with (1.4) has no

solution on ∂Ωε.
Since 0 ∈ Ωε and 0 is the unique solution of u = Ψ(u, 0), then the Leray-Schauder’s

degree

dLS[I −Ψ(·, 0),Ω, 0] = 1/= 0. (3.14)

This completes the proof.

In the following, we will discuss the existence of nonnegative solutions of (1.1)–(1.4).
For any x = {x1, . . . , xN} ∈ R

N , the notation x ≥ 0 (x > 0)means that xl ≥ 0 (xl > 0) for every
l ∈ {1, . . . ,N}.

Assume the following

(H3) f(r, u, v) = δg(r, u, v), where δ is a positive parameter, and

g(r, u, v) = τ(r)
[
|u|q1(r)−1u + μ(r)|v|q2(r)−1v

]
+ γ(r), (3.15)

where q1, q2 ∈ C(J,R), 0 ≤ q1(r), and 0 ≤ q2(r), for all r ∈ J .

(H4) A
j

i (x, y)y
j ≥ 0, and B

j

i (x, y)y
j ≥ 0, for all x, y ∈ R

N, i = 1, . . . , k, j = 1, . . . ,N.

(H5) μ, τ ∈ C(J,R+).

(H6) γ = (γ1, . . . , γN) ∈ C(J,RN) satisfies γ(0) > 0,
∫ t
0γ(s)ds ≥ 0, for all t ∈ [0, T].

Theorem 3.3. If (H2)–(H6) are satisfied, then the problem (1.1)–(1.4) has a nonnegative solution,
when positive parameter δ is small enough.
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Proof. From Theorem 3.2, we can get the existence of solutions of (1.1)–(1.4). If u is a solution
of (1.1)–(1.4), according to (1.4) and (H6), then we have

f
(
0, u(0), u′(0)

)
= δγ(0) > 0. (3.16)

Obviously

ϕ
(
r, u′)(r) =

∫ r

0
δ
{
τ(r)

[
|u|q1(r)−1u + μ(r)

∣
∣u′∣∣q2(r)−1u′

]
+ γ(r)

}
ds, ∀r ∈ [0, r1). (3.17)

When r → 0+, we have

τ(r)
[
|u|q1(r)−1u + μ(r)

∣
∣u′∣∣q2(r)−1u′

]
+ γ(r) > 0, (3.18)

then we can see that there exists a ξ ∈ (0, r1) such that ϕ(r, u′)(r) > 0 when r ∈ (0, ξ). Thus
u′(r) > 0 for any r ∈ (0, ξ). Thus u(r) is increasing in (0, ξ), that is, u(η2) ≥ u(η1) for any
η1, η2 ∈ (0, ξ)with η1 < η2. Since u(0) = 0, it is easy to see that u(r) > 0 for any r ∈ (0, ξ). From
(3.17) and (H5), we can easily see that

u(r) > 0, u′(r) > 0, ∀r ∈ (0, r1),

lim
r→ r−1

u(r) > 0, lim
r→ r−1

u′(r) > 0.
(3.19)

From (H4), we can see that

lim
r→ r+1

u(r) > 0, lim
r→ r+1

u′(r) > 0. (3.20)

Similarly, we can see that

u(r) > 0, u′(r) > 0, ∀r ∈ (r1, r2). (3.21)

Repeating the step, we can see that

u(r) > 0, u′(r) > 0, ∀r ∈ J ′. (3.22)

Hence u is nonnegative. This completes the proof.
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