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The main objective of this paper is a study of some new generalizations of Hilbert’s and Hardy-
Hilbert’s type inequalities. We apply our general results to homogeneous functions. We shall
obtain, in a similar way as Yang did in(2009), that the constant factors are the best possible when
the parameters satisfy appropriate conditions.

1. Introduction

Hilbert and Hardy-Hilbert type inequalities (see [1]) are very significant weight inequalities
which play an important role in many fields of mathematics. Although classical, such
inequalities have attracted the interest of numerous mathematicians and have been
generalized in many different ways. Also the numerous mathematicians reproved them
using various techniques. Some possibilities of generalizing such inequalities are, for
example, various choices of nonnegative measures, kernels, sets of integration, extension to
multidimensional case, and so forth.

Similar inequalities, in operator form, appear in harmonic analysis where one
investigates properties of boundedness of such operators. This is the reason why Hilbert’s
inequality is so popular and represents field of interest of numerous mathematicians: since
Hilbert till nowadays.

We start with the following two discrete inequalities, which are the well-known
Hilbert and Hardy-Hilbert type inequalities. More precisely, if p > 1, (1/p) + (1/q) =
1, an, bn ≥ 0, such that 0 <

∑∞
n=0 a

p
n < ∞ and 0 <

∑∞
n=0 b

q
n < ∞, then the following inequality

holds (Hardy et al. [1]):

∞∑

n=0

∞∑

m=0

ambn
m + n + 1

<
π

sin
(
π/p

)

{ ∞∑

n=0

a
p
n

}1/p{ ∞∑

n=0

b
q
n

}1/q

, (1.1)
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where the constant factor π/ sin(π/p) is the best possible. The equivalent form of inequality
(1.1) is (see Yang and Debnath [2])

∞∑

n=0

( ∞∑

m=0

am

m + n + 1

)p

<

[
π

sin
(
π/p

)

]p ∞∑

n=0

a
p
n, (1.2)

where the constant factor [π/ sin(π/p)]p is still the best possible.
In this paper we refer to a recent paper of Yang (see [3]). In 2005, Yang [3] gave some

extension of Hilbert’s inequality with two pairs of conjugate exponents (p, q), (r, s) (p, r > 1),
and two parameters α, λ > 0 (αλ ≤ min{r, s}) as

∞∑

m=1

∞∑

n=1

ambn

(mα + nα)λ
< kαλ(r)

( ∞∑

n=1

np(1−αλ/r)−1ap
n

)1/p( ∞∑

n=1

nq(1−αλ/s)−1bqn

)1/q

, (1.3)

where the constant factor kαλ(r) = (1/α)B(λ/r, λ/s) is the best possible.
Let φ(x) = (x+α)p(1−λ/r)−1, ϕ(x) = (x+α)q(1−λ/s)−1, ψ(x) = (x+α)pλ/s−1 x ∈ (0,∞), and

l
p

φ
= {a = {an}∞n=0; ‖a‖p,φ := {∑∞

n=0 φ(n)|an|p}1/p < ∞}. Define a Hilbert-type linear operator T ;

for all a ∈ l
p

φ
, one has

(Ta)(n) :=
∞∑

m=0

ln((m + α)/(n + α))

(m + α)λ − (n + α)λ
am. (1.4)

For a ∈ l
p

φ, b ∈ l
q
ϕ, define the formal inner product of Ta and b as

(Ta, b) :=
∞∑

n=0

∞∑

m=0

ln((m + α)/(n + α))ambn

(m + α)λ − (n + α)λ
. (1.5)

Zhong (see [4]) proved the following theorem.

Theorem 1.1. Suppose that (p, q) and (r, s) are two pairs of conjugate exponents, r > 1, p >
1, 1/2 ≤ α ≤ 1, 0 < λ ≤ 1, an, bn ≥ 0. If ‖a‖p,φ > 0, ‖b‖q,ϕ > 0, then one has the equivalent
inequalities as

(Ta, b) < kλ(s)‖a‖p,φ‖b‖q,ϕ,

‖Ta‖p,ψ < kλ(s)‖a‖p,φ,
(1.6)

where the constant factor kλ(s) = [(1/λ)B(1/s, 1/r)]2 is the best possible.
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Results in this paper will be based on the following general form of Hilbert’s and
Hardy-Hilbert’s inequality proven in [5]. All the measures are assumed to be σ-finite on
some measure space Ω. Let 1/p + 1/q = 1 with p > 1, K(x, y), f(x), g(y), ϕ(x), ψ(y) be
nonnegative functions. Then the following inequalities hold and are equivalent:

∫

Ω2
K
(
x, y

)
f(x)g

(
y
)
dμ1(x)dμ2

(
y
)

≤
(∫

Ω
ϕp(x)F(x)fp(x)dμ1(x)

)1/p(∫

Ω
ψq(y)G(y)gq(y)dμ2(y)

)1/q

,

(1.7)

∫

Ω
G1−p(y

)
ψ−p(y

)
(∫

Ω
K
(
x, y

)
f(x)dμ1(x)

)p

dμ2
(
y
) ≤

∫

Ω
ϕp(x)F(x)fp(x)dμ1(x), (1.8)

where

F(x) =
∫

Ω

K
(
x, y

)

ψp
(
y
) dμ2

(
y
)
, G

(
y
)
=
∫

Ω

K
(
x, y

)

ϕq(x)
dμ1(x). (1.9)

It is of great importance to consider the case when the functions F(x) and G(y),
defined by (1.9), are bounded. More precisely, Krnić and Pečarić in [5] proved the following
result.

Theorem 1.2. Let 1/p + 1/q = 1 with p > 1, K(x, y), f(x), g(y), ϕ(x), ψ(y) be nonnegative
functions and F(x) ≤ F1(x), G(y) ≤ G1(y), where F(x) and G(y) are defined by (1.9). Then the
following inequalities hold and are equivalent:

∫

Ω2
K
(
x, y

)
f(x)g

(
y
)
dμ1(x)dμ2

(
y
)

≤
(∫

Ω
ϕp(x)F1(x)fp(x)dμ1(x)

)1/p(∫

Ω
ψq(y)G1(y)gq(y)dμ2(y)

)1/q

,

∫

Ω
G

1−p
1

(
y
)
ψ−p(y

)
(∫

Ω
K
(
x, y

)
f(x)dμ1(x)

)p

dμ2
(
y
) ≤

∫

Ω
ϕp(x)F1(x)fp(x)dμ1(x).

(1.10)

In this paper a generalization of Theorem 1.1 for a general type of homogeneous
kernels is obtained. Recall that for a homogeneous function K(x, y) of degree −λ, λ > 0,
equality K(tx, ty) = t−λK(x, y) is satisfied for every t > 0. Further, we define k(α) :=∫∞
0 K(1, t)t−αdt and suppose that k(α) < ∞ for 1 − λ < α < 1.

In what follows, without further explanation, we assume that all series and integrals
exist on the respective domains of their definitions.
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2. Main Results

We apply Theorem 1.2 to obtain the following theorem.

Theorem 2.1. Let λ > 0, 1/p+1/q = 1with p > 1. Let {an}∞n=1 and {bn}∞n=1 be two nonnegative real
sequences. IfK(x, y) ≥ 0 is homogeneous function of degree −λ strictly decreasing in both parameters
x and y, μ ≥ 0, then the following inequalities hold and are equivalent:

∞∑

m=1

∞∑

n=1

K
(
m + μ, n + μ

)
ambn

≤ L

( ∞∑

m=1

(
m + μ

)1−λ+p(A1−A2)a
p
m

)1/p( ∞∑

n=1

(
n + μ

)1−λ+q(A2−A1)b
q
n

)1/q

,

(2.1)

∞∑

n=1

(
n + μ

)(λ−1)(p−1)+p(A1−A2)

( ∞∑

m=1

K(m + μ, n + μ)am

)p

≤ Lp
∞∑

m=1

(
m + μ

)(1−λ)+p(A1−A2)a
p
m, (2.2)

where A1 ∈ (max{(1 − λ)/q, 0}, 1/q), A2 ∈ (max{(1 − λ)/p, 0}, 1/p) and

L = k
(
pA2

)1/p
k
(
2 − λ − qA1

)1/q
. (2.3)

Proof. We use the inequalities (1.7), (1.8), and Theorem 1.2 with counting measure. First, we
prove the inequality (2.1). Put ϕ(m+μ) = (m + μ)A1 and ψ(n+μ) = (n + μ)A2 in the inequality
(1.7). Then, we have

∞∑

m=1

∞∑

n=1

K
(
m + μ, n + μ

)
ambn

≤
( ∞∑

m=1

(
m + μ

)pA1F
(
m + μ

)
a
p
m

)1/p( ∞∑

n=1

(
n + μ

)qA2G
(
n + μ

)
b
q
n

)1/q

,

(2.4)

where F(m + μ) =
∑∞

n=1(K(m + μ, n + μ)/(n + μ)pA2) and G(n + μ) =
∑∞

m=1(K(m + μ, n +
μ)/(m + μ)qA1). Since qA1 > 0 and pA2 > 0, the functions F(m + μ) and G(n + μ) are strictly
decreasing, where we have

F
(
m + μ

)
< F1

(
m + μ

)
:=

∫∞

0

K
(
m + μ, y + μ

)

(
y + μ

)pA2
dy,

G
(
n + μ

)
< G1

(
n + μ

)
:=

∫∞

0

K
(
x + μ, n + μ

)

(
x + μ

)qA1
dx.

(2.5)

Using homogeneity of the functions K and the substitution u = (y + μ)/(m + μ) we get

F1
(
m + μ

) ≤ (
m + μ

)1−λ−pA2

∫∞

0
K(1, t)t−pA2dt =

(
m + μ

)1−λ−pA2k
(
pA2

)
. (2.6)
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In a similar manner we obtain

G1
(
n + μ

) ≤ (
n + μ

)1−λ−qA1k
(
2 − λ − qA1

)
. (2.7)

Now, the result follows from Theorem 1.2.

Remark 2.2. Equality in the previous theorem is possible only if

f(x)p = K1ϕ(x)−(p+q), g
(
y
)q = K2ψ

(
y
)−(p+q)

, (2.8)

for arbitrary constantsK1 andK2 (see [5]). Condition (2.8) immediately gives that nontrivial
case of equality in (2.1) and (2.2) leads to divergent series.

Now, we consider some special choice of the parameters A1 and A2. More precisely,
let the parameters A1 and A2 satisfy constraint

pA2 + qA1 = 2 − λ. (2.9)

Then, the constant L from Theorem 2.1 becomes

L∗ = k
(
pA2

)
. (2.10)

Further, the inequalities (2.1) and (2.2) take form

∞∑

m=1

∞∑

n=1

K
(
m + μ, n + μ

)
ambn

≤ L∗
( ∞∑

m=1

(
m + μ

)−1+pqA1a
p
m

)1/p( ∞∑

n=1

(
n + μ

)−1+pqA2b
q
n

)1/q

,

(2.11)

∞∑

n=1

(
n + μ

)(p−1)(1−pqA2)

( ∞∑

m=1

K
(
m + μ, n + μ

)
am

)p

≤ (L∗)p
∞∑

m=1

(
m + μ

)−1+pqA1a
p
m. (2.12)

In the following theorem we show, in a similar way as Yang did in [6], that if the parameters
A1 and A2 satisfy condition (2.9), then one obtains the best possible constant. To prove this
result we need the next lemma (see [6]).

Lemma 2.3. If f(x)(≥ 0) is decreasing in (0,∞) and strictly decreasing in a subinterval of (0,∞),
and I0 :=

∫∞
0 f(x)dx < ∞, then

I1 :=
∫∞

1
f(x)dx ≤

∞∑

n=1

f(n) < I0. (2.13)
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Theorem 2.4. Let λ, μ,A1, A2, and K(x, y) be defined as in Theorem 2.1. If the parameters A1 and
A2 satisfy condition pA2 + qA1 = 2−λ, then the constants L∗ = k(pA2) and (L∗)p in the inequalities
(2.11) and (2.12) are the best possible.

Proof. For this purpose, with ε > 0, set ãm = (m + μ)−qA1−ε/p and b̃n = (n + μ)−pA2−ε/q. Now,
let us suppose that there exists a smaller constant 0 < M < L∗ such that the inequality (2.11)
is valid. Let J denote the right-hand side of (2.11). Using Lemma 2.3, we have

J = M

(
(
1 + μ

)−1−ε +
∞∑

n=2

1
(
n + μ

)1+ε

)

< M

(
(
1 + μ

)−1−ε +
∫∞

1

(
x + μ

)−1−ε
dx

)

=
M

ε
(
1 + μ

)ε

(
ε

1 + μ
+ 1

)

.

(2.14)

Further, let I denote the left-hand side of the inequality (2.11), for above choice of sequences
ãm and b̃n. Applying, respectively, Lemma 2.3, Fubini’s theorem, and substitution t = (x +
μ)/(y + μ),we have

1 ≥
∞∑

n=1

(∫∞

1
K
(
x + μ, n + μ

)(
x + μ

)−qA1−ε/pdx
)
(
n + μ

)−pA2−ε/q

≥
∫∞

1

(
x + μ

)−qA1−ε/p
(∫∞

1
K
(
x + μ, y + μ

)(
y + μ

)−pA2−ε/qdy
)

dx

=
∫∞

1

(
x + μ

)−1−ε
(∫ (x+μ)/(1+μ)

0
K(1, t)t−qA1+ε/qdt

)

dx

=
1

ε
(
1 + μ

)ε

∫1

0
K(1, t)t−qA1+ε/qdt

+
∫∞

1

(
x + μ

)−1−ε
(∫ (x+μ)/(1+μ)

1
K(1, t)t−qA1+ε/qdt

)

dx

=
1

ε
(
1 + μ

)ε

(∫1

0
K(1, t)t−qA1+ε/qdt +

∫∞

1
K(1, t)t−qA1−ε/pdt

)

.

(2.15)

From (2.11), (2.14), and (2.15) we get

M

(
ε

1 + μ
+ 1

)

≥
∫1

0
K(1, t)t−qA1+ε/qdt +

∫∞

1
K(1, t)t−qA1−ε/pdt. (2.16)

By letting ε → 0+,we obtain

M ≥
∫1

0
K(1, t)t−qA1dt +

∫∞

1
K(1, t)t−qA1dt = k

(
qA1

)
. (2.17)
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Using symmetry of the function K(x, y), we have k(qA1) = k(pA2) = L∗. Now, from (2.17)
we obtain a contradiction with assumption M < L∗ = k(pA2).

Finally, equivalence of the inequalities (2.11) and (2.12) means that the constant (L∗)p

is the best possible in the inequality (2.12). This completes the proof.

We proceed with some special homogeneous functions. Since the function K(x, y) =
1/(xα + yα)λ is homogeneous of degree −αλ, by using Theorem 2.4 we obtain the following.

Corollary 2.5. Let λ > 0, α > 0, μ ≥ 0. Suppose that the parameters A1, A2 satisfy condition
pA2 + gA1 = 2 − αλ. Then the following inequalities hold and are equivalent:

∞∑

m=1

∞∑

n=1

ambn
((
m + μ

)α +
(
n + μ

)α)λ

≤ L1

( ∞∑

m=1

(
m + μ

)−1+pqA1a
p
m

)1/p( ∞∑

n=1

(
n + μ

)−1+pqA2b
q
n

)1/q

,

∞∑

n=1

(
n + μ

)(p−1)(1−pqA2)

⎛

⎝
∞∑

m=1

am
((
m + μ

)α +
(
n + μ

)α)λ

⎞

⎠

p

≤ L
p

1

∞∑

m=1

(
m + μ

)−1+pqA1a
p
m,

(2.18)

where the constant factors L1 = (1/α)B((1 − pA2)/α, (1 − qA1)/α) and L
p

1 are the best possible.

Remark 2.6. If we put α = 1, A1 = A2 = (2−λ)/pq in Corollary 2.5, then the inequalities (2.18)
become

∞∑

m=1

∞∑

n=1

ambn
(
m + n + 2μ

)λ ≤ L1

( ∞∑

m=1

(
m + μ

)1−λ
a
p
m

)1/p( ∞∑

n=1

(
n + μ

)1−λ
b
q
n

)1/q

,

∞∑

n=1

(
n + μ

)(p−1)(λ−1)
( ∞∑

m=1

am
(
m + n + 2μ

)λ

)p

≤ L
p

1

∞∑

m=1

(
m + μ

)1−λ
a
p
m,

(2.19)

where the constant factors L1 = B(1/p+(λ−1)/q, 1/q+(λ−1)/p), and L
p

1 are the best possible.
For λ = 1 we obtain nonweighted case with the best possible constant L1 = B(1/p, 1/q).
Setting μ = 1/2 and λ = 1 in the inequalities (2.19) we obtain the inequalities (1.1) and (1.2)
from Introduction.

Remark 2.7. It is easy to see that Theorem 2.4 is the generalization of Theorem 1.1. Namely,
let us define A1 = 1/q − λ/qr, A2 = 1/p − λ/ps, and K(m + μ, n + μ) = ((ln((m + μ)/(n +
μ)))/((m + μ)λ−(n + μ)λ)).Note that the parametersA1, A2 satisfy condition pA2+qA1 = 2−λ.
Then, the best possible constant L∗ from Theorem 2.4 becomes kλ(s) from Theorem 1.1 (see
also [4]).
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Remark 2.8. Similarly as in Corollary 2.5, for the homogeneous function of degree
−1, K(x, y) = (xλ−1 + yλ−1)/(xλ + yλ), nonnegative real sequences a = {am}∞m=1, b = {bm}∞m=1,
and the parameters A1 = A2 = 1/pq,we have

∞∑

m=1

∞∑

n=1

(
m + μ

)λ−1 +
(
n + μ

)λ−1

(
m + μ

)λ +
(
n + μ

)λ ambn ≤ L2‖a‖p‖b‖q,

∞∑

n=1

( ∞∑

m=1

(
m + μ

)λ−1 +
(
n + μ

)λ−1

(
m + μ

)λ +
(
n + μ

)λ am

)p

≤ L
p

2‖a‖
p
p,

(2.20)

where the constants L2 = (π/λ)(1/ sin(π/p) + (1/ sin(π/q))) and L
p

2 are the best possible.

Remark 2.9. Let λ,A1, A2, and K(x, y) be defined as in Theorem 2.1. Take μ = 0 in the
inequalities (2.11) and (2.12). By using Theorem 2.4 we get equivalent inequalities for general
homogeneous kernel K(x, y):

∞∑

m=1

∞∑

n=1

K(m,n)ambn ≤ L∗
( ∞∑

m=1

m−1+pqA1a
p
m

)1/p( ∞∑

n=1

n−1+pqA2b
q
n

)1/q

,

∞∑

n=1

n(p−1)(1−pqA2)

( ∞∑

m=1

K(m,n)am

)p

≤ (L∗)p
∞∑

m=1

m−1+pqA1a
p
m,

(2.21)

where the constant factors L∗ = k(pA2) and (L∗)p are the best possible.
SettingA1 = 1/q−λ/qr, A2 = 1/p−λ/ps in the inequalities (2.21)we obtain the result

from [6]. Similarly, for above choice of the parametersA1, A2, andK(x, y) = 1/(xα +yα)λ,we
obtain Yang’s result (1.3) from Introduction.
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