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For p ∈ R, the power mean of order p of two positive numbers a and b is defined by Mp(a, b) =
((ap + bp)/2)1/p, for p /= 0, and Mp(a, b) =

√
ab, for p = 0. In this paper, we answer the question:

what are the greatest value p and the least value q such that the double inequality Mp(a, b) ≤
Aα(a, b)Gβ(a, b)H1−α−β(a, b) ≤ Mq(a, b) holds for all a, b > 0 and α, β > 0 with α + β < 1? Here
A(a, b) = (a + b)/2, G(a, b) =

√
ab, and H(a, b) = 2ab/(a + b) denote the classical arithmetic,

geometric, and harmonic means, respectively.

1. Introduction

For p ∈ R, the power mean of order p of two positive numbers a and b is defined by

Mp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0.

(1.1)

Recently, the power mean has been the subject of intensive research. In particular,
many remarkable inequalities for Mp(a, b) can be found in literatures [1–12]. It is well
known that Mp(a, b) is continuous and increasing with respect to p ∈ R for fixed a and b.
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Let A(a, b) = (a + b)/2, G(a, b) =
√
ab, and H(a, b) = 2ab/(a + b) be the classical arithmetic,

geometric, and harmonic means of two positive numbers a and b, respectively. Then

min{a, b} ≤ H(a, b) = M−1(a, b) ≤ G(a, b) = M0(a, b)

≤ A(a, b) = M1(a, b) ≤ max{a, b}.
(1.2)

In [13], Alzer and Janous established the following sharp double inequality (see also
[14, page 350]):

Mlog 2/ log 3(a, b) ≤ 2
3
A(a, b) +

1
3
G(a, b) ≤ M2/3(a, b) (1.3)

for all a, b > 0.
In [15], Mao proved

M1/3(a, b) ≤ 1
3
A(a, b) +

2
3
G(a, b) ≤ M1/2(a, b) (1.4)

for all a, b > 0, and M1/3(a, b) is the best possible lower power mean bound for the sum
(1/3)A(a, b) + (2/3)G(a, b).

The following sharp bounds for (2/3)G + (1/3)H and (1/3)G + (2/3)H in terms of
power mean are proved in [16]:

M−1/3(a, b) ≤ 2
3
G(a, b) +

1
3
H(a, b) ≤ M0(a, b),

M−2/3(a, b) ≤ 1
3
G(a, b) +

2
3
H(a, b) ≤ M0(a, b)

(1.5)

for all a, b > 0.
The purpose of this paper is to answer the question: what are the greatest value p and

the least value q such that the double inequality

Mp(a, b) ≤ Aα(a, b)Gβ(a, b)H1−α−β(a, b) ≤ Mq(a, b) (1.6)

holds for all a, b > 0 and α, β > 0 with α + β < 1?

2. Main Result

In order to establish our main results we need the following lemma.

Lemma 2.1. If λ ∈ (−1, 0)⋃ (0, 1), t ≥ 1 and f(t) = (1/λ) log((tλ+1)/2)−λ log((t+1)/2)− ((1−
λ)/2) log t, then

(1) f(t) > 0 for λ ∈ (0, 1) and t > 1;

(2) f(t) < 0 for λ ∈ (−1, 0) and t > 1.
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Proof. Simple computations lead to

f(1) = 0, (2.1)

f ′(t) =
g(t)

t(t + 1)
(
tλ + 1

) , (2.2)

where g(t) = ((1 − λ)/2)tλ+1 + ((1 + λ)/2)tλ − ((1 + λ)/2)t − ((1 − λ)/2):

g(1) = 0, (2.3)

g ′(t) =
(1 − λ)(1 + λ)

2
tλ +

λ(1 + λ)
2

tλ−1 − 1 + λ

2
, (2.4)

g ′(1) = 0, (2.5)

g ′′(t) =
λ(1 − λ)(1 + λ)

2
(t − 1)tλ−2. (2.6)

(1) If λ ∈ (0, 1) and t > 1, then (2.6) implies

g ′′(t) > 0. (2.7)

Therefore, Lemma 2.1(1) follows from (2.1)–(2.3) and (2.5) together with (2.7).

(2) If λ ∈ (−1, 0) and t > 1, then (2.6) yields

g ′′(t) < 0. (2.8)

Therefore, Lemma 2.1(2) follows from (2.1)–(2.3) and (2.5) together with (2.8).

Theorem 2.2. For all a, b > 0 and α, β > 0 with α + β < 1, one has

(1) M2α+β−1(a, b) = M0(a, b) = Aα(a, b)Gβ(a, b)H1−α−β(a, b) for 2α + β = 1;

(2) M2α+β−1(a, b) ≥ Aα(a, b)Gβ(a, b)H1−α−β(a, b) ≥ M0(a, b) for 2α + β > 1, and
M2α+β−1(a, b) ≤ Aα(a, b)Gβ(a, b)H1−α−β(a, b) ≤ M0(a, b) for 2α + β < 1, each equality
occurs if and only if a = b, and M0(a, b) and M2α+β−1(a, b) are the best possible power
mean bounds for the product Aα(a, b)Gβ(a, b)H1−α−β(a, b).

Proof. (1) If 2α + β = 1, then simple computations lead to

Aα(a, b)Gβ(a, b)H1−α−β(a, b) =
(
a + b

2

)2α+β−1
(ab)1−(α+(β/2))

=
√
ab = M0(a, b) = M2α+β−1(a, b).

(2.9)
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(2) If 2α + β /= 1 and a = b, then we clearly see that

Aα(a, b)Gβ(a, b)H1−α−β(a, b) = M2α+β−1(a, b) = M0(a, b) = a. (2.10)

If 2α+β /= 1 and a/= b, without loss of generality, we assume that a > b. Let t = (a/b) > 1
and λ = 2α + β − 1, then λ ∈ (−1, 0)⋃ (0, 1), and simple computations lead to

logM2α+β−1(a, b) − log
[
Aα(a, b)Gβ(a, b)H1−α−β(a, b)

]

=
1

2α + β − 1
log

t2α+β−1 + 1
2

− (
2α + β − 1

)
log

1 + t

2
−
(

1 − α − β

2

)

log t

=
1
λ
log

tλ + 1
2

− λ log
t + 1
2

− 1 − λ

2
log t,

(2.11)

Aα(a, b)Gβ(a, b)H1−α−β(a, b)
M0(a, b)

=

⎛

⎜
⎝

√
t +

(
1/

√
t
)

2

⎞

⎟
⎠

2α+β−1

. (2.12)

Therefore, M2α+β−1(a, b) > Aα(a, b)Gβ(a, b)H1−α−β(a, b) > M0(a, b) for 2α + β > 1
follows from (2.11) and Lemma 2.1(1) together with (2.12), and M2α+β−1(a, b) <
Aα(a, b)Gβ(a, b)H1−α−β(a, b) < M0(a, b) for 2α + β < 1 follows from (2.11) and Lemma 2.1(2)
together with (2.12).

Next, we prove that M0(a, b) and M2α+β−1(a, b) are the best possible power mean
bounds for the product Aα(a, b)Gβ(a, b)H1−α−β(a, b).

Firstly, we prove that M2α+β−1(a, b) is the best possible upper power mean bound for
the product Aα(a, b)Gβ(a, b)H1−α−β(a, b) if 2α + β > 1.

For any ε ∈ (0, 2α + β − 1) and x > 0, one has

[
M2α+β−1−ε(1, 1 + x)

]2α+β−1−ε −
[
Aα(1, 1 + x)Gβ(1, 1 + x)H1−α−β(1, 1 + x)

]2α+β−1−ε

=
(1 + x)2α+β−1−ε + 1

2
−
(
1 +

x

2

)(2α+β−1)(2α+β−1−ε)
(1 + x)(1−α−(β/2))(2α+β−1−ε).

(2.13)

Let x → 0, then the Taylor expansion leads to

(1 + x)2α+β−1−ε + 1
2

−
(
1 +

x

2

)(2α+β−1)(2α+β−1−ε)
(1 + x)(1−α−(β/2))(2α+β−1−ε)

= −1
8
ε
(
2α + β − 1 − ε

)
x2 + o

(
x2
)
.

(2.14)

Equations (2.13) and (2.14) imply that if 2α+β > 1, then for any ε ∈ (0, 2α+β−1) there
exists δ1 = δ1(ε, α, β) > 0, such thatM2α+β−1−ε(1, 1+x) < Aα(1, 1+x)Gβ(1, 1+x)H1−α−β(1, 1+x)
for x ∈ (0, δ1).
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Secondly, we prove thatM0(a, b) is the best possible lower power mean bound for the
product Aα(a, b)Gβ(a, b)H1−α−β(a, b) if 2α + β > 1.

For any ε > 0 and t > 1, one has

Aα(t, 1)Gβ(t, 1)H1−α−β(t, 1)
Mε(t, 1)

=

((
1 + t−1

)
/2

)2α+β−1

((1 + t−ε)/2)1/ε
tα+(β/2)−1. (2.15)

From (2.15) and α + (β/2) < 1, we clearly see that

lim
t→+∞

Aα(t, 1)Gβ(t, 1)H1−α−β(t, 1)
Mε(t, 1)

= 0. (2.16)

Equation (2.16) implies that if 2α + β > 1, then for any ε ∈ (0, 2α + β − 1) there exists
T1 = T1(ε, α, β) > 1, such that Aα(t, 1)Gβ(t, 1)H1−α−β(t, 1) < Mε(t, 1) for t ∈ (T1,+∞).

Thirdly, we prove that M2α+β−1(a, b) is the best possible lower power mean bound for
the product Aα(a, b)Gβ(a, b)H1−α−β(a, b) if 2α + β < 1.

For any ε ∈ (0, 1 − 2α − β) and x > 0, one has

[
M2α+β−1+ε(1, 1 + x)

]1−2α−β−ε −
[
Aα(1, 1 + x)Gβ(1, 1 + x)H1−α−β(1, 1 + x)

]1−2α−β−ε

=
g(x)

[
1 + (1 + x)1−2α−β−ε

]
(1 + (x/2))(1−2α−β)(1−2α−β−ε)

,
(2.17)

where g(x) = 2(1 + x)1−2α−β−ε(1 + (x/2))(1−2α−β)(1−2α−β−ε) − (1 + x)(1−α−(β/2))(1−2α−β−ε)[1 +
(1 + x)1−2α−β−ε].

Let x → 0, then the Taylor expansion leads to

g(x) =
1
4
ε
(
1 − 2α − β − ε

)
x2 + o

(
x2
)
. (2.18)

Equations (2.17) and (2.18) imply that if 2α+β < 1, then for any ε ∈ (0, 1−2α−β) there
exists 0 < δ2 = δ2(ε, α, β) < 1, such that M2α+β−1+ε(1, 1 + x) > Aα(1, 1 + x)Gβ(1, 1 + x)H1−α−β(1,
1 + x) for x ∈ (0, δ2).

Finally, we prove that M0(a, b) is the best possible upper power mean bound for the
product Aα(a, b)Gβ(a, b)H1−α−β(a, b) if 2α + β < 1.

For any ε > 0 and t > 1, one has

Aα(t, 1)Gβ(t, 1)H1−α−β(t, 1)
M−ε(t, 1)

=

((
1 + t−1

)
/2

)2α+β−1

((1 + t−ε)/2)−1/ε
tα+(β/2). (2.19)

From (2.19) and α + (β/2) > 0 we clearly see that

lim
t→+∞

Aα(t, 1)Gβ(t, 1)H1−α−β(t, 1)
M−ε(t, 1)

= +∞. (2.20)
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Equation (2.20) implies that if 2α + β < 1, then for any ε > 0 there exists
T2 = T2(ε, α, β) > 1, such that Aα(t, 1)Gβ(t, 1)H1−α−β(t, 1) > M−ε(t, 1) for t ∈ (T2,+∞).
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