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We present some lower bounds for the Frobenius condition number of a positive definite matrix
depending on trace, determinant, and Frobenius norm of a positive definite matrix and compare
these results with other results. Also, we give a relation for the cosine of the angle between two
given real matrices.

1. Introduction and Preliminaries

The quantity

κ(A) =

⎧
⎨

⎩

‖A‖∥∥A−1∥∥ if A is nonsingular,

∞ if A is singular
(1.1)

is called the condition number formatrix inversionwith respect to thematrix norm ‖·‖. Notice
that κ(A) = ‖A−1‖‖A‖ ≥ ‖A−1A‖ = ‖I‖ ≥ 1 for any matrix norm (see, e.g., [1, page 336]). The
condition number κ(A) = ‖A‖‖A−1‖ of a nonsingular matrixA plays an important role in the
numerical solution of linear systems since it measures the sensitivity of the solution of linear
systemsAx = b to the perturbations onA and b. There are several methods that allow to find
good approximations of the condition number of a general square matrix.

Let Cn×n and R
n×n be the space of n × n complex and real matrices, respectively. The

identity matrix in C
n×n is denoted by I = In. A matrix A ∈ C

n×n is Hermitian if A∗ = A,
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where A∗ denotes the conjugate transpose of A. A Hermitian matrix A is said to be positive
semidefinite or nonnegative definite, written as A ≥ 0, if (see, e. g., [2], p.159)

x∗Ax ≥ 0, ∀x ∈ C
n, (1.2)

A is further called positive definite, symbolized A > 0, if the strict inequality in (1.2) holds
for all nonzero x ∈ C

n. An equivalent condition for A ∈ C
n×n to be positive definite is that A

is Hermitian and all eigenvalues of A are positive real numbers.
The trace of a square matrix A (the sum of its main diagonal entries, or, equivalently,

the sum of its eigenvalues) is denoted by trA. Let A be any m × n matrix. The Frobenius
(Euclidean) norm of matrix A is

‖A‖F =

⎛

⎝
m∑

i=1

n∑

j=1

∣
∣aij

∣
∣2

⎞

⎠

1/2

. (1.3)

It is also equal to the square root of the matrix trace of AA∗, that is,

‖A‖F =
√
trAA∗. (1.4)

The Frobenius condition number is defined by κF(A) = ‖A‖F‖A−1‖F . In R
n×n the Frobenius

inner product is defined by

〈A,B〉F = tr
(
ATB

)
(1.5)

for which we have the associated norm that satisfies ‖A‖2F = 〈A,A〉F . The Frobenius inner
product allows us to define the cosine of the angle between two given real n × n matrices as

cos(A,B) =
〈A,B〉F

‖A‖F‖B‖F
. (1.6)

The cosine of the angle between two real n × n matrices depends on the Frobenius inner
product and the Frobenius norms of given matrices. Then, the inequalities in inner product
spaces are expandable to matrices by using the inner product between two matrices.

Buzano in [3] obtained the following extension of the celebrated Schwarz inequality
in a real or complex inner product space (H; 〈·, ·〉):

|〈a, x〉〈x, b〉| ≤ 1
2
[‖a‖‖b‖ + |〈a, b〉|]‖x‖2, (1.7)

for any a, b, x ∈ H. It is clear that for a = b, the above inequality becomes the standard
Schwarz inequality

|〈a, x〉|2 ≤ ‖a‖2‖x‖2, a, x ∈ H, (1.8)
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with equality if and only if there exists a scalar λ ∈ K (K = R or C) such that x = λa. Also
Dragomir in [4] has stated the following inequality:

∣
∣
∣
∣
∣

〈a, x〉〈x, b〉
‖x‖2

− 〈a, b〉
2

∣
∣
∣
∣
∣
≤ ‖a‖‖b‖

2
, (1.9)

where a, b, x ∈ H, x /= 0. Furthermore, Dragomir [4] has given the following inequality, which
is mentioned by Precupanu in [5], has been showed independently of Buzano, by Richard in
[6]:

1
2
[〈a, b〉 − ‖a‖‖b‖]‖x‖2 ≤ 〈a, x〉〈x, b〉 ≤ 1

2
[〈a, b〉 + ‖a‖‖b‖]‖x‖2. (1.10)

As a consequence, in next section, we give some bounds for the Frobenius condition
numbers and the cosine of the angle between two positive definite matrices by considering
inequalities given for inner product space in this section.

2. Main Results

Theorem 2.1. Let A be positive definite real matrix. Then

2
trA

(detA)1/n
− n ≤ κF(A), (2.1)

where κF(A) is the Frobenius condition number.

Proof. We can extend inequality (1.9) given in the previous section to matrices by using the
Frobenius inner product as follows: Let A,B,X ∈ R

n×n. Then we write

∣
∣
∣
∣
∣

〈A,X〉F〈X,B〉F
‖X‖2F

− 〈A,B〉F
2

∣
∣
∣
∣
∣
≤ ‖A‖F‖B‖F

2
, (2.2)

where 〈A,X〉F = tr (ATX), and ‖ · ‖F denotes the Frobenius norm of matrix. Then we get

∣
∣
∣
∣
∣

tr
(
ATX

)
tr
(
XTB

)

‖X‖2F
− tr

(
ATB

)

2

∣
∣
∣
∣
∣
≤ ‖A‖F‖B‖F

2
. (2.3)

In particular, in inequality (2.3), if we take B = A−1, then we have

∣
∣
∣
∣
∣

tr
(
ATX

)
tr
(
XTA−1)

‖X‖2F
− tr

(
ATA−1)

2

∣
∣
∣
∣
∣
≤ ‖A‖F

∥
∥A−1∥∥

F

2
. (2.4)
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Also, if X and A are positive definite real matrices, then we get

∣
∣
∣
∣
∣

tr (AX)tr
(
XA−1)

‖X‖2F
− n

2

∣
∣
∣
∣
∣
≤ ‖A‖F

∥
∥A−1∥∥

F

2
=

κF(A)
2

, (2.5)

where κF(A) is the Frobenius condition number of A.
Note that Dannan in [7] has showed the following inequality by using the well known

arithmetic-geometric inequality, for n-square positive definite matrices A and B:

n(detAdetB)m/n ≤ tr (AmBm), (2.6)

where m is a positive integer. If we take A = X, B = A−1, and m = 1 in (2.6), then we get

n
(
detX detA−1

)1/n ≤ tr
(
XA−1

)
. (2.7)

That is,

n

(
detX
detA

)1/n

≤ tr
(
XA−1

)
. (2.8)

In particular, if we take X = I in (2.5) and (2.8), then we arrive at

∣
∣
∣
∣
∣

trA trA−1

n
− n

2

∣
∣
∣
∣
∣
≤ κF(A),

n

(
1

detA

)1/n

≤ trA−1.

(2.9)

Also, from the well-known Cauchy-Schwarz inequality, since n2 ≤ trA trA−1, one can obtain

0 < n ≤ 2
tr A tr A−1

n
− n ≤ κF(A). (2.10)

Furthermore, from arithmetic-geometric means inequality, we know that

n(detA)1/n ≤ trA. (2.11)

Since n ≤ trA/(det A)1/n, we write 0 < n ≤ 2 (trA/(det A))1/n − n. Thus by combining (2.9)
and (2.11)we arrive at

2
tr A

(detA)1/n
− n ≤ κF(A). (2.12)
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Lemma 2.2. Let A be a positive definite matrix. Then

trA3/2 trA−(1/2)

trA
− n

2
≥ 0. (2.13)

Proof. Let λi be positive real numbers for i = 1, 2, . . . , n. We will show that

(
k∑

i=1

λ3/2i

)(
k∑

i=1

λ
−(1/2)
i

)

≥ k

2

(
k∑

i=1

λi

)

(2.14)

for all k = 1, 2, . . . , n. The proof is by induction on k. If k = 1,

λ3/21 · λ−(1/2)1 = λ1 ≥ 1
2
λ1. (2.15)

Assume that inequality (2.14) holds for some k. that is,

(
k∑

i=1

λ3/2i

)(
k∑

i=1

λ
−(1/2)
i

)

≥ k

2

(
k∑

i=1

λi

)

. (2.16)

Then

(
k+1∑

i=1

λ3/2i

)(
k+1∑

i=1

λ
−(1/2)
i

)

=

(
k∑

i=1

λ3/2i + λ3/2
k+1

)(
k∑

i=1

λ
−(1/2)
i + λ

−(1/2)
k+1

)

=

(
k∑

i=1

λ3/2i

)(
k∑

i=1

λ
−(1/2)
i

)

+
k∑

i=1

(
λ3/2i λ

−(1/2)
k+1 + λ

−(1/2)
i λ

(3/2)
k+1

)
+ λk+1

≥ k

2

k∑

i=1

λi +
k∑

i=1

(λi + λk+1) + λk+1

≥ k

2

k∑

i=1

λi +
1
2

k∑

i=1

(λi + λk+1) +
λk+1
2

=
k + 1
2

(
k+1∑

i=1

λi

)

.

(2.17)

The first inequality follows from induction assumption and the inequality

a2 + b2

a + b
≥ a + b

2
≥
√
ab (2.18)

for positive real numbers a and b.
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Theorem 2.3. Let A be positive definite real matrix. Then

0 ≤ 2n
trA3/2

trA(detA)1/2n
− n ≤ κF(A), (2.19)

where κF(A) is the Frobenius condition number.

Proof. Let X > 0 and A > 0. Then from inequality (1.9)we can write

∣
∣
∣
∣
∣

〈A,X〉F
〈
X,A−1〉

F

‖X‖2F
−
〈
A,A−1〉

F

2

∣
∣
∣
∣
∣
≤ ‖A‖F

∥
∥A−1∥∥

F

2
(2.20)

where 〈A,B〉F = tr (ATB) and ‖ · ‖ denotes the Frobenius norm. Then we get

∣
∣
∣
∣
∣

tr (AX)tr
(
XA−1)

‖X‖2F
− n

2

∣
∣
∣
∣
∣
≤ κF(A)

2
. (2.21)

Set X = A1/2. Then

∣
∣
∣
∣
∣

trA3/2trA−(1/2)

trA
− n

2

∣
∣
∣
∣
∣
≤ κF(A)

2
. (2.22)

Since (trA3/2trA−(1/2)/trA) − (n/2) ≥ 0 by Lemma 2.2 and n(detA−(1/2))
1/n ≤ trA−(1/2),

trA3/2

trA
n
(
detA−(1/2)

)1/n − n

2
≤ trA3/2trA−(1/2)

trA
− n

2
≤ κF(A)

2
. (2.23)

Hence

2n
trA3/2

trA(detA)1/2n
− n ≤ κF(A). (2.24)

Let λi be positive real numbers for i = 1, 2, . . . , n. Now we will show that the left side of
inequality (2.19) is positive, that is,

2
n∑

i=1

λ3/2i ≥
(

n∑

i=1

λi

)(
n∏

i=1

λ1/2ni

)

. (2.25)

By the arithmetic-geometric mean inequality, we obtain the inequality

1
n

(
n∑

i=1

λi

)(
n∑

i=1

λ1/2i

)

≥
(

n∑

i=1

λi

)(
n∏

i=1

λ1/2ni

)

. (2.26)
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So, it is enough to show that

2
n∑

i=1

λ3/2i ≥ 1
n

(
n∑

i=1

λi

)(
n∑

i=1

λ1/2i

)

. (2.27)

Equivalently,

2n
n∑

i=1

λ3i ≥
(

n∑

i=1

λ2i

)(
n∑

i=1

λi

)

. (2.28)

We will prove by induction. If k = 1, then

2λ31 ≥ λ21 · λ1 = λ31. (2.29)

Assume that the inequality (2.28) holds for some k. Then

2(k + 1)

(
k+1∑

i=1

λ3i

)

= 2k
k∑

i=1

λ3i + 2
k∑

i=1

λ3i + 2kλ3k+1 + 2λ3k+1

≥
(

k∑

i=1

λ2i

)(
k∑

i=1

λi

)

+ 2

(
k∑

i=1

λ3i + λ3k+1

)

+ 2λ3k+1

≥
(

k∑

i=1

λ2i

)(
k∑

i=1

λi

)

+ 2
k∑

i=1

(
λ2i λk+1 + λiλ

2
k+1

)
+ 2λ3k+1

≥
(

k∑

i=1

λ2i

)(
k∑

i=1

λi

)

+
k∑

i=1

λ2i λk+1 +
k∑

i=1

λiλ
2
k+1 + λ3k+1

=

(
k+1∑

i=1

λ2i

)(
k+1∑

i=1

λi

)

.

(2.30)

The first inequality follows from induction assumption and the second inequality follows
from the inequality

a3 + b3 ≥ a2b + ab2 (2.31)

for positive real numbers a and b.
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Theorem 2.4. Let A and B be positive definite real matrices. Then

cos(A, I) cos(B, I) ≤ 1
2
[cos(A,B) + 1]. (2.32)

In particular,

cos
(
A,A−1

)
≤ cos(A, I) cos

(
A−1, I

)
≤ 1

2

[
cos
(
A,A−1

)
+ 1
]
≤ 1. (2.33)

Proof. We consider the right side of inequality (1.10):

〈a, x〉〈x, b〉 ≤ 1
2
[〈a, b〉 + ‖a‖‖b‖]‖x‖2. (2.34)

We can extend this inequality to matrices as follows:

〈A,X〉F〈X,B〉F ≤ 1
2
[〈A,B〉F + ‖A‖F‖B‖F]‖X‖2F (2.35)

where A,X, B ∈ R
n×n. Since 〈A,X〉F = tr (ATX), it follows that

tr
(
ATX

)
tr
(
XTB

)
≤ 1

2

[
tr
(
ATB

)
+ ‖A‖F‖B‖F

]
‖X‖2F, (2.36)

Let X be identity matrix and A and B positive definite real matrices. According to inequality
(2.36), it follows that

trA trB ≤ 1
2
[trAB + ‖A‖F‖B‖F]n,

trA trB√
n‖A‖F

√
n‖B‖F

≤ 1
2

[
trAB

‖A‖F‖B‖F
+ 1
]

.

(2.37)

From the definition of the cosine of the angle between two given real n × n matrices, we get

cos(A, I) cos(B, I) ≤ 1
2
[cos(A,B) + 1]. (2.38)

In particular, for B = A−1 we obtain that

cos(A, I) cos
(
A−1, I

)
≤ 1

2

[
cos
(
A,A−1

)
+ 1
]
. (2.39)
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Also, Chehab and Raydan in [8] have proved the following inequality for positive definite
real matrix A by using the well-known Cauchy-Schwarz inequality:

cos
(
A,A−1

)
≤ cos(A, I) cos

(
A−1, I

)
. (2.40)

By combining inequalities (2.39) and (2.40), we arrive at

cos
(
A,A−1

)
≤ cos(A, I) cos

(
A−1, I

)
≤ 1

2

[
cos
(
A,A−1

)
+ 1
]

(2.41)

and since (1/2)[cos(A,A−1) + 1] = (n/2‖A‖F‖A−1‖F) + (1/2) and n ≤ κF(A), we arrive at
(1/2)[cos(A,A−1) + 1] ≤ 1. Therefore, proof is completed.

Theorem 2.5. Let A be a positive definite real matrix. Then

n
√
n‖A‖F
trA

≤ κF(A). (2.42)

Proof. According to the well-known Cauchy-Schwarz inequality, we write

(
n∑

i=1

λi(A)

)2

≤
(

n∑

i=1

λ2i (A)

)

n, (2.43)

where λi(A) are eigenvalues of A. That is,

(trA)2 ≤ n trA2. (2.44)

Also, from definition of the Frobenius norm, we get

trA ≤ √
n‖A‖F. (2.45)

Then, we obtain that

cos(A, I) =
trA√
n‖A‖F

≤ 1. (2.46)

Likewise,

cos
(
A−1, I

)
≤ 1. (2.47)
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When inequalities (2.40) and (2.47) are combined, they produce the following inequality:

cos
(
A,A−1

)
≤ cos(A, I),

n

κF(A)
≤ trA√

n‖A‖F
.

(2.48)

Therefore, finally we get

n
√
n‖A‖F
trA

≤ κF(A). (2.49)

Note that Tarazaga in [9] has given that ifA is symmetric matrix, a necessary condition
to be positive semidefinite matrix is that trA ≥ ‖A‖F .

Wolkowicz and Styan in [10] have established an inequality for the spectral condition
numbers of symetric and positive definite matrices:

κ2(A) ≥ 1 +
2s

m − (s/p) , (2.50)

where p =
√
n − 1, m = trA/n, and s = (‖A‖2F/n −m2)

1/2
.

Also, Chehab and Raydan in [8] have given the following practical lower bound for
the Frobenius condition number κF(A):

κF(A) ≥ max
(

n,

√
n

cos2(A, I)
, 1 +

2s
m − s/p

)

. (2.51)

Now let us compare the bound in (2.49) and the lower bound obtained by the authors in [8]
for the Frobenius condition number of positive definite matrix A.

Since 0 ≤ ‖A‖F/trA ≤ 1, ‖A‖2F/(trA)2 ≤ ‖A‖F/trA. Thus, we get

n
√
n‖A‖2F

(trA)2
≤ n

√
n‖A‖F
trA

≤ κF(A). (2.52)

All these bounds can be combined with the results which are previously obtained to
produce practical bounds for κF(A). In particular, combining the results given by Theorems
2.1, 2.3, and 2.5 and other results, we present the following practical new bound:

κF(A) ≥ max

(

2
trA

(detA)1/n
− n, 2n

trA3/2

trA(detA)1/2n
− n,

n
√
n‖A‖F
trA

, 1 +
2s

m − s/p

)

. (2.53)
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Example 2.6.

A =

⎡

⎢
⎢
⎣

4 1 0 2
1 5 1 2
0 1 6 3
2 2 3 8

⎤

⎥
⎥
⎦. (2.54)

Here trA = 23, ‖A‖F =
√
179, detA = 581, and have n = 4. Then, we obtain that

2(trA/(detA)1/n)−n = 5.369444, 2n(trA3/2/trA(detA)1/2n)−n = 5.741241, n
√
n‖A‖F/trA =

4.653596, and 1+ (2s/(m− s/p)) = 2.810649. Since κF(A) = 6.882583, in this example, the best
lower bound is the second lower bound given by Theorem 2.3.

Acknowledgments

The authors thank very much the associate editors and reviewers for their insightful
comments and kind suggestions that led to improving the presentation. This study was
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