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We introduce a hybrid iterative scheme for finding a common element of the set of solutions
for a system of mixed equilibrium problems, the set of common fixed point for nonexpansive
semigroup, and the set of solutions of the quasi-variational inclusion problem with multivalued
maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under
suitable conditions, some strong convergence theorems are proved. Our results extend some recent
results announced by some authors.

1. Introduction

Throughout this paper we assume thatH is a real Hilbert space, and C is a nonempty closed
convex subset ofH.

In the sequel, we denote the set of fixed points of S by F(S).
A bounded linear operator A : H → H is said to be strongly positive, if there exists

a constant γ such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.1)

Let B : H → H be a single-valued nonlinear mapping and M : H → 2H

a multivalued mapping. The “so-called” quasi-variational inclusion problem (see, Chang [1, 2])
is to find an u ∈ H such that

θ ∈ B(u) +M(u). (1.2)
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A number of problems arising in structural analysis, mechanics, and economics can be
studied in the framework of this kind of variational inclusions (see, e.g., [3]).

The set of solutions of variational inclusion (1.2) is denoted by VI(H,B,M).

Special Case

If M = ∂δC, where C is a nonempty closed convex subset of H, and δC : H → [0,∞) is the
indicator function of C, that is,

δC =

⎧
⎨

⎩

0, x ∈ C,

+∞, x /∈C,
(1.3)

then the variational inclusion problem (1.2) is equivalent to find u ∈ C such that

〈B(u), v − u〉 ≥ 0, ∀v ∈ C. (1.4)

This problem is called Hartman-Stampacchia variational inequality problem (see, e.g., [4]). The
set of solutions of (1.4) is denoted by VI(C,B).

Recall that a mapping B : H → H is called α-inverse strongly monotone (see [5]), if
there exists an α > 0 such that

〈
Bx − By, x − y

〉
≥ α
∥
∥Bx − By

∥
∥2, ∀x, y ∈ H. (1.5)

A multivalued mapping M : H → 2H is called monotone, if for all x, y ∈ H, u ∈ Mx,
and v ∈ My, then it implies that 〈u − v, x − y〉 ≥ 0. A multivalued mapping M : H → 2H is
called maximal monotone, if it is monotone and if for any (x, u) ∈ H ×H

〈
u − v, x − y

〉
≥ 0, ∀

(
y, v
)
∈ Graph (M) (1.6)

(the graph of mapping M) implies that u ∈ Mx.

Proposition 1.1 (see [5]). Let B : H → H be an α-inverse strongly monotone mapping, then

(a) B is a 1/α-Lipschitz continuous and monotone mapping;

(b) if λ is any constant in (0, 2α], then the mapping I − λB is nonexpansive, where I is the
identity mapping on H.

Let Θ : C × C → R be an equilibrium bifunction (i.e., Θ(x, x) = 0, for all x ∈ C), and let
ϕ : C → R be a real-valued function.

Recently, Ceng and Yao [6] introduced the following mixed equilibrium problem (MEP),
that is, to find z ∈ C such that

MEP : Θ
(
z, y
)
+ ϕ
(
y
)
− ϕ(z) ≥ 0, ∀y ∈ C. (1.7)
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The set of solutions of (1.7) is denoted by MEP(Θ, ϕ), that is,

MEP(Θ) =
{
z ∈ C : Θ

(
z, y
)
+ ϕ
(
y
)
− ϕ(z) ≥ 0, ∀y ∈ C

}
. (1.8)

In particular, if ϕ = 0, this problem reduces to the equilibrium problem, that is, to find
z ∈ C such that

EP : Θ
(
z, y
)
≥ 0, ∀y ∈ C. (1.9)

Denote the set of solution of EP by EP(Θ).
On the other hand, Li et al. [7] introduced two steps of iterative procedures for the

approximation of common fixed point of a nonexpansive semigroup {T(s) : 0 ≤ s < ∞} on a
nonempty closed convex subset C in a Hilbert space.

Very recently, Saeidi [8] introduced a more general iterative algorithm for finding a
common element of the set of solutions for a system of equilibrium problems and of the set
of common fixed points for a finite family of nonexpansive mappings and a nonexpansive
semigroup.

Recall that a family of mappings T = {T(s) : 0 ≤ s < ∞} : C → C is called a
nonexpansive semigroup, if it satisfies the following conditions:

(a) T(s + t) = T(s)T(t) for all s, t ≥ 0 and T(0) = I;

(b) ‖T(s)x − T(s)y‖ ≤ ‖x − y‖, for all x, y ∈ C.

(c) the mapping T(·)x is continuous, for each x ∈ C.

Motivated and inspired by Ceng and Yao [6], Li et al. [7], Saeidi [8], and [9–13], the
purpose of this paper is to introduce a hybrid iterative scheme for finding a common element
of the set of solutions for a system of mixed equilibrium problems, the set of common fixed
point for a nonexpansive semigroup, and the set of solutions of the quasi-variational inclusion
problem with multivalued maximal monotone mappings and inverse-strongly monotone
mappings in Hilbert space. Under suitable conditions, some strong convergence theorems
are proved. Our results extend the recent results in Zhang et al. [5], S. Takahashi and W.
Takahashi [14], Chang et al. [15], Ceng and Yao [6], Li et al. [7] and, Saeidi [8].

2. Preliminaries

In the sequel, we use xn ⇀ x and xn → x to denote the weak convergence and strong
convergence of the sequence {xn} inH, respectively.

Definition 2.1. Let M : H → 2H be a multivalued maximal monotone mapping, then the
single-valued mapping JM,λ : H → H defined by

JM,λ(u) = (I + λM)−1(u), ∀u ∈ H (2.1)

is called the resolvent operator associated with M, where λ is any positive number, and I is the
identity mapping.
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Proposition 2.2 (see [5]). (a) The resolvent operator JM,λ associated with M is single-valued and
nonexpansive for all λ > 0, that is,

∥
∥JM,λ(x) − JM,λ

(
y
)∥
∥ ≤
∥
∥x − y

∥
∥, ∀x, y ∈ H, ∀λ > 0. (2.2)

(b) The resolvent operator JM,λ is 1-inverse-strongly monotone, that is,

∥
∥JM,λ(x) − JM,λ(y)

∥
∥2 ≤

〈
x − y, JM,λ(x) − JM,λ

(
y
)〉
, ∀x, y ∈ H. (2.3)

Definition 2.3. A single-valued mapping P : H → H is said to be hemicontinuous, if for any
x, y ∈ H, the mapping t �→ P(x + ty) converges weakly to Px (as t → 0+).

It is well known that every continuous mapping must be hemicontinuous.

Lemma 2.4 (see [16]). Let E be a real Banach space, E∗ the dual space of E, T : E → 2E
∗
a maximal

monotone mapping, and P : E → E∗ a hemicontinuous bounded monotone mapping withD(P) = E,
then the mapping S = T + P : E → 2E

∗
is a maximal monotone mapping.

For solving the equilibrium problem for bifunction Θ : C × C → R, let us assume that
Θ satisfies the following conditions:

(H1) Θ(x, x) = 0 for all x ∈ C;

(H2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;

(H3) for each y ∈ C, x �→ Θ(x, y) is concave and upper semicontinuous.

(H4) for each x ∈ C, y �→ Θ(x, y) is convex.

A map η : C × C → H is called Lipschitz continuous, if there exists a constant L > 0
such that

∥
∥η
(
x, y
)∥
∥ ≤ L

∥
∥x − y

∥
∥, ∀x, y ∈ C. (2.4)

A differentiable function K : C → R on a convex set C is called

(i) η-convex [6] if

K
(
y
)
−K(x) ≥

〈
K′(x), η

(
y, x
)〉
, ∀x, y ∈ C, (2.5)

where K′(x)) is the Fréchet derivative of K at x;

(ii) η-strongly convex [6] if there exists a constant μ > 0 such that

K
(
y
)
−K(x) −

〈
K′(x), η

(
y, x
)〉

≥
(μ

2

)∥
∥x − y

∥
∥2, ∀x, y ∈ C. (2.6)

Let Θ : C × C → R be an equilibrium bifunction satisfying the conditions (H1)–(H4).
Let r be any given positive number. For a given point x ∈ C, consider the following auxiliary
problem for MEP (for short, MEP(x, r)) to find y ∈ C such that

Θ
(
y, z
)
+ ϕ(z) − ϕ

(
y
)
+
1
r

〈
K′(y

)
−K′(x), η

(
z, y
)〉

≥ 0, ∀z ∈ C, (2.7)
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where η : C × C → H is a mapping, and K′(x) is the Fréchet derivative of a functional
K : C → R at x. Let VΘ

r : C → C be the mapping such that for each x ∈ C, VΘ
r (x) is the set of

solutions of MEP(x, r), that is,

VΘ
r (x) =

{

y ∈ C : Θ
(
y, z
)
+ ϕ(z) − ϕ

(
y
)

+
1
r

〈
K′(y

)
−K′(x), η

(
z, y
)〉

≥ 0, ∀z ∈ C

}

, ∀x ∈ C.

(2.8)

Then the following conclusion holds.

Proposition 2.5 (see [6]). Let C be a nonempty closed convex subset of H,ϕ : C → R a lower
semicontinuous and convex functional. Let Θ : C × C → R be an equilibrium bifunction satisfying
conditions (H1)–(H4). Assume that

(i) η : C × C → H is Lipschitz continuous with constant L > 0 such that

(a) η(x, y) + η(y, x) = 0, for all x, y ∈ C,

(b) η(·, ·) is affine in the first variable,

(c) for each fixed y ∈ C, x �→ η(y, x) is continuous from the weak topology to the weak
topology;

(ii) K : C → R is η-strongly convex with constant μ > 0, and its derivative K′ is continuous
from the weak topology to the strong topology;

(iii) for each x ∈ C, there exists a bounded subset Dx ⊆ C and zx ∈ C such that for any
y ∈ C \Dx, one has

Θ
(
y, zx

)
+ ϕ(zx) − ϕ

(
y
)
+
1
r

〈
K′(y

)
−K′(x), η

(
zx, y

)〉
< 0. (2.9)

Then the following hold:

(i) VΘ
r is single-valued;

(ii) VΘ
r is nonexpansive if K′ is Lipschitz continuous with constant ν > 0 such that μ ≥ Lν;

(iii) F(VΘ
r ) = MEP(Θ);

(iv) MEP(Θ) is closed and convex.

Lemma 2.6 (see [17]). Let C be a nonempty bounded closed convex subset ofH, and let I = {T(s) :
0 ≤ s < ∞} be a nonexpansive semigroup on C, then for any h ≥ 0

lim
t→∞

sup
x∈C

∥
∥
∥
∥
∥

1
t

∫ t

0
T(s)xds − T(h)

(
1
t

∫ t

0
T(s)xds

)∥
∥
∥
∥
∥
= 0. (2.10)
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Lemma 2.7 (see [7]). Let C be a nonempty bounded closed convex subset of H, and let I = {T(s) :
0 ≤ s < ∞} be a nonexpansive semigroup on C. If {xn} is a sequence in C such that xn ⇀ z and
lim sups→∞lim supn→∞‖T(s)xn − xn‖ = 0, then z ∈ F(I).

3. The Main Results

In order to prove the main result, we first give the following lemma.

Lemma 3.1 (see [5]). (a) u ∈ H is a solution of variational inclusion (1.2) if and only if u =
JM,λ(u − λBu), for all λ > 0, that is,

VI(H,B,M) = F(JM,λ(I − λB)), ∀λ > 0. (3.1)

(b) If λ ∈ (0, 2α], then VI(H,B,M) is a closed convex subset inH.

In the sequel, we assume thatH,C,M,A, B, f, T, F, ϕi, ηi,Ki (i = 1, 2, . . . ,N) satisfy the
following conditions:

(1) H is a real Hilbert space, C ⊂ H is a nonempty closed convex subset;

(2) A : H → H is a strongly positive linear bounded operator with a coefficient γ >
0, f : H → H is a contraction mapping with a contraction constant h (0 < h < 1),
0 < γ < γ/h, B : C → H is an α-inverse-strongly monotone mapping, and M :
H → 2H is a multivalued maximal monotone mapping;

(3) T = {T(s) : 0 ≤ s < ∞} : C → C is a nonexpansive semigroup;

(4) F = {Θi : i = 1, 2, . . . ,N} : C × C → R is a finite family of bifunctions satisfying
conditions (H1)–(H4), and ϕi : C → R (i = 1, 2, . . . ,N) is a finite family of lower
semicontinuous and convex functional;

(5) ηi : C × C → H is a finite family of Lipschitz continuous mappings with constant
Li > 0 (i = 1, 2, . . . ,N) such that

(a) ηi(x, y) + ηi(y, x) = 0, for all x, y ∈ C,

(b) ηi(·, ·) is affine in the first variable,

(c) for each fixed y ∈ C, x �→ ηi(y, x) is sequentially continuous from the weak
topology to the weak topology;

(6) Ki : C → R is a finite family of ηi-strongly convex with constant μi > 0, and its
derivativeK′

i is not only continuous from the weak topology to the strong topology
but also Lipschitz continuous with constant νi > 0, μi ≥ Liνi.
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In the sequel we always denote by F(T) the set of fixed points of the nonexpansive
semi-groupT, VI(H,B,M) the set of solutions to the variational inequality (1.2), andMEP(F)
the set of solutions to the following auxiliary problem for a system of mixed equilibrium problems:

Θ1

(
y
(1)
n , x

)
+ φ1(x) − φ1

(
y
(1)
n

)
+

1
r1

〈
K′
(
y
(1)
n

)
−K′(xn), η1

(
x, y

(1)
n

)〉
≥ 0, ∀x ∈ C,

Θ2

(
y
(2)
n , x

)
+ φ2(x) − φ2

(
y
(2)
n

)
+

1
r2

〈
K′
(
y
(2)
n

)
−K′

(
y
(1)
n

)
, η2
(
x, y

(2)
n

)〉
≥ 0, ∀x ∈ C,

...

ΘN−1
(
y
(N−1)
n , x

)
+ φN−1(x) − φN−1

(
y
(N−1)
n

)

+
1

rN−1

〈
K′
(
y
(N−1)
n

)
−K′

(
y
(N−2)
n

)
, ηN−1

(
x, y

(N−1)
n

)〉
≥ 0, ∀x ∈ C,

ΘN

(
yn, x

)
+ φN(x) − φN

(
yn

)
+

1
rN

〈
K′(yn

)
−K′

(
y
(N−1)
n

)
, ηN
(
x, yn

)〉
≥ 0, ∀x ∈ C,

(3.2)

where

y
(1)
n = VΘ1

r1 xn,

y
(i)
n = VΘi

ri y
(i−1)
n = VΘi

ri V
Θi−1
r(i−1)y

(i−2)
n = VΘi

ri · · ·VΘ2
r2 y

(1)
n

= VΘi
ri · · ·VΘ2

r2 VΘ1
r1 xn, i = 2, 3, . . . ,N − 1,

yn = VΘN
rN · · ·VΘ2

r2 VΘ1
r1 xn,

(3.3)

and VΘi
ri : C → C, i = 1, 2, . . . ,N is the mapping defined by (2.8).
In the sequel we denote by Vl = VΘl

rl · · ·VΘ2
r2 VΘ1

r1 for l ∈ {1, 2, . . . ,N} and V0 = I.

Theorem 3.2. Let H,C,A, B,M, f, T, F, ϕi, ηi,Ki (i = 1, 2, . . . ,N) be the same as above. Let ri (i =
1, 2, . . . ,N) be a finite family of positive numbers, λ ∈ (0, 2α], {αn}, {βn} ⊂ [0, 1], and {tn} ⊂
(0,∞). If G := F(T)

⋂
MEP(F)

⋂
VI(H,B,M)/= ∅ and the following conditions are satisfied:

(i) for each x ∈ C, there exists a bounded subset Dx ⊆ C and zx ∈ C such that for any
y ∈ C \Dx

Θi

(
y, zx

)
+ ϕi(zx) − ϕi

(
y
)
+

1
ri

〈
K′

i

(
y
)
−K′

i(x), ηi
(
zx, y

)〉
< 0, (3.4)

(ii) limn→∞ αn = 0,
∑∞

n=1 αn = ∞, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, and
limn→∞ tn = ∞, then
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(1) for each n ≥ 1, there is a unique xn ∈ C such that

xn = αnγf

(
1
tn

∫ tn

0
T(s)xnds

)

+

βnxn +
((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNxnds,

(3.5)

(2) the sequence {xn} converges strongly to some point x∗ ∈ G, provided that VΘi
ri is

firmly nonexpansive;

(3) x∗ is the unique solution of the following variational inequality

〈(
A − γf

)
x∗, x∗ − z

〉
≤ 0, ∀z ∈ G. (3.6)

Proof. We observe that from condition (ii), we can assume, without loss of generality, that
αn ≤ (1 − βn)‖A‖−1.

Since A is a linear bounded self-adjoint operator on H, then

‖A‖ = sup{|〈Au, u〉| : u ∈ H, ‖u‖ = 1}. (3.7)

Since

〈((
1 − βn

)
I − αnA

)
u, u
〉
= 1 − βn − αn〈Au, u〉

≥ 1 − βn − αn‖A‖ ≥ 0,
(3.8)

this implies that (1 − βn)I − αnA is positive. Hence we have

∥
∥
(
1 − βn

)
I − αnA

∥
∥ = sup

{∣
∣
〈((

1 − βn
)
I − αnA

)
u, u
〉∣
∣ : u ∈ H, ‖u‖ = 1

}

= sup
{
1 − βn − αn〈Au, u〉 : u ∈ H, ‖u‖ = 1

}

≤ 1 − βn − αnγ < 1.

(3.9)

For each given n ≥ 1, let us define the mapping

Wn := αnγf
1
tn

∫ tn

0
T(s)ds + βnI +

((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNds.

(3.10)
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Firstly we show that the mapping Wn : C → C is a contraction. Indeed, for any x, y ∈ C, we
have

∥
∥Wnx −Wny

∥
∥

=

∥
∥
∥
∥
∥
αnγf

(
1
tn

∫ tn

0
T(s)xds

)

+ βnx +
((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNxds

−αnγf
1
tn

∫ tn

0
T(s)yds − βny −

((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNyds

∥
∥
∥
∥
∥

≤ αnγ

∥
∥
∥
∥
∥
f

(
1
tn

∫ tn

0
T(s)xds

)

− f

(
1
tn

∫ tn

0
T(s)yds

)∥
∥
∥
∥
∥
+ βn

∥
∥x − y

∥
∥

+
(
1 − βn − αnγ

) 1
tn

∫ tn

0

∥
∥
∥T(s)(JM,λ(I − λB))2VNx − T(s)(JM,λ(I − λB))2VNy

∥
∥
∥ds

≤ αnγh
∥
∥x − y

∥
∥ + βn

∥
∥x − y

∥
∥ +
∥
∥
(
1 − βn − αnγ

)∥
∥x − y

∥
∥

=
(
1 − αn

(
γ − γh

))∥
∥x − y

∥
∥.

(3.11)

This implies thatWn : C → C is a contraction mapping. Let xn ∈ C be the unique fixed point
ofWn. Thus,

xn = αnγf

(
1
tn

∫ tn

0
T(s)xnds

)

+ βnxn

+
((
1 − βn

)
I − αnA

)
(

1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNxnds

) (3.12)

is well defined.
Letting yn = VNxn, ξn = JM,λ(I − λB)yn, and ρn = JM,λ(I − λB)ξn, then

xn = αnγf

(
1
tn

∫ tn

0
T(s)xnds

)

+ βnxn +
((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)ρnds. (3.13)

We divide the proof of Theorem 3.2 into 8 steps.

Step 1. First prove that the sequences {xn}, {ρn}, {ξn}, and {yn} are bounded.
(a) Pick p ∈ G, since yn = VNxn and p = VNp, we have

∥
∥yn − p

∥
∥ =
∥
∥
∥VNxn − p

∥
∥
∥ ≤
∥
∥xn − p

∥
∥. (3.14)
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(b) Since p ∈ VI(H,B,M) and ρn = JM,λ(I − λB)ξn, we have p = JM,λ(I − λB)p, and so

∥
∥ρn − p

∥
∥ =
∥
∥JM,λ(I − λB)ξn − JM,λ(I − λB)p

∥
∥

≤
∥
∥(I − λB)ξn − (I − λB)p

∥
∥ ≤
∥
∥ξn − p

∥
∥

=
∥
∥JM,λ(I − λB)yn − JM,λ(I − λB)p

∥
∥

≤
∥
∥yn − p

∥
∥ ≤
∥
∥xn − p

∥
∥.

(3.15)

Letting un = (1/tn)
∫ tn
0 T(s)xnds, qn = (1/tn)

∫ tn
0 T(s)ρnds, we have

∥
∥un − p

∥
∥ =

∥
∥
∥
∥
∥

1
tn

∫ tn

0
T(s)xnds − p

∥
∥
∥
∥
∥

≤ 1
tn

∫ tn

0

∥
∥T(s)xn − T(s)p

∥
∥ds

≤
∥
∥xn − p

∥
∥.

(3.16)

Similarly, we have

∥
∥qn − p

∥
∥ ≤
∥
∥ρn − p

∥
∥. (3.17)

Form (3.5), (3.9), (3.14), (3.15), (3.16), and (3.17)we have

∥
∥xn − p

∥
∥

=
∥
∥αnγf(un) + βnxn +

((
1 − βn

)
I − αnA

)
qn − p

∥
∥

=
∥
∥αnγ

(
f(un) − f

(
p
))

+ βn
(
xn − p

)
+
((
1 − βn

)
I − αnA

)(
qn − p

)
+ αn

(
γf
(
p
)
−Ap

)∥
∥

≤ αnγh
∥
∥un − p

∥
∥ + βn

∥
∥xn − p

∥
∥ +
((
1 − βn

)
− αnγ

)∥
∥qn − p

∥
∥ + αn

∥
∥γf
(
p
)
−Ap

∥
∥

≤ αnγh
∥
∥xn − p

∥
∥ + βn

∥
∥xn − p

∥
∥ +
((
1 − βn

)
− αnγ

)∥
∥xn − p

∥
∥ + αn

∥
∥γf
(
p
)
−Ap

∥
∥.

(3.18)

So, ‖xn − p‖ ≤ (1/(γ − γh))‖γf(p) −Ap‖. This implies that {xn} is a bounded sequence in H.
Therefore {yn}, {ρn}, {ξn}, {γf(un)}, and {qn} are all bounded.

Step 2. Next we prove that

‖xn − T(s)xn‖ −→ 0, (n −→ ∞). (3.19)

Since xn = αnγf(un) + βnxn + ((1 − βn)I − αnA)qn, then

∥
∥xn − qn

∥
∥ ≤ αn

∥
∥γf(un) −Aqn

∥
∥ + βn

∥
∥xn − qn

∥
∥. (3.20)



Journal of Inequalities and Applications 11

Hence

∥
∥xn − qn

∥
∥ ≤ αn

1 − βn

∥
∥γf(un) −Aqn

∥
∥. (3.21)

From condition (ii), we have

∥
∥xn − qn

∥
∥ −→ 0. (3.22)

LetK = {w ∈ C : ‖w−p‖ ≤ (1/(γ − γh))‖γf(p)−Ap‖}, thenK is a nonempty bounded closed
convex subset of C and T(s)-invariant. Since {xn} ⊂ K and K is bounded, there exists r > 0
such that K ⊂ Br ; it follows from Lemma 2.6 that

lim
n→∞

∥
∥qn − T(s)qn

∥
∥ −→ 0. (3.23)

From (3.22) and (3.23), we have

‖xn − T(s)xn‖ =
∥
∥xn − qn + qn − T(s)qn + T(s)qn − T(s)xn

∥
∥

≤
∥
∥xn − qn

∥
∥ +
∥
∥qn − T(s)qn

∥
∥ +
∥
∥T(s)qn − T(s)xn

∥
∥

≤
∥
∥xn − qn

∥
∥ +
∥
∥qn − T(s)qn

∥
∥ +
∥
∥qn − xn

∥
∥ −→ 0.

(3.24)

Step 3. Next we prove that

(i) lim
n→∞

∥
∥
∥Vl+1xn − Vlxn

∥
∥
∥ = 0, ∀l ∈ {0, 1, . . . ,N − 1};

(ii) especially, lim
n→∞

∥
∥
∥VNxn − xn

∥
∥
∥ = lim

n→∞

∥
∥yn − xn

∥
∥ = 0.

(3.25)

In fact, for any given p ∈ G and l ∈ {0, 1, . . . ,N − 1}, since VΘl+1
rl+1 is firmly nonexpansive, we

have

∥
∥
∥Vl+1xn − p

∥
∥
∥
2
=
∥
∥
∥V

Θl+1
rl+1 (Vlxn) − VΘl+1

rl+1 p
∥
∥
∥
2

≤
〈
VΘl+1
rl+1

(
Vlxn

)
− p,Vlxn − p

〉

=
〈
Vl+1xn − p,Vlxn − p

〉

=
1
2

(∥
∥
∥Vl+1xn − p

∥
∥
∥
2
+
∥
∥
∥Vlxn − p

∥
∥
∥
2
−
∥
∥
∥Vlxn − Vl+1x′

n

∥
∥
∥
2
)

.

(3.26)

It follows that

∥
∥
∥Vl+1xn − p

∥
∥
∥
2
≤
∥
∥xn − p

∥
∥2 −

∥
∥
∥Vlxn − Vl+1xn

∥
∥
∥
2
. (3.27)
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From (3.5), we have

∥
∥xn − p

∥
∥2 =

∥
∥αnγf(un) + βnxn + ((1 − βn)I − αnA)qn − p

∥
∥2

=
∥
∥αn(γf(un) −Ap) + βn(xn − qn) + (I − αnA)(qn − p)

∥
∥2

≤
∥
∥(I − αnA)(qn − p) + βn(xn − qn)

∥
∥2 + 2αn

〈
γf(un) −Ap, xn − p

〉

≤
[∥
∥(I − αnA)

(
qn − p

)∥
∥ + βn

∥
∥
(
xn − qn

)∥
∥
]2 + 2αn

〈
γf(un) −Ap, xn − p

〉

≤
[(
1 − αnγ

)∥
∥ρn − p

∥
∥ + βn

∥
∥xn − qn

∥
∥
]2 + 2αn

〈
γf(un) −Ap, xn − p

〉

=
(
1 − αnγ

)2∥∥ρn − p
∥
∥2 + β2n

∥
∥xn − qn

∥
∥2 + 2

(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥

+ 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥.

(3.28)

Since

∥
∥ρn − p

∥
∥ ≤
∥
∥ξn − p

∥
∥ ≤
∥
∥
∥VNxn − p

∥
∥
∥ ≤
∥
∥
∥Vl+1xn − p

∥
∥
∥, ∀l ∈ {0, 1, . . . ,N − 1}, (3.29)

and this together with (3.27) and (3.28), it yields

∥
∥xn − p

∥
∥2

≤
(
1 − αnγ

)2
{
∥
∥xn − p

∥
∥2 −

∥
∥
∥Vlxn − Vl+1xn

∥
∥
∥
2
}

+ β2n
∥
∥xn − qn

∥
∥2

+ 2
(
1 − αnγ

)
· βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥ + 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥

=
(
1 − 2αnγ +

(
αnγ
)2
)∥
∥xn − p

∥
∥2 −

(
1 − αnγ

)2
∥
∥
∥Vlxn − Vl+1xn

∥
∥
∥
2
+ β2n

∥
∥xn − qn

∥
∥2

+ 2
(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥ + 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥.

(3.30)

Simplifying it we have

(
1 − αnγ

)2
∥
∥
∥Vlxn − Vl+1xn

∥
∥
∥
2
≤
(
1 + αn

(
γ
)2
)∥
∥xn − p

∥
∥2 −

∥
∥xn − p

∥
∥2

+ β2n
∥
∥xn − qn

∥
∥2 + 2

(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥

+ 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥.

(3.31)

Since αn → 0 and ‖xn − qn‖ → 0, by condition (ii), it yields ‖Vl+1xn − Vlxn‖ → 0.

Step 4. Now we prove that for any given p ∈ G

lim
n→∞

∥
∥Byn − Bp

∥
∥ = 0. (3.32)
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In fact, it follows from (3.15) that

∥
∥ρn − p

∥
∥2 ≤

∥
∥ξn − p

∥
∥2 =

∥
∥JM,λ(I − λB)yn − JM,λ(I − λB)p

∥
∥2

≤
∥
∥(I − λB)yn − (I − λB)p

∥
∥2

=
∥
∥yn − p

∥
∥2 − 2λ

〈
yn − p, Byn − Bp

〉
+ λ2

∥
∥Byn − Bp

∥
∥2

≤
∥
∥yn − p

∥
∥2 + λ(λ − 2α)

∥
∥Byn − Bp

∥
∥2

≤
∥
∥xn − p

∥
∥2 + λ(λ − 2α)

∥
∥Byn − Bp

∥
∥2.

(3.33)

Substituting (3.33) into (3.28), we obtain

∥
∥xn − p

∥
∥2 ≤

(
1 − αnγ

)2
{∥
∥xn − p

∥
∥2 + λ(λ − 2α)

∥
∥Byn − Bp

∥
∥2
}
+ β2n

∥
∥xn − qn

∥
∥2

+ 2
(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥ + 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥.

(3.34)

Simplifying it, we have

(
1 − αnγ

)2
λ(2α − λ)

∥
∥Byn − Bp

∥
∥2

≤
(
1 + αn

(
γ
)2
)∥
∥xn − p

∥
∥2 −

∥
∥xn − p

∥
∥2 + β2n

∥
∥xn − qn

∥
∥2

+ 2
(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥ + 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥

= αn

(
γ
)2∥∥xn − p

∥
∥2 + β2n

∥
∥xn − qn

∥
∥2

+ 2
(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥ + 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥.

(3.35)

Since αn → 0, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, ‖xn−qn‖ → 0, and {γf(un)−Ap}, {xn}
are bounded, these imply that ‖Byn − Bp‖ → 0 (n → ∞).

Step 5. Next we prove that

lim
n→∞

∥
∥yn − ρn

∥
∥ = 0,

lim
n→∞

∥
∥xn − ρn

∥
∥ = 0.

(3.36)

In fact, since

∥
∥yn − ρn

∥
∥ ≤
∥
∥yn − ξn

∥
∥ +
∥
∥ξn − ρn

∥
∥, (3.37)

for the purpose, it is sufficient to prove

∥
∥yn − ξn

∥
∥ −→ 0,

∥
∥ξn − ρn

∥
∥ −→ 0. (3.38)
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(a) First we prove that ‖yn − ξn‖ → 0. In fact, since

∥
∥ξn − p

∥
∥2

=
∥
∥JM,λ(I − λB)yn − JM,λ(I − λB)p

∥
∥2

≤
〈
yn − λByn −

(
p − λBp

)
, ξn − p

〉

=
1
2

{∥
∥yn − λByn −

(
p − λBp

)∥
∥2 +

∥
∥ξn − p

∥
∥2 −

∥
∥yn − λByn −

(
p − λBp

)
−
(
ξn − p

)∥
∥2
}

≤ 1
2

{∥
∥yn − p

∥
∥2 +

∥
∥ξn − p

∥
∥2 −

∥
∥yn − ξn − λ(Byn − Bp)

∥
∥2
}

≤ 1
2

{∥
∥yn − p

∥
∥2 +

∥
∥ξn − p

∥
∥2 −

∥
∥yn − ξn

∥
∥2 + 2λ

〈
yn − ξn, Byn − Bp

〉
− λ2

∥
∥Byn − Bp

∥
∥2
}
,

(3.39)

we have

∥
∥ξn − p

∥
∥2 ≤

∥
∥yn − p

∥
∥2 −

∥
∥yn − ξn

∥
∥2 + 2λ

〈
yn − ξn, Byn − Bp

〉
− λ2

∥
∥Byn − Bp

∥
∥2. (3.40)

Substituting (3.40) into (3.28), it yields that

∥
∥xn − p

∥
∥2 ≤

(
1 − αnγ

)2
{∥
∥yn − p

∥
∥2 −

∥
∥yn − ξn

∥
∥2 + 2λ

〈
yn − ξn, Byn − Bp

〉

−λ2
∥
∥Byn − Bp

∥
∥2
}
+ β2n

∥
∥xn − qn

∥
∥2

+ 2
(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥ + 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥.

(3.41)

Simplifying it we have

(
1 − αnγ

)2∥∥yn − ξn
∥
∥2 ≤ αnγ

2∥∥xn − p
∥
∥2 + 2

(
1 − αnγ

2
)
λ
〈
yn − ξn, Byn − Bp

〉

−
(
1 − αnγ

)2
λ2
∥
∥Byn − Bp

∥
∥2 + β2n

∥
∥xn − qn

∥
∥2

+ 2
(
1 − αnγ

)
βn
∥
∥ρn − p

∥
∥ ·
∥
∥xn − qn

∥
∥ + 2αn

∥
∥γf(un) −Ap

∥
∥ ·
∥
∥xn − p

∥
∥.

(3.42)

Since αn → 0, 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1, ‖xn − qn‖ → 0, ‖Byn −Bp‖ → 0 (n →
∞), and {γf(un) −Ap}, {xn}, {ρn} are bounded, these imply that ‖yn − ξn‖ → 0 (n → ∞).

(b) Next we prove that

lim
n→∞

∥
∥ξn − ρn

∥
∥ = 0. (3.43)

In fact, since ‖ξn − ρn‖ = ‖JM,λ(I − λB)yn − JM,λ(I − λB)ξn‖ ≤ ‖yn − ξn‖ → 0, so
‖yn − ρn‖ = ‖yn − ξn + ξn − ρn‖ ≤ ‖yn − ξn‖ + ‖ξn − ρn‖ → 0. This together with (3.25) shows
that ‖xn − ρn‖ → 0.
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Step 6. Next we prove that there exists a subsequence {xnk} of {xn} such that xnk ⇀ x∗ ∈ G,
and x∗ is the unique solution of the variational inequality (3.6).

(a) We first prove that x∗ ∈ F(T). In fact, since {xn} is bounded, there exists a
subsequence {xnk} of {xn} such that {xnk} ⇀ x∗. From Lemma 2.7 and Step 2, we obtain
x∗ ∈ F(T).

(b) Now we prove that x∗ ∈ ∩N
l=1MEP(Θl, ϕl).

Since xnk ⇀ x∗ and noting Step 3, without loss of generality, we may assume that
Vlxnk ⇀ x∗, for all l ∈ {0, 1, 2, . . . ,N −1}. Hence for any x ∈ C and for any l ∈ {0, 1, 2, . . . ,N −
1}, we have

〈
K′

l+1

(
Vl+1xnk

)
−K′

l+1

(
Vlxnk

)

rl+1
, ηl+1

(
x,Vl+1xnk

)
〉

≥ −Θl+1

(
Vl+1xnk , x

)
−ϕl+1(x)+ϕl+1

(
Vl+1xnk

)
.

(3.44)

By the assumptions and by condition (H2) we know that the function ϕi and the mapping
x �→ (−Θl+1(x, y)) both are convex and lower semicontinuous, hence they are weakly lower
semicontinuous. These together with (K′

l+1(V
l+1xnk) − K′

l+1(V
lxnk))/rl+1 → 0 and Vl+1xnk ⇀

x∗, we have

0 = lim inf
k→∞

{〈
K′

l+1

(
Vl+1xnk

)
−K′

l+1

(
Vlxnk

)

rl+1
, ηl+1

(
x,Vl+1xnk

)
〉}

≥ lim inf
k→∞

{
−Θl+1

(
Vl+1xnk , x

)
− ϕl+1(x) + ϕl+1

(
Vl+1xnk

)}
.

(3.45)

That is,

Θl+1(x∗, x) + ϕl+1(x) − ϕl+1(x∗) ≥ 0 (3.46)

for all x ∈ C and l ∈ {0, 1, . . . ,N − 1}, hence x∗ ∈ ∩N
l=1MEP(Θl, ϕl).

(c) Now we prove that x∗ ∈ VI(H,B,M).
In fact, since B is α-inverse-strongly monotone, it follows from Proposition 1.1 that B is

a 1/α-Lipschitz continuous monotone mapping andD(B) = H (whereD(B) is the domain of
B). It follows from Lemma 2.4 thatM + B is maximal monotone. Let (ν, g) ∈ Graph (M + B),
that is, g − Bν ∈ M(ν). Since xnk ⇀ x∗ and noting Step 3, without loss of generality, we may
assume that Vlxnk ⇀ x∗; in particular, we have ynk = VNxnk ⇀ x∗. From ‖yn − ρn‖ → 0, we
can prove that ρnk ⇀ x∗. Again since ρnk = JM,λ(I − λB)ξnk , we have

ξnk − λBξnk ∈ (I + λM)ρnk , that is,
1
λ

(
ξnk − ρnk − λBξnk

)
∈ M

(
ρnk

)
. (3.47)

By virtue of the maximal monotonicity of M, we have

〈

ν − ρnk , g − Bν − 1
λ

(
ξnk − ρnk − λBξnk

)
〉

≥ 0. (3.48)
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So,

〈
ν − ρnk , g

〉
≥
〈

ν − ρnk , Bν +
1
λ

(
ξnk − ρnk − λBξnk

)
〉

=
〈

ν − ρnk , Bν − Bρnk + Bρnk − Bξnk +
1
λ

(
ξnk − ρnk

)
〉

≥ 0 +
〈
ν − ρnk , Bρnk − Bξnk

〉
+
〈

ν − ρnk ,
1
λ

(
ξnk − ρnk

)
〉

.

(3.49)

Since ‖ξn − ρn‖ → 0, ‖Bξn − Bρn‖ → 0, and ρnk ⇀ x∗, we have

lim
nk →∞

〈
ν − ρnk , g

〉
=
〈
ν − x∗, g

〉
≥ 0. (3.50)

SinceM+B is maximal monotone, this implies that θ ∈ (M+B)(x∗), that is, x∗ ∈ VI(H,B,M),
and so x∗ ∈ G.

(d) Now we prove that x∗ is the unique solution of variational inequality (3.6).
(10)We first prove that {xnk} → x∗.
Since for all z ∈ G,

‖xn − z‖2 = 〈xn − z, xn − z〉

=
〈
αnγf(un) + βnxn +

((
1 − βn

)
I − αnA

)
qn − z, xn − z

〉

=
〈
αn

(
γf(un) −Az

)
+ βn(xn − z) +

((
1 − βn

)
I − αnA

)(
qn − z

)
, xn − z

〉

≤ αn

〈
γf(un) −Az, xn − z

〉
+ βn‖xn − z‖2 +

(
1 − βn − αnγ

)∥
∥qn − z

∥
∥ · ‖xn − z‖

≤
(
1 − αnγ

)
‖xn − z‖2 + αn

〈
γf(un) −Az, xn − z

〉
.

(3.51)

It follows that

‖xn − z‖2 ≤ 1
γ

〈
γf(un) −Az, xn − z

〉

=
1
γ

〈
γf(un) − γf(z) + γf(z) −Az, xn − z

〉

≤ 1
γ

{
γh‖xn − z‖2 +

〈
γf(z) −Az, xn − z

〉}
.

(3.52)
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Therefore,

‖xn − z‖2 ≤ 1
γ − γh

〈
γf(z) −Az, xn − z

〉
. (3.53)

Now, replacing n in (3.53) with nk and letting k → ∞ and xnk ⇀ x∗, we have xnk → x∗.
(20) Next we prove that x∗ is the unique solution of the variational inequality (3.6).
Since

xn = αnγf

(
1
tn

∫ tn

0
T(s)xnds

)

+ βnxn +
((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)ρnds, (3.54)

we have

αn

(
A − γf

)
(

1
tn

∫ tn

0
T(s)xnds

)

= −
{
(
1 − βn

)
(

xn −
1
tn

∫ tn

0
T(s)ρnds

)}

+ αnA
1
tn

∫ tn

0

(
T(s)xn − T(s)ρn

)
ds

= −
(
1 − βn

)
(

I − 1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNds

)

xn + αnA
1
tn

∫ tn

0

(
T(s)xn − T(s)ρn

)
ds.

(3.55)

Hence for any z ∈ Gwe have,

αn

〈
(
A − γf

)
(

1
tn

∫ tn

0
T(s)xnds

)

, xn − z

〉

= −
(
1 − βn

)
〈(

I − 1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNds

)

xn

−
(

I − 1
tn

∫ tn

0
T(s)(JM,λ(I − λB))2VNds

)

z, xn − z

〉

+ αn

〈

A
1
tn

∫ tn

0

(
T(s)xn − T(s)ρn

)
ds, xn − z

〉

,

(3.56)
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then

〈
(
A − γf

)
(

1
tn

∫ tn

0
T(s)xnds

)

, xn − z

〉

= −
1 − βn
αn

×
〈(

I − 1
tn

∫ tn

0
T(s)J2M,λ(I − λB)VNds

)

xn

−
(

I − 1
tn

∫ tn

0
T(s)J2M,λ(I − λB)VNds

)

z, xn − z

〉

+

〈

A
1
tn

∫ tn

0

(
T(s)xn − T(s)ρn

)
ds, xn − z

〉

.

(3.57)

It is easily seen that I − (1/tn)
∫ tn
0 T(s)(JM,λ(I − λB))2VNds is monotone. Thus from (3.57)we

have that

〈
(
A − γf

)
(

1
tn

∫ tn

0
T(s)xnds

)

, xn − z

〉

≤
〈

A
1
tn

∫ tn

0

(
T(s)xn − T(s)ρn

)
ds, xn − z

〉

. (3.58)

Now, in (3.58) replacing n by nk and letting k → ∞ and xnk → x∗, from (3.36), we have

1
tnk

∫ tnk

0

(
T(s)xnk − T(s)ρnk

)
ds −→ 0. (3.59)

So, we have

〈(
A − γf

)
x∗, x∗ − z

〉
≤ 0 ∀z ∈ G. (3.60)

It follows from [18, Theorem 3.2] that the solution of the variational inequality (3.6) is unique,
that is, x∗ is a unique solution of (3.6).

Step 7. Next we prove that

lim sup
n→∞

〈
γf(x∗) −Ax∗, xn − x∗〉 ≤ 0. (3.61)

(a) First, we prove that

lim sup
n→∞

〈
1
tn

∫ tn

0
T(s)ρnds − x∗, γf(x∗) −Ax∗

〉

≤ 0. (3.62)
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Indeed, there exists a subsequence {ρni} of {ρn} such that

lim sup
n→∞

〈
1
tn

∫ tn

0
T(s)ρnds − x∗, γf(x∗) −Ax∗

〉

= lim
i→∞

〈
1
tni

∫ tni

0
T(s)ρnids − x∗, γf(x∗) −Ax∗

〉

.

(3.63)

We may also assume that ρni ⇀ w. This together with (3.22) and (3.36) shows that qni =
(1/tni)

∫ tni
0 T(s)ρnids ⇀ w. Since ‖xn − qn‖ → 0, we have xni ⇀ w. Again by the same method

as given in Step 6 we can prove that w ∈ G. So, we have

lim sup
n→∞

〈
1
tn

∫ tn

0
T(s)ρnds − x∗, γf(x∗) −Ax∗

〉

= lim
i→∞

〈
1
tni

∫ tni

0
T(s)ρnids − x∗, γf(x∗) −Ax∗′

〉

= lim
i→∞

〈
qni − x∗, γf(x∗) −Ax∗〉

=
〈
w − x∗, γf(x∗) −Ax∗〉 ≤ 0.

(3.64)

(b) Now we prove that

lim sup
n→∞

〈
γf(x∗) −Ax∗, xn − x∗〉 ≤ 0. (3.65)

From ‖xn − qn‖ → 0 and (a), we have

lim sup
n→∞

〈
γf(x∗) −Ax∗, xn − x∗〉

= lim sup
n→∞

〈
γf(x∗) −Ax∗, xn − qn + qn − x∗〉

≤ lim sup
n→∞

〈
γf(x∗) −Ax∗, xn − qn

〉
+ lim sup

n→∞

〈
γf(x∗) −Ax∗, qn − x∗〉

≤ 0.

(3.66)

Step 8. Finally we prove that

xn −→ x∗. (3.67)
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Indeed, from (3.5), (3.15), and (3.17), we have

‖xn − x∗‖2

=
∥
∥αn(γf(un) −Ax∗) + βn(xn − x∗) + ((1 − βn)I − αnA)(qn − x∗)

∥
∥2

≤
∥
∥βn(xn − x∗) + ((1 − βn)I − αnA)(qn − x∗)

∥
∥2 + 2αn

〈
γf(un) −Ax∗, xn − x∗〉

≤
[∥
∥
((
1 − βn

)
I − αnA

)(
qn − x∗)∥∥ + βn‖xn − x∗‖

]2 + 2αnγ
〈
f(un) − f(x∗), xn − x∗〉

+ 2αn

〈
γf(x∗) −Ax∗, xn − x∗〉

≤
[(
1 − βn − αnγ

)∥
∥ρn − x∗∥∥ + βn‖xn − x∗‖

]2 + 2αnγh‖xn − x∗‖2

+ 2αn

〈
γf(x∗) −Ax∗, xn − x∗〉

=
((

1 − αnγ
)2 + 2αnγh

)
‖xn − x∗‖2 + 2αn

〈
γf(x∗) −Ax∗, xn − x∗〉.

(3.68)

This implies that

‖xn − x∗‖2 ≤ 2

2
(
γ − γh

)
− γ2

〈
γf(x∗) −Ax∗, xn − x∗〉. (3.69)

Combining (3.61) and (3.69), we obtain that xn → x∗.
This completes the proof of Theorem 3.2.

Corollary 3.3. Let H,C, f, T, F,A, B, ϕi, ηi,Ki (i = 1, 2, . . . ,N) be the same as in Theorem 3.2. Let
ri (i = 1, 2, . . . ,N) be a finite family of positive parameter, λ ∈ (0, 2α], {αn}, {βn} ⊂ [0, 1] and
{tn} ⊂ (0,∞). IfG := F(T)

⋂
MEP (F)

⋂
VI(H,B,M)/= ∅ and conditions (i) and (ii) in Theorem 3.2

are satisfied, then

(1) for each n ≥ 1 there is a unique xn ∈ C such that

xn = αnγf

(
1
tn

∫ tn

0
T(s)xnds

)

+ βnxn

+
((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)(PC(I − λB))2VNxnd;

(3.70)

(2) the sequence {xn} converges strongly to some point x∗ ∈ G, provided that VΘi
ri is firmly

nonexpansive;

(3) x∗ is the unique solution of variational inequality (3.6).
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Proof. Taking M = ∂δC : H → 2H in Theorem 3.2, where δC : H → [0,∞) is the indicator
function of C, that is,

δC =

⎧
⎨

⎩

0, x ∈ C,

+∞, x /∈C,
(3.71)

then the variational inclusion problem (1.2) is equivalent to variational inequality (1.4), that
is, to find u ∈ C such that

〈B(u), v − u〉 ≥ 0, ∀v ∈ C. (3.72)

Again, since M = ∂δC, then JM,λ = PC. Therefore we have

ρn = PC(I − λB)ξn, ξn = PC(I − λB)yn. (3.73)

The conclusion of Corollary 3.3 can be obtained from Theorem 3.2 immediately.

4. Applications to Optimization Problem

Let H be a real Hilbert space, C a nonempty closed convex subset of H,A : H → H
a strongly positive linear bounded operator with a constant γ > 0, and T : C → C a
nonexpansive mapping. In this section we will utilize the results presented in Section 3 to
study the following optimization problem:

min
x∈F(T)

1
2
(〈Ax, x〉 − h(x)), (4.1)

where F(T) is the set of fixed points of T in C and h : C → R is a potential function for γf
(i.e., h′(x) = γf(x), x ∈ C), where f : C → C is a contractive mapping with a contractive
constant h ∈ (0, 1). We have the following theorem.

Theorem 4.1. LetH,C, f, T,A be the same as above. Let {αn}, {βn} be sequences in [0, 1] satisfying
condition (ii) in Theorem 3.2. If F(T) is a nonempty compact subset of C, then for each n ≥ 1 there is
a unique xn ∈ C such that

xn = αnγf(T(xn)) + βnxn +
((
1 − βn

)
I − αnA

)
Txn, ∀n ≥ 1, (4.2)

and the sequence {xn} converges strongly to some point x∗ ∈ F(T) which is the unique minimal point
of optimization problem (4.1).

Proof. TakingΘi = 0, ϕi = 0,Ki = 0, ηi = 0, ri = 1 (i = 1, 2, . . . ,N), B = 0,T = T in Corollary 3.3,
hence we have F = 0, VΘi

ri = I,i = 1, 2, . . . ,N, yn = ξn = ρn = xn, (1/tn)
∫ tn
0 T(s)xnds = Txn,

for all n ≥ 1, F(T) = F(T), MEP(F) = VI(H,B,M) = C, G = F(T). Hence from Corollary 3.3
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we know that the sequence {xn} defined by (4.2) converges strongly to some point x∗ ∈ F(T)
which is the unique solution of the following variational inequality:

〈(
A − γf

)
x∗, x − x∗〉 ≥ 0, x ∈ F(T). (4.3)

Since T is nonexpansive, then F(T) is convex. Again by the assumption that F(T) is compact,
therefore it is a compact and convex subset of C, and (1/2)(〈Ax, x〉 − h(x)) : C → R is a
continuous mapping. By virtue of the well-known Weierstrass theorem, there exists a point
y∗ ∈ F(T)which is a minimal point of optimization problem (4.1). As is known to all, (4.3) is
the optimality necessary condition [19] for the optimization problem (4.1). Therefore we also
have

〈(
A − γf

)
y∗, x − y∗〉 ≥ 0, ∀x ∈ F(T). (4.4)

Since x∗ is the unique solution of (4.3), we have x∗ = y∗.
This completes the proof of Theorem 4.1.
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