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The purpose of this paper is to use the modified block iterative method to propose an algorithm
for solving the convex feasibility problems for an infinite family of quasi-¢-asymptotically
nonexpansive mappings. Under suitable conditions some strong convergence theorems are
established in uniformly smooth and strictly convex Banach spaces with Kadec-Klee property. The
results presented in the paper improve and extend some recent results.

1. Introduction

The problem of finding a point in the intersection of closed and convex subsets {C;};.; of a
Banach space is a frequently appearing problem in diverse areas of mathematics and physical
sciences. This problem is commonly referred to as the convex feasibility problem (CFP). There is
a considerable investigation on (CFP) in the framework of Hilbert spaces which captures
applications in various disciplines such as image restoration, computer tomograph, and
radiation therapy treatment planning [1]. The advantage of a Hilbert space H is that the
projection Pc onto a closed convex subset C of H is nonexpansive. So projection methods
have dominated in the iterative approaches to (CFP) in Hilbert space. In 1993, Kitahara and
Takahashi [2] deal with the convex feasibility problem by convex combinations of sunny
nonexpansive retractions in uniformly convex Banach space (see also, O’'Hara et al. [3] and
Chang et al. [4]). It is known that if C is a nonempty closed convex subset of a smooth,
reflexive, and strictly convex Banach space E, then the generalized projection Ilc from E
onto C is relatively nonexpansive. In 2005, Matsushita and Takahashi [5] reformulated the
definition of the notion and obtained weak and strong convergence theorems to approximate
a fixed point of a single relatively nonexpansive mapping. Recently, Qin et al. [6], Zhou and
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Tan [7], Wattanawitoon and Kumam [8], Li and Su [9], and Takahashi and Zembayashi
[10] extend the notion from relatively nonexpansive mappings or quasi-¢-nonexpansive
mappings to quasi-¢-asymptotically nonexpansive mappings and also prove some weak and
strong convergence theorems to approximate a common fixed point of finite or infinite family
of quasi-¢-nonexpansive mappings or quasi-¢-asymptotically nonexpansive mappings.

It should be noted that the block iterative algorithm is a method which often used by
many authors to solve the convex feasibility problem (see, e.g., Kikkawa and Takahashi
[11], Aleyner and Reich [12]). Recently, some authors by using the block iterative scheme to
establish strong convergence theorems for a finite family of relativity nonexpansive mappings
in Hilbert space or finite-dimensional Banach space (see, e.g., Aleyner and Reich [12],
Plubtieng and Ungchittrakool [13, 14]) or uniformly smooth and uniformly convex Banach
spaces (see, e.g., Sahu et al. [15] and Ceng et al. [16-18]).

Motivated and inspired by these facts, the purpose of this paper is to use the modified
block iterative method to propose an iterative algorithm for solving the convex feasibility
problems for an infinite family of quasi-¢-asymptotically nonexpansive. Under suitable
conditions some strong convergence theorems are established in a uniformly smooth and
strictly convex Banach space with Kadec-Klee property. The results presented in the paper
improve and extend the corresponding results in Aleyner and Reich [12], Plubtieng and
Ungchittrakool [13, 14], and Chang et al. [19].

2. Preliminaries

Throughout this paper we assume that E is a real Banach space with the dual E*and ] : E —
2E" is the normalized duality mapping defined by

J)={f e (x f) = IxIP = || £]*}, x€E. 2.1)

In the sequel, we use F(T) to denote the set of fixed points of a mapping T, and use R and R*
to denote the set of all real numbers and the set of all nonnegative real numbers, respectively.
We also denote by x, — x and x, — x the strong convergence and weak convergence of a
sequence {x,}, respectively.

A Banach space E is said to be strictly convex if ||[x + y||/2 < 1 forallx,y e U = {z €
E :||z|| =1} with x #y. E is said to be uniformly convex if, for each € € (0, 2], there exists 6 > 0
such that ||x + y||/2 <1 -6 forall x,y € U with ||x — y|| > e. E is said to be smooth if the limit

e el (2.2)
t—0 t

exists for all x,y € U. E is said to be uniformly smooth if the above limit exists uniformly in
x,yel.

Remark 2.1. The following basic properties can be found in Cioranescu [20].

(i) If E is a uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space, then ]! is hemicontinuous,
thatis, J~! is norm-weak*-continuous.
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(iii) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized
duality mapping J : E — 2 is single-valued, one-to-one, and onto.

(iv) A Banach space E is uniformly smooth if and only if E* is uniformly convex.

(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any
sequence {x,} CE,if x, — x € E and ||x,|| — ||x||, then x, — x.

Next we assume that E is a smooth, strictly convex, and reflexive Banach space and
C is a nonempty closed convex subset of E. In the sequel we alwaysuse ¢ : Ex E — R* to
denote the Lyapunov functional defined by

$(xy) = Il ~2(x, Jy) + ly°, vxy €E. (23)
It is obvious from the definition of ¢ that

(Ul =y < 9Cry) < (el + Iyl Vxy €E 24)
Following Alber [21], the generalized projection Ilc : E — C is defined by

Me(x) = inf §(y,x), VxeE. (2.5)

Lemma 2.2 (see [21]). Let E be a smooth, strictly convex, and reflexive Banach space and C a
nonempty closed convex subset of E. Then the following conclusions hold:

(@) ¢(x,I1cy) + ¢(Ilcy, y) < ¢p(x,y) forall x € Cand y € E;
(b) if x € Eand z € C, then

z=Tlex <= (z-y,Jx-Jz)>0, VyeC, (2.6)

(c)forx,y € E, (x,y) =0ifand only if x = y.

Remark 2.3. If E is a real Hilbert space H, then ¢(x,y) = |x - y||2 and Il¢ is the metric
projection Pc of H onto C.

Let E be a smooth, strictly convex, and reflexive Banach space, C a nonempty closed
convex subset of E, T : C — C amapping, and F(T) the set of fixed points of T. A pointp € C
is said to be an asymptotic fixed point of T if there exists a sequence {x,} C C such that x, — p
and ||x, — Tx,|| — 0. We denoted the set of all asymptotic fixed points of T by F (T).

Definition 2.4. (1) A mapping T : C — C is said to be relatively nonexpansive [5] if F(T) #0,
F(T) = F(T), and

¢(p,Tx) < Pp(p,x), VxeC, peF(T). (2.7)

(2) Amapping T : C — Cissaid to be closed if for any sequence {x,} C C withx, — x
and Tx, — y,thenTx = y.
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Definition 2.5. (1) A mapping T : C — C is said to be quasi-¢-nonexpansive if F(T) #@ and
¢(p,Tx) <p(p,x), VxeC, peF(T). (2.8)

(2) A mapping T : C — C is is said to be quasi-¢-asymptotically nonexpansive (7], if
F(T) #0 and there exists a real sequence {k,} C [1,00) with k, — 1 such that

¢(p,T"x) <kup(p,x), VYn>1, xeC, peF(T). (2.9)

Remark 2.6. (1) From the definition, it is easy to know that each relatively nonexpansive
mapping is closed.

(2) The class of quasi-¢-asymptotically nonexpansive mappings contains properly the
class of quasi-¢-nonexpansive mappings as a subclass and the class of quasi-¢$-nonexpansive
mappings contains properly the class of relatively nonexpansive mappings as a subclass, but
the converse may be not true.

Next, we give some examples which are closed and quasi-¢-asymptotically nonexpan-
sive mappings.

Example 2.7 (see [7]). Let E be a uniformly smooth and strictly convex Banach space and A C
E x E* a maximal monotone mapping such that A0 (the set of zero points of A) is nonempty.
Then the mapping J, = (J + rA) '] is closed and quasi-¢-asymptotically nonexpansive from
E onto D(A) and F(J,) = A710.

Example 2.8. Let Ilc be the generalized projection from a smooth, strictly convex and
reflexive Banach space E onto a nonempty closed convex subset C C E. Then Ilc is relative
nonexpansive, which in turn is a closed and quasi-¢-nonexpansive mapping, and so it is a
closed and quasi-¢-asymptotically nonexpansive mapping.

Lemma 2.9 (see [13,22]). Let E be a uniformly convex Banach space, r > 0 be a positive number and
B, (0) be a closed ball of E. Then, for any given subset {x1,x2,...,xN} C B,(0) and for any positive
numbers i, Ay, ..., AN with Z,]:jzl A =1, there exists a continuous, strictly increasing, and convex
function g : [0,2r) — [0, 00) with g(0) = 0 such that, forany i,j € {1,2,..., N} withi < j,

N
Z)Lnxn

n=1

2N
< D hallxal® = Aidig ([l = x5 ). (2.10)
n=1

Lemma 2.10. Let E be a uniformly convex Banach space, r > 0 a positive number and B,(0) a
closed ball of E. Then, for any given sequence {x;}jo; C B,(0) and for any given sequence {1;}; of
positive numbers with 37" 1 A, = 1, there exists a continuous, strictly increasing, and convex function
g:[0,2r) — [0, 00) with g(0) = 0 such that for any positive integers i, j with i < j,

2 [*e]
< S Mallxall® = Xidig ([|xi = x;])- (2.11)
n=1

[ee)
2 A
n=1
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Proof. Since {x;}{2; C B,(0) and \; > 0 for all i > 1 with 3>7°, A, = 1, we have

0
2
i=1

< > hillxl <7 (2.12)
i=1

Hence, for any given € > 0 and any given positive integers i, j with i < j, it follows from (2.12)
that there exists a positive integer N > j such that || 3., Aix;|| < e. Letting on = SN, A;, by
Lemma 2.9, we have

2 2
Nix; & N
O'NZ Ly Z /\ixl- <\ on d Z /\xl
i=N+1 i1 i=N+1
2
N A N
iX Aix;
<ok Z 2+ €2 + 2eo0n Z#
i-1 ON i-1 ON

i > (2.13)

N A
< 0% 2 -kl = iy ([l = ) + €<e 20N
i=1

N
< Z)uillxi||2 - Xidjg(||lxi — xi]|) + €<e +2
i=1

N
2
i=1

)
$1u])

i=1

8

<D llill® = Ak g (|l = x;]|) + €<€+2

i=1

Since € > 0 is arbitrary, the conclusion of Lemma 2.10 is proved. O

Lemma 2.11. Let E be a real uniformly smooth and strictly convex Banach space with Kadec-Klee
property, and C a nonempty closed convex subset of E. Let T : C — C be a closed and quasi-¢-
asymptotically nonexpansive mapping with a sequence {k,} C [1,00), k, — 1. Then F(T) is a
closed convex subset of C.

Proof. Letting {p,} be a sequence in F(T) withp, — p (asn — oo), we prove that p € F(T).
In fact, from the definition of T, we have

¢(pn, Tp) <k1ip(pn,p) — 0 (as n— o0). (2.14)
Therefore we have

1im ¢(py, Tp) = lim (|lpal* = 2(pu, JTp) + || Tp||)

= lpll* =20, JTp) + || Tp| = (p, Tp) =0, (2.15)

thatis, p € F(T).
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Next we prove that F(T') is convex. For any p,q € F(T), t € (0,1), putting w = tp+ (1 -
t)q, we prove that w € F(T). Indeed, in view of the definition of ¢(x, ) we have
¢, T"w) = |w| - 2(w, JT"w) + | T"w|*
= lwl® - 2t(p, IT"w) - 2(1 - t){q, JT"w) + | T"w||*
=[] + 19 (p, T"w) + (1 = (4, T"w) ~ t]|p||" - (1= 1) q]* (2.16)
< Il + thu (p,w) + (1 = Dk (q,w) = tl|p||” = (1 = 1)]|q]”

= (ko= 1) (tllplI* + @ - Olla])* - Ieol)-

Since k, — 1, we have ¢(w, T"w) — 0 (asn — oo). From (2.4) we have ||[T"w| — [w].
Consequently || JT"w|| — ||Jwl||. This implies that { JT"w} is a bounded sequence. Since E is
reflexive, E* is also reflexive. So we can assume that

JT"w — fo € E*. (2.17)

Again since E is reflexive, we have J(E) = E*. Therefore there exists x € E such that Jx = f.
By virtue of the weakly lower semicontinuity of norm || - ||, we have

0 = lim inf ¢(w, T"w) = lim inf <||w||2 — 2w, [(T"w)) + ||T"w||’-)

= 1im inf (|[e0]* = 2(w, ] (T"20)) + |1 (T")])

> wl? - 2(w, fo) + || fol|* (2.18)

= |[wl* - 2(w, Jx) +[I] x|

= |lwl* - 2(w, Jx) + |x]* = §(w, x),

that is, w = x which implies that fo = Jw. Thus from (2.17) we have JT"w — Jw € E*.
Since ||JT"w|| — ||Jw|| and E* has the Kadec-Klee property, we have JT"w — Jw. Since
E is uniformly smooth and strictly convex, by Remark 2.1(ii) it yields that J™! : E* — Eis
hemi-continuous. Therefore T"w — w. Again since ||T"w|| — ||w||, by using the Kadec-Klee
property of E, we have T"w — w. This implies that TT"w = T 1w — w. Since T is closed,
we have w = Tw. This completes the proof of Lemma 2.11. O

3. Main Results

In this section, we will use the modified block iterative method to propose an iter-
ative algorithm for solving the convex feasibility problem for an infinite family of
quasi-¢-asymptotically nonexpansive mappings in uniformly smooth and strictly convex
Banach spaces with the Kadec-Klee property.
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Definition 3.1. (1) Let {S;}72; : C — C be a sequence of mappings. {S;}2; is said to be a family
of uniformly quasi -¢p-asymptotically nonexpansive mappings, if ;- F(S,) # 0, and there exists a
sequence {k,} C [1,00) with k, — 1 such that for eachi > 1

d(p,Stx) <kudp(p,x), Vpe ﬁF(Sn), xeC, Vn>1 (3.1)

n=1

(2) A mapping S : C — C is said to be uniformly L-Lipschitz continuous, if there exists
a constant L > 0 such that

|S"x - S"y|| <L||x-y|, VYxyeC (3.2)

Theorem 3.2. Let E be a uniformly smooth and strictly convex Banach space with Kleac-Klee property
and C a nonempty closed convex subsets of E. Let {S;}2, : C — C be an infinite family of closed and
uniformly quasi-¢-asymptotically nonexpansive mappings with a sequence {k,} C[1,00) and k,, — 1.
Suppose that for each i > 1, S; is uniformly Li-Lipschitz continuous and that F := (\,—; F(S;) is a
nonempty and bounded subset in C. Let {x,} be the sequence generated by

xo € C chosen arbitrary, Cy=C,

Yu=J" <an,o]xn + e, ]syxn>,

i=1 (3.3)
Cui1 = {v€C: (v, yn) < P(v,x0) + &0},

Xn+l = HC;«HJ X0, Vn 2 O/
where &, = sup g (kn — 1) (u, x,), Ic,,, is the generalized projection of E onto the set Cy11 and for
eachi>0, {a,;} is a sequence in [0, 1] satisfying the following conditions:

(a) X2y ani =1foralln>0;

(b) im inf,, _, watn0 - ay; > 0 forall i > 1.

Then {x,} converges strongly to T1gxy.
Proof. We divide the proof of Theorem 3.2 into five steps.
Step 1. We first prove that F and C,, both are closed and convex subset of C for all n > 0.
In fact, It follows from Lemma 2.11 that F(S;), i > 1, is closed and convex. Therefore
& is a closed and convex subset in C. Furthermore, it is obvious that Cy = C is closed and

convex. Suppose that C,, is closed and convex for some n > 1. Since the inequality ¢(v, y,) <
¢ (v, x,) + & is equivalent to

2<Ur]xn_]yn> < ”xnllz_ ”yn”z"'énr (3.4)
therefore, we have

Cuut = {0 € Co 200, T = Jyu) < Il = |yl + & }- (35)

This implies that C,. is closed and convex. The desired conclusions are proved. These in
turn show that I'lgxg and I, xo are well defined.
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Step 2. We prove that {x,} is a bounded sequence in C.

By the definition of C,,, we have x,, = I'lc,x¢ for all n > 0. It follows from Lemma 2.2(a)
that

¢ (xn, x0) = p(Ilc,x0, x0) < Pp(u, x0) — P(u, Ic,x0)

(3.6)
<¢p(u,x0), Yn>0, ue¥.
This implies that {¢(x,, x)} is bounded. By virtue of (2.4), {x,} is bounded. Denote
M = sup{||x,||} < co. (3.7)

n>0

Step 3. Next, we prove that ¥ := (2, F(S;) ¢ C,, forall n > 0.

It is obvious that ¢ € Cy = C. Suppose that F C C, for some n > 0. Since E is uniformly
smooth, E* is uniformly convex. For any given u € ¥ C C,, and for any positive integer j > 0,
from Lemma 2.10 we have

d’(ui yﬂ) = d) (ur ]71 (an,Ofxn + Z(Xn,i]S?xn>>

i=1
2

oo}
an,O]xn + Zan,i]Slr'lxn
i=1

= [[ull® = 2an0(u, Joxu) =2 i, JS!xu) +
i=1

< ”ullz - 2“n,0<u/ ]xn> - 2Zan,i<ur ]S:lxn> + an,O”]xn”z
i=1

[0.0)
+ 3 il 7875l - ot (|| 72 - S
i=1

) (by Lemma 2.10)

= JJull® = 2am0(u, Jxtn) = 2> atni{ut, JS!%n) + aty ol 2u]|?

)

= 0P (U, xp) + Zcxn,@(u, Sixy,) — txn,ovtn,jg<||]xn - ]573511
i=1

(3.8)

[ee]
+ Zanri”S?xn ||2 - tXn,otXn,,'g<H]xn = JS}xn
i=1

)
)

< @014, %) + Y tniKnp (1t %) = ot (|| 10 = 187,
i=1

)

< (1, %) + sup(kn = (1, %) = ot (|| Jxn = 7S
uc¥

< kn(u, xu) - txn,oan,jg<||]xn - JSixn

)

= ‘.b(u/ xn) + én - “n,Oan,jg<||]xn - ]S;lxn

) Vueg.
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Hence u € Cy4q and so ¥ C C,, for all n > 0. By the way, from the definition of {¢,}, (2.4), and
(3.7), it is easy to see that

§n=su§(kn—1>¢<u,xn)sSugp(kn—1>(||u||+M>2ﬂo (as m— o). (3.9)

Step 4. Now, we prove that {x,} converges strongly to some point p € ¥ := (2, F(S;).

In fact, since {x,} is bounded in C and E is reflexive, we may assume that x, — p.
Again since C, is closed and convex for each n > 1, it is easy to see that p € C,, for each n > 0.
Since x, = Ilc,xp, from the definition of I'lc,, we have

¢(xn, x0) < P(p,x0), Yn>0. (3.10)
Since
lim inf (o) = lim in{ [l |* = 2426, Jx0) + [1xoll* }
> [[pII* - 2(p, Jxo) + %ol = $(p, x0), G1D)
we have
$(p, x0) < lim inf ¢ (x, x0) < h?fllop ¢ (xn, x0) < P(p, x0). (3.12)

This implies that lim,, . . (xn, X0) = ¢(p, o), thatis, ||x,|| — [|p||. In view of the Kadec-Klee
property of E, we obtain that

lim x,, = p. (3.13)

n— oo

Now we prove that p € (2, F(S;).In fact, by the construction of C,,, we have that C,.1 C Cy,
and x,.1 = Ilc,, xo € C,. Therefore by Lemma 2.2(a) we have

n+l

¢(xn+1/ xn) = ¢(xn+1/ HC,,XO)
< @(xn41, x0) — p(Ic, X0, x0) (3.14)

= ¢(xn+1,X%0) = P(xn,x0) — 0 (as n— o0).
In view of x,,1 € C,;1 and note the construction of C,,1 we obtain that

P (Xns1, Yn) < P(Xns1,%n) +én — 0 (as n— o0). (3.15)

From (2.4) it yields (|1l - lyal)?> = 0. Since il = llpll, we have

lyall — llpll  (as n— o0), (3.16)
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Hence we have
ITyull — TPl (as n— o). (3.17)

This implies that {Jy,} is bounded in E*. Since E is reflexive, and so E* is reflexive, we can
assume that Jy, — fo € E*. In view of the reflexive of E, we see that J(E) = E*. Hence there
exists x € E such that Jx = f. Since

¢(xn+1/]/n) = ||-7Cn+1”2 _2<xn+1/ ]]/Tl> + ”yn”2
(3.18)

= %112 = 2(xns1, Ty} + || Ty

Taking liminf,_.,, on the both sides of equality above and in view of the weak lower
semicontinuity of norm | - ||, it yields that

0> |lpl* - 2(p, fo) + I foll* = llpll* - 2(p. Jx) + | x|I”

= [lpllI* - 2(p, Jx) + I = $(p, x),

(3.19)

thatis, p = x. This implies that fy = Jp,and so Jy, — Jp. It follows from (3.17) and the Kadec-
Klee property of E* that Jy, — Jp (asn — o). Note that ]! : E* — E is hemi-continuous,
it yields that y,, — p. It follows from (3.16) and the Kadec-Klee property of E that

lim v, = p. (3.20)
From (3.13) and (3.20) we have that
|xn = yu]| — 0  (as n— o0). (3.21)

Since J is uniformly continuous on any bounded subset of E, we have

|Jxn = Jyn]| — 0 (as n— oo). (3.22)

For any j > 1 and any u € ¥, it follows from (3.8), (3.13), and (3.20) that

an,oan,]-g<||]xn - ]S}?xn ) <P, xn) —P(tt, yn) +é — 0 (as n—> o). (3.23)

In view of condition (b) liminf, _, ay0a,; > 0, we see that

g(|[yxn - IS

> —0 (as n— o0). (3.24)
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It follows from the property of g that

|70 - 1S,

— 0 (as n— o0). (3.25)

Since x, — p and ] is uniformly continuous, it yieads Jx, — Jp. Hence from (3.25) we have

]S}‘xn — Jp (as n— o0). (3.26)

Since ]! : E* — E is hemi-continuous, it follows that

Sixp—p, foreach j>1. (3.27)

On the other hand, for each j > 1we have

This together with (3.27) shows that

S;.’xn

~lell| = ||y (six)

el < [|7(Sp) - Tp| — 0 @s m—o0).  (328)

Sixy — p  foreachj>1. (3.29)

Furthermore, by the assumption that for each j > 1, S; is uniformly L;-Lipschitz continuous,
hence we have

+1
57 Xy — S;?xn

<

57+1xn _ S;H—l Xni1

+

+ X1 — xull +

n+1 n
5]' Xn+l — Xn+l Xn — Sj Xn

< (L] + 1)||xn+1 - Xn” +

|

+1
S;l Xn+l — Xn+1 Xn — S;?xn

(3.30)

This together with (3.13) and (3.29), yields ||S;’+1xn - S;‘an — 0 (as n — o). Hence from
(3.29) we have S}“lxn — p, thatis, §;S"x, — p. In view of (3.29) and the closeness of S;, it
yields that S;p = p, for all j > 1. This implies that p € N2, F(S;).
Step 5. Finally we prove that x, — p = I1gxy.

Let w = Ilgxy. Since w € ¥ C C, and x,, = I'lc,xp, we have

@ (xn, x0) < Pp(w, xp), VYn>0. (3.31)
This implies that
¢(p, x0) = lim ¢(xn, x0) < p(w, x0)- (3.32)

In view of the definition of Ilgxy, from (3.32) we have p = w. Therefore, x, — p = Ilgx.
This completes the proof of Theorem 3.2. O
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The following theorem can be obtained from Theorem 3.2 immediately.

Theorem 3.3. Let E be a uniformly smooth and strictly convex Banach space with Kadec-Klee
property , C a nonempty closed convex subset of E. Let {S;}2, : C — C be an infinite family of
closed and quasi-$p-nonexpansive mappings. Suppose that F := (2, F(S;) is a nonempty subset in
C. Let {x,} be the sequence generated by

xo € C chosen arbitrary, Cp=C,

Yn = ]_1 <“n,0]xn + Z“n,i]sixn>/

i=1 (3.33)

Chn={v€Cn:d(v,yn) <P(v,x,)},

Xni1 = I, x0, Yn2>0,

n+l

where {a,;}, for each i > 0, is a sequence in [0, 1] satisfying the following conditions:

(@) XZoani=1foralln>0;

(b) iminf, _, oy 0 - apn; > 0 forall i > 1.

Then {x,} converges strongly to T1gx.

Proof. Since {S;}2; : C — Cisan infinite family of closed quasi-¢-nonexpansive mappings, it
is an infinite family of closed and uniformly quasi-¢-asymptotically nonexpansive mappings
with sequence {k, = 1}. Hence ¢, = sup, g (ks — 1)¢(u, x,) = 0. Therefore the conditions
appearing in Theorem 3.2: “¥ is a bounded subset in C” and “for each i > 1, S; is uniformly
L;-Lipschitz continuous” are of no use here. In fact, by the same methods as given in the
proofs of (3.13), (3.20) and (3.29), we can prove that x, — p, ¥, — pand Sjx, — p (as
n — oo) for each j > 1. By virtue of the closeness of mapping S; for each j > 1, it yields that
p € F(S;) for each j > 1, that is, p € 2] F(S;). Therefore all conditions in Theorem 3.2 are
satisfied. The conclusion of Theorem 3.3 is obtained from Theorem 3.2 immediately. O

Remark 3.4. Theorems 3.2 and 3.3 improve and extend the corresponding results in Aleyner
and Reich [12], Plubtieng and Ungchittrakool [13, 14] and Chang et al. [19] in the following
aspects.

(a) For the framework of spaces, we extend the space from a uniformly smooth and
uniformly convex Banach space to a uniformly smooth and strictly convex Banach space
with the Kadec-Klee property (note that each uniformly convex Banach space must have
the Kadec-Klee property).

(b) For the mappings, we extend the mappings from nonexpansive mappings,
relatively nonexpansive mappings or quasi-¢-nonexpansive mapping to an infinite family
of quasi-¢-asymptotically mappings;

(c) For the algorithms, we propose a new modified block iterative algorithms which
are different from ones given in [12-14, 19] and others.
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