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The purpose of this paper is to give some properties of several Bernstein type polynomials to
represent the fermionic p-adic integral on Z,. From these properties, we derive some interesting
identities on the Euler numbers and polynomials.

1. Introduction

Throughout this paper, let p be an odd prime number. The symbol, Z,, Q,, and C, denote the
ring of p-adic integers, the field of p-adic rational numbers, the complex number field and the
completion of algebraic closure of Q,, respectively.

Let N be the set of natural numbers and Z, = N U {0}. Let v, be the normalized
exponential valuation of C, with [p|, = p™® = 1/p. Note that Z, = {x | |x|, < 1} =
lim 7 /pNZ,.

When one talks of g-extension, g is variously considered as an indeterminate, a
complex number q € C, or p-adic number q € C,. If g € C, we normally assume |g| < 1,
and if g € C,, we always assume [1 - g|, < 1.

We say that f is uniformly differentiable function at a point a € Z, and write
f € UD(Zy), if the difference quotient F¢(x,y) = (f(x) - f(y))/(x — y) has a limit f'(a)
as (x,y) — (a,a). For f € UD(Z)), the fermionic p-adic g-integral on Z, is defined as

1+g

pN-1
L) = [ feodeg = Jim ZELS fe (-a)" (1.1)
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(see [1]). In the special case g = 1 in (1.1), the integral
L) = [ f@dua o, (12)
ZP

is called the fermionic p-adic invariant integral on Z, (see [2]). From (1.2), we note

La(f1) = -Ia(f) +2£(0), (1.3)

where fi(x) = f(x +1).
Moreover, for n € N, let f,(x) = f(x + n). Then we note that

n-1
Li(fa) = D" (F) +22,-D" £, (1.4)
1=0

It is well known that the Euler polynomials are defined by

2
et+1e

Xt = ;)En(x) ;!, (1.5)

(see [1-15]). In the special case, x = 0, and E, (0) = E, are called the nth Euler numbers.
Let f(x) = e'*. Then, by (1.3), (1.4), and (1.5), we see that

X 2 X < tn
J; ey (y) = e t %En(x) " (1.6)

P

Let C[0,1] denote the set of continuous functions on [0, 1]. For f € C[0,1], Bernstein
introduced the following well-known linear positive operator in the field of real numbers R:

B, (f:x)= g]f(:) <Z>xk(l —x)"k = éf(:)Bk,n(x)r (1.7)

where () = (n(n-1)---(n—-k+1))/k! =n!/kl(n-k)! (see [3,4,7,10, 11, 14]). Here, B, (f : x)
is called the Bernstein operator of order n for f.
For k,n € Z., the Bernstein polynomial of degree 7 is defined by

Bin(x) = <Z> (1 -x)"*,  for x €[0,1]. (1.8)

For example, By1(x) = 1-x, B 1(x) = x, Boa(x) = (1 -x)?, Bia(x) = 2x—2x2, Byp(x) = x2,...,
and By ,(x) =0 for n < k, By, (x) = By_gn(1 — x).

In this paper, we study the properties of Bernstein polynomials in the p-adic number
field. For f € UD(Zp), we give some properties of several type Bernstein polynomials
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to represent the fermionic p-adic invariant integral on Z,. From those properties, we derive

some interesting identities on the Euler polynomials.

2. Fermionic p-adic Integral Representation of Bernstein Polynomials

By (1.5) and (1.6), we see that

2

Ay ) m
e i
S LD YU

We also have that

2 . 2 & -1)"
(1-x)t _ xt _ n
S T+et® ;::;E"(x) w

From (2.1) and (2.2), we note that E,, (1 — x) = (-=1)"E,(x). It is easy to show that

n n
E.(2) :2—Z<Z>E1:2+En, for n> 0.

1=0

By (1.5), (1.6), (2.1), (2.2), and (2.3), we see that for n > 0,

[ a-wrapam =0 [ covduae = @e2rdpe
z, z, z,

=2+ J. x"dp_q(x).

Zp

Therefore, we obtain the following theorem.

Theorem 2.1. For n € N, one has

[ a-wrapa =2+ wduie,
z, z

P

Theorem 2.1 is important to derive our main result in this paper.

2.1)

(2.2)

(2.3)

(2.4)

(2.5)
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Taking the fermionic p-adic integral on Z, for one Bernstein polynomial in (1.8), we get

I

Bin(x)dpoi (x) = fz <Z> 2 (1= 20"y (x)

_[n n-k /n—k ke nj
—<k>j=0< ]. >< 1) fsz dj1 (%)

p

Therefore, we obtain the following proposition.

Proposition 2.2. For k,n € Z., one is

n\"k /n—-k )
f Bk,n(x)d‘u_l(x)=< >Z< _ >(—1)7Ek+]-. (2.7)
Z k j=0 ]

p

It is known that By ,(x) = By—k (1 — x). Thus, one has

[ Bundia() = [ Briad = 20t
Z

2 Ly

NS RN .
(Y oo

By (2.8) and Theorem 2.1, we see that for n > k,

k /k . )
| Bt - <">Z<.>(—1>’<‘f <z+ [ x”]dll—l(x)>
Zp k/ i3 \J Zy
k/ NI (2.9)

2+E, if k=0,

n k .
< >Z< >(—1)’<—JEnj if k > 0.
k /=0 \j

From (2.9), we obtain the following theorem.

(2.8)

>
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Theorem 2.3. For n, k € Z, with n > k, we have

2+E, ifk=0,

Bin(x)dpr (x) = _ (2.10)
fz,, kn (X)dp-1(x) <n>i< >(—1)k_]En—j if k> 0.
7=0

By Proposition 2.2 and Theorem 2.3, we obtain the following corollary.

Corollary 2.4. For n, k € Z., with n > k, we have

2+E, ifk=0,
n

k<"_k>< E K @11)
- = k .
- j v Z<‘>(—1)k—f15n,- if k> 0.

0\J

]
j=

Il
o

For m,n, k € Z, with m + n > 2k, fermionic p-adic invariant integral for multiplication
of two Bernstein polynomials on Z, can be given by the following relation:

Z>x (1-x)" k<k>xk(1—x)m_kdy_1(x)

f B () B ()dp1 (x) = f

Z, Z,

(
()0
¢

> 2k(1 x)n+m de# 1(.7()

2k
< > < >( 1)]+2kf (1 x)n+m ]d‘u 1(.X')
j=0
n 2k
j+2k n+m-—j
9109>-(0) I O B

n

k (2.12)

2+ Em if k=0,

zk 2k .
Z ) Emy i k> 0.
=0\ ]
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Therefore, we obtain the following theorem.

Theorem 2.5. For m,n, k € Z, with m +n > 2k, one has

2+ Epim ifk=0,

B n B ,m dp- = j
fzp k,n () Bie,m () dp-1 (x) <n> <m> ZZk: <2k> (1) *Epep i ifk>0.  (213)
k k /=0 \ j

Form,n, k € Z,, one has
n m 2k n+m-2k
By () Bim () i1 (x) = < > < > f K (1= x)™ "y (x)
ZP
ntm2k [ +m -2k . ok
> ) f A (x) (214)
k/ % J Zp

n\ [m\"EH (n+m =2k .
= VE

Thus, we obtain the following proposition.

I

p

1
VR
>
~_
D

Proposition 2.6. For m,n, k € Z., one has

n\ /m\ntmzk /n+m -2k .
f Bien (%) Bie,m (x)dp-1 (x) = < >< > > < ) >(—1)]E;'+2k- (2.15)
Zyp k k j=0 ]

By Theorem 2.5 and Proposition 2.6, we obtain the following corollary.

Corollary 2.7. For m,n, k € Z. with m + n > 2k, one has

2+ Epim if k=0,

mm=2k /'y +m -2k .
> . (-1YEjiox =4 2« /2k _ (2.16)
j=0 J > (-1)**Epppj  if k> 0.

0\ J
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In the same manner, multiplication of three Bernstein polynomials can be given by the
following relation:

f Bion () i () Bios () dji1 (x)

Ly

n m s\ ntm+s=3k /n +m + s — 3k ) .
i <k> <k> <k> B < j >(_1)] f YA gag)
n m s\ ntm+s=3k /'y +m + s — 3k )
= 1V E.
<k> <k> <k> ];0 < ] >( 1) E]+3k/

where m,n,s, k € Z,withm +n + s > 3k.

Form,n,s, k € Z, with m + n + s > 3k, by the symmetry of Bernstein polynomals, we
see that

f Bie,n () Bie,m (%) Bk s (x) d -1 (x)

Zy

_ n m s\ & [3k _1\3k-j _ \ntmis—j
COEOFCY oo

n m s\ & /3k _1\3k-j n+m+s—j (218)
<k><k><k>]~=0<]‘>( g <2+fsz ]#_1(3{))

2+ Envmss if k=0,

n m S 3k [/ 3k - .
k k k ZO ] (_1) ]En+m+s—j if k> 0.
j=

Therefore, we obtain the following theorem.

Theorem 2.8. For m,n, s, k € Z, with m +n + s > 3k, one has

f B () B () B o (x)dpt1 (x)

Ly

2+ Epimss lf k=0, (2.19)

= n m s\ 3k /3k e '
k k k ZO ] (_1) En+m+s—j lf k> 0.
=

By (2.17) and Theorem 2.8, we obtain the following corollary.
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Corollary 2.9. For m,n,s, k € Z, with m + n+ s > 3k, one has

mmis=3k /' +m + s — 3k .
Z ) (-1)Ejiak
J

j=0

2+ Epemes ifk=0, (2.20)
=4 3k [/ 3k .

Z . (_1)3k7]En+m+s—j lfk > 0.

=0\ ]

Using the above theorems and mathematical induction, we obtain the following
theorem.

Theorem 2.10. Let s € N. For ny,ny,. .., ng, k € Z, withny +ny + - - - + ng > sk, the multiplication
of the sequence of Bernstein polynomials By, (x), ..., Bin, (x) with different degrees under fermionic
p-adic invariant integral on 7, can be given as

2+ Epysnptetn if k=0,
Bk,ni(x)>d,u1 (x) = s n; sk [/ sk .
f zp<l,;[ I D (1) Eppanysin—j if k> 0.
i=1 \ k =0\ j
(2.21)

We also easily see that

s s i ny+--+ngs—sk s — k )
[ <HBk,ni<x>>dy_1<x>= <H<">> > <"1+ o >(_1)]Ei+sk' 222)
Zp \ i=1 i-1 \ k =0 Ji

By Theorem 2.10 and (2.22), we obtain the following corollary.

Corollary 2.11. Let s € N. For ny, ny, ..., ns, k € Z, with ny + ny + - - - + ng > sk, one has

2+ Eppnytotn, Zf k=0,
mitedns=sk fy 4.+ ng — sk .
Z < . > (-1YEjisk = 4 sk /'sk .
j=0 ) Z ) (—1)Sk_]En1+n2+~-~+ns—j lf k> 0.
=0\J

(2.23)
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Let my,...,mg,n1,..., 05,k € Z, with myny + -+ + mgng > (my + --- + m,)k. By the

definition of BZT;S (x), we easily get

[ <1‘[Bzf;,. (x)>dﬂ—1 )
Zp \ i=1

s
-1 Mi

N\ M k>
s nl s i s imi—i
<l_l< > > (_1)kZi:1mz ]I 1 —X)Zi:1 T dyy_ (x)
i=1 k j=0 Zy

N\ kS %
5 /n; 1 k) m; kS5 mi—i 2.24
<H < k> > Z ; 1 e ](2 +Ey: nimi—j) ( )

i=1 j=0 ]
2+ Em1n1+~-~+msns if k= 0,
m; s
= S n; szzl m; k mi . )
T > ; ") DRER B e if k>0,
i=1 \ k =0 i

Therefore, we obtain the following theorem.

Theorem 2.12. Let s € N. For my,...,mg,ny,...,ng, k € L, with myng + -+ -+ mgng > (my +- -+ +
mg)k, one has

[ <]_[B£’f;i(x)>d#1(x)
Zp \ i=1

2+ Emymytmon, if k=0, (2.25)
m; kzq S
= s n; i1 M N .o .
T (K™ ) cop e ey k>0
i=1 \ k j=0 i

By simple calculation, we easily get

s
( (HB;:f;(x)>dﬂ_1<x>
Zp \ i=1
s\ "N\ Sk Sam (e .

- k e .
i=1 j=0 Ji

(2.26)

where my, ..., ms,n1,...,ng,k € Z, for s € N. By Theorem 2.12 and (2.26), we obtain
the following corollary.
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Corollary 2.13. Let s € N. For my, ..., mg, ny,...,0s, k € Zywithming + -+ -+ msng > (my +- -+
mg)k, one has

S S
S mimi=k 35 m; Z nim; — k Z m
Z i=1 i=1

j=0

(1Y Exsz,mej
j

2+ Epynytetmon, if k=0, (2.27)

S
= kZ?:l m; k m; s A
; C =1k Ea MIEss wm-j if k> 0.

j=0 j

The fermionic p-adic invariant integral of multiplication of (n + 1) Bernstein
polynomials, the nth degree Bernstein polynomials B;,(x) with i = 0,1,...,n and with
multiplicity mo, my, ..., my, on Z,, respectively, can be given by

J, <HBZZ(X)>‘1” 1 <H <1:> >le B (1 ) B E Ty ()
» \i=0 i=0 p

(2.28)
(ITE (™)
-t Bstimnstn (0 (3,
< iy im; > ?
where mg, my,...,m, € Z, withn € Z,.
Assume that nmgy + nmy + - -- + nm,, > my + 2my + - - - + nm,. Then one has
n .
[ <1‘[B;ﬁ; (x>> s ()
Zp \ i=0
n
2 + Epmgnmy +-tnmy, if Zimi =0, (2.29)
i=1
_ m; . n
- n n St m im; noa 1
11 > ; CEDER T s s i > im; > 0.
i=0 \ i j=0 j =1

Therefore, we obtain the following theorem.
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Theorem 2.14. Letn € Z,.

(i) For mg,my, ..., my € Z, withn XL m; > >, im;, one has

f <HB;jj;(x)>d,4_1(x)
Zp \ i=0

n
2+ Enmyenmy +-+nm,, if Zimi =0, (2.30)
i=1

m; n n
a n n 2 mi im; n e P
I I . Z ; (_1)Zi:1 i ]EnZi”:nmi—Zi”:l im; Zf Zlmi > 0.
. i=1

i=0 1 =0
J ]

(ii) For mg,my, ..., m, € Z,, one has

n n n i n 3y mi=3, im; S L n' . .
[ (T o= (T1(7) )5 ("&" E™ Jevessm
p

i=0 i=0 \' j=0 j
(2.31)
By Theorem 2.14, we obtain the following corollary.
Corollary 2.15. For n,mo, my, ..., m, € Z,withn >, ym; > 3., im;, one has
n Y, mi—->n, im - -
ICEES T 0N - Y imy -
> g; l ; VY Esy ime
70 j
n
2 + Enmytnmy +-tnmy, if Zimi =0, (2.32)
i=1

_ n
T e im; o s L

Z le (_1)Zi:1 T Ey st st im if Zimi > 0.
7=0 j i=1
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