
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 845390, 8 pages
doi:10.1155/2010/845390

Research Article
Multiplicative Concavity of the Integral of
Multiplicatively Concave Functions

Yu-Ming Chu1 and Xiao-Ming Zhang2

1 Department of Mathematics, Huzhou Teachers College, Huzhou, Zhejiang 313000, China
2 Haining College, Zhejiang TV University, Haining, Zhejiang 314400, China

Correspondence should be addressed to Yu-Ming Chu, chuyuming2005@yahoo.com.cn

Received 25 March 2010; Accepted 7 June 2010

Academic Editor: S. S. Dragomir

Copyright q 2010 Y.-M. Chu and X.-M. Zhang. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We prove that G(x, y) = | ∫xy f(t)dt| is multiplicatively concave on [a, b] × [a, b] if f : [a, b] ⊂
(0,∞) → (0,∞) is continuous and multiplicatively concave.

1. Introduction

For convenience of the readers, we first recall some definitions and notations as follows.

Definition 1.1. Let I ⊆ R be an interval. A real-valued function f : I → R is said to be convex
if

f

(
x + y

2

)
≤ f(x) + f

(
y
)

2
(1.1)

for all x, y ∈ I. And f is called concave if −f is convex.

Definition 1.2. Let I ⊆ (0,∞) be an interval. A real-valued function f : I → (0,∞) is said to
be multiplicatively convex if

f
(√

xy
) ≤

√
f(x)f

(
y
)

(1.2)

for all x, y ∈ I. And f is called multiplicatively concave if 1/f is multiplicatively convex.
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For x = (x1, x2) ∈ R
2
+ = {(x1, x2) : x1 > 0, x2 > 0} and α ≥ 0, we denote

logx =
(
logx1, logx2

)
,

xα =
(
xα
1 , x

α
2

)
,

(1.3)

ex = (ex1 , ex2). (1.4)

For x = (x1, x2), y = (y1, y2) ∈ R
2, we denote

xy =
(
x1y1, x2y2

)
. (1.5)

Definition 1.3. A set E1 ⊆ R
2 is said to be convex if (x + y)/2 ∈ E1 whenever x, y ∈ E1. And a

set E2 ⊆ R
2 is said to be multiplicatively convex if x1/2y1/2 ∈ E2 whenever x, y ∈ E2.

From Definition 1.3 we clearly see that E1 ⊆ R
2
+ is a multiplicatively convex set if and

only if log E1 = {logx : x ∈ E1} is a convex set, and E2 ⊆ R
2 is a convex set if and only if

eE2 = {ex : x ∈ E2} is a multiplicatively convex set.

Definition 1.4. Let E ⊆ R
2 be a convex set. A real-valued function f : E → R is said to be

convex if

f

(
x + y

2

)
≤ f(x) + f

(
y
)

2
(1.6)

for all x, y ∈ E. And f is said to be concave if −f is convex.

Definition 1.5. Let E ⊆ R
2
+ be a multiplicatively convex set. A real-valued function f : E →

(0,∞) is said to be multiplicatively convex if

f
(
x1/2y1/2

)
≤ f1/2(x)f1/2(y

)
(1.7)

for all x, y ∈ E. And f is called multiplicatively concave if 1/f is multiplicatively convex.

From Definitions 1.1 and 1.2, the following Theorem A is obvious.

TheoremA. Suppose that I is a subinterval of (0,∞) and f : I → (0,∞) is multiplicatively convex.
Then

F(x) = log ◦f ◦ exp : log(I) −→ R (1.8)

is convex. Conversely, if J is an interval and F : J → R is convex, then

f = exp ◦F ◦ log : exp(J) −→ (0,∞) (1.9)

is multiplicatively convex.
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Equivalently, f is a multiplicatively convex function if and only if log f(x) is a
convex function of logx. Modulo this characterization, the class of all multiplicatively convex
functions was first considered by Motel [1], in a beautiful paper discussing the analogues of
the notion of convex function in n variables. However, the roots of the research in this area can
be traced long before him. In a long time, the subject of multiplicative convexity seems to be
even forgotten, which is a pity because of its richness. Recently, the multiplicative convexity
has been the subject of intensive research. In particular, many remarkable inequalities were
found via the approach of multiplicative convexity (see [2–18]).

The main purpose of this paper is to prove Theorem 1.6.

Theorem 1.6. If f : [a, b] ⊂ (0,∞) → (0,∞) is continuous and multiplicatively concave, then
G(x, y) = | ∫yx f(t)dt| is multiplicatively concave on [a, b] × [a, b].

2. Lemmas and the Proof of Theorem 1.6

For the sake of readability, we first introduce and establish several lemmas which will be used
to predigest the proof of Theorem 1.6.

Lemma 2.1 can be derived from Definitions 1.4 and 1.5.

Lemma 2.1. If E1 ⊂ R
2
+ is a multiplicatively convex set, and f : E1 → (0,∞) is multiplicatively

convex (or concave, resp.), then F(x) = log f(ex) is convex (or concave, resp.) on log E1 = {log x :
x ∈ E1}. Conversely, if E2 ⊂ R

2 is a convex set, and F : E2 → R is convex (or concave, resp.), then
f(x) = eF(log x) is multiplicatively convex (or concave, resp.) on eE2 = {ex : x ∈ E2}.

Lemma 2.2 (see [19]). If E ⊂ R
2 is a convex set, and f : E → R is second-order differentiable, then

f is convex (or concave, resp.) if and only if L(x) is a positive (or negative, resp.) semidefinite matrix
for all x = (x1, x2) ∈ E. Here

L(x) =
(
f ′′
11 f ′′

12
f ′′
21 f ′′

22

)
, (2.1)

and f ′′
ij = ∂2f(x1, x2)/∂xi∂xj , i, j = 1, 2.

Making use of Lemmas 2.1 and 2.2 we get the following Lemma 2.3.

Lemma 2.3. If E ⊂ R
2
+ is a multiplicatively convex set, and f : E → (0,∞) is second-order

differentiable, then f is multiplicatively convex (or concave, resp.) if and only if J(x) is a positive
(or negative, resp.) semidefinite matrix for all x = (x1, x2) ∈ E. Here

J(x) =

⎛

⎜⎜
⎝

ff ′′
11 +

f

x1
f ′
1 − f

′2
1 ff ′′

12 − f ′
1f

′
2

ff ′′
21 − f ′

1f
′
2 ff ′′

22 +
f

x2
f ′
2 − f

′2
2

⎞

⎟⎟
⎠, (2.2)

f ′′
ij = ∂f(x1, x2)/∂xi∂xj , and f ′

i = ∂f(x1, x2)/∂xi, i, j = 1, 2.

Lemma 2.4 (see [2]). If I ⊂ (0,∞) is an interval and f : I → (0,∞) is differentiable, then f is
multiplicatively convex (or concave, resp.) if and only if xf ′(x)/f(x) is increasing (or decreasing,
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resp.) on I. If moreover f is second-order differentiable, then f is multiplicaively convex (or concave,
resp.) if and only if

x
[
f(x)f ′′(x) − f

′2(x)
]
+ f(x)f ′(x) ≥ (or ≤, resp.)0 (2.3)

for all x ∈ I.

Lemma 2.5. Suppose that f : [a, b] ⊂ (0,∞) → (0,∞) is a second-order differentiable
multiplicatively concave function. If g(x) =

∫x
a f(t)dt, then g is also multiplicatively concave on

[a, b].

Proof. For x ∈ [a, b], from the expression of g(x) we get

x
[
g(x)g ′′(x) − g ′2(x)

]
+ g(x)g ′(x) =

[
xf ′(x) + f(x)

]
∫x

a

f(t)dt − xf2(x). (2.4)

According to Lemma 2.4, to prove that g(x) is multiplicatively concave on [a, b], it is
sufficient to prove that

[
xf ′(x) + f(x)

]
∫x

a

f(t)dt − xf2(x) ≤ 0 (2.5)

for all x ∈ [a, b].
Next, set

E =
{
x ∈ [a, b] : xf ′(x) + f(x) ≤ 0

}

=
{
x ∈ [a, b] :

xf ′(x)
f(x)

≤ −1
}
.

(2.6)

From Lemma 2.4 we know that xf ′(x)/f(x) is decreasing; the following three cases
will complete the proof of inequality (2.5).

Case 1. a ∈ E. Then E = [a, b], and xf ′(x) + f(x) ≤ 0 for all x ∈ [a, b]; hence (2.5) is true for
all x ∈ [a, b].

Case 2. b /∈E. Then E = φ, that is, xf ′(x) + f(x) > 0 for all x ∈ [a, b].
Let

h(x) =
∫x

a

f(t)dt − xf2(x)
xf ′(x) + f(x)

. (2.7)
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Then from the multiplicative concavity of f we clearly see that

h′(x) = xf(x)
x
[
f(x)f ′′(x) − f ′2(x)

]
+ f(x)f ′(x)

[
xf ′(x) + f(x)

]2 ≤ 0 (2.8)

for all x ∈ [a, b].
From (2.7) and (2.8) we get

h(x) ≤ h(a) = − af2(a)
af ′(a) + f(a)

≤ 0 (2.9)

for all x ∈ [a, b]. Therefore, inequality (2.5) follows from (2.7) and (2.9).

Case 3. a/∈E and b ∈ E. Then there exists a unique x0 ∈ (a, b] such that E = [x0, b] and
xf ′(x) + f(x) > 0 for x ∈ [a, x0). Making use of the similar argument as in Case 2 we know
that inequality (2.5) holds for x ∈ [a, x0); this result and E = [x0, b] imply that (2.5) holds for
all x ∈ [a, b].

Lemma 2.6. If f : [a, b] ⊂ (0,∞) → (0,∞) is a second-order differentiable multiplicatively concave
function, then

(
f(a) + af ′(a)

)(
f(b) + bf ′(b)

)
∫b

a

f(t)dt ≤ bf2(b)
(
f(a) + af ′(a)

) − af2(a)
(
f(b) + bf ′(b)

)
.

(2.10)

Proof. We divide the proof into five cases.

Case 1. f(a) + af ′(a) = 0. Then from Lemma 2.4 we know that xf ′(x)/f(x) is decreasing on
[a, b]; hence we get f(b) + bf ′(b) ≤ 0. It is obvious that inequality (2.10) holds in this case.

Case 2. f(b) + bf ′(b) = 0. Then (2.10) follows from f(a) + af ′(a) ≥ 0.

Case 3. f(a) + af ′(a) < 0. Then f(x) + xf ′(x) < 0 for all x ∈ [a, b]. From (2.7) and (2.8)we get

h(b) =
∫b

a

f(t)dt − bf2(b)
bf ′(b) + f(b)

≤ − af2(a)
af ′(a) + f(a)

= h(a). (2.11)

Therefore, inequality (2.10) follows from inequality (2.11) and f(x) + xf ′(x) < 0.

Case 4. f(b) + bf ′(b) > 0. Then f(x) + xf ′(x) > 0 for all x ∈ [a, b]; hence inequality (2.10)
follows from (2.11) and f(x) + xf ′(x) > 0.

Case 5. f(a) + af ′(a) > 0, f(b) + bf ′(b) < 0. Then we clearly see that (2.10) is true.

Lemma 2.7. If f : [a, b] ⊂ (0,∞) → (0,∞) is a second-order differentiable multiplicatively concave
function, then G(x, y) = | ∫yx f(t)dt| is multiplicatively concave on [a, b] × [a, b].
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Proof. For (x, y) ∈ [a, b]×[a, b], without loss of generality, we assume that y ≤ x. Then simple
computations lead to

GG′′
11 +

G

x
G′

1 −G
′2
1 = f ′(x)

∫x

y

f(t)dt +
f(x)
x

∫x

y

f(t)dt − f2(x), (2.12)

GG′′
22 +

G

y
G′

2 −G
′2
2 = −f ′(y

)
∫x

y

f(t)dt − f
(
y
)

y

∫x

y

f(t)dt − f2(y
)
, (2.13)

GG′′
12 −G′

1G
′
2 = GG′′

21 −G′
1G

′
2 = f(x)f

(
y
)
. (2.14)

From Lemma 2.5 we know that F(x) =
∫x
y f(t)dt is multiplicatively concave; then

Lemma 2.4 leads to

x
[
F(x)F ′′(x) − F

′2(x)
]
+ F(x)F ′(x) =

[
xf ′(x) + f(x)

]
∫x

y

f(t)dt − xf2(x) ≤ 0. (2.15)

Combining (2.12) and (2.15)we get

GG′′
11 +

G

x
G′

1 −G
′2
1 ≤ 0. (2.16)

Equations (2.12)–(2.14) and Lemma 2.6 yield

(
GG′′

11 +
G

x
G′

1 −G
′2
1

)(
GG′′

22 +
G

y
G′

2 −G
′2
2

)
− (

GG′′
12 −G′

1G
′
2
) × (

GG′′
21 −G′

2G
′
1

)

=

∫x
y f(t)dt

xy

[

xf2(x)
(
f
(
y
)
+ yf ′(y

)) − yf2(y
)(
f(x) + xf ′(x)

)

−(f(x) + xf ′(x)
)(
f
(
y
)
+ yf ′(y

))
∫x

y

f(t)dt

]

≥ 0.

(2.17)

Therefore, Lemma 2.7 follows from (2.16) and (2.17) together with Lemma 2.3.

Lemma 2.8 (see [20]). For each continuous convex function f : [a, b] → R, there exists a sequence
of infinitely differentiable convex functions fn : [a, b] → R, n = 1, 2, 3, . . ., such that {fn} converges
uniformly to f on [a, b].

From Definitions 1.1 and 1.2, Theorem A, and Lemma 2.8 we can get Lemma 2.9
immediately.

Lemma 2.9. For each continuous multiplicatively convex (or concave, resp.) function f : [a, b] ⊆
(0,∞) → (0,∞), there exists a sequence of infinitely differentiable multiplicatively convex (or
concave, resp.) functions fn : [a, b] → (0,∞), n = 1, 2, 3, . . ., such that {fn} converges uniformly
to f on [a, b].
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Proof of Theorem 1.6. Since f : [a, b] ⊆ (0,∞) → (0,∞) is a continuous multiplicatively
concave function, from Lemma 2.9 we know that there exists a sequence of infinitely
differentiable multiplicatively concave function fn : [a, b] → (0,∞), n = 1, 2, 3, . . ., such
that {fn} converges uniformly to f on [a, b].

For (x, y) ∈ [a, b] × [a, b], taking Gn(x, y) = | ∫yx fn(t)dt|, n = 1, 2, 3, . . ., then by
Lemma 2.7 we clearly see that Gn(x, y) is multiplicatively concave on [a, b] × [a, b] and

lim
n→∞

Gn

(
x, y

)
=
∣
∣
∣
∣

∫y

x

f(t)dt
∣
∣
∣
∣ = G

(
x, y

)
. (2.18)

Therefore, Theorem 1.6 follows from Definition 1.5 and (2.18).
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