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We give a new proof for power-type weighted Hardy inequality in the norms of generalized
Lebesgue spaces Lp(·)(Rn). Assuming the logarithmic conditions of regularity in a neighborhood
of zero and at infinity for the exponents p(x) ≤ q(x), β(x), necessary and sufficient conditions are
proved for the boundedness of the Hardy operator Hf(x) =

∫
|y|≤|x| f(y)dy from L

p(·)
|x|β(·) (R

n) into

L
q(·)
|x|β(·)−n/p′(·)−n/q(·)

(RN). Also a separate statement on the exactness of logarithmic conditions at zero

and at infinity is given. This shows that logarithmic regularity conditions for the functions β, p at
the origin and infinity are essentially one.

1. Introduction

The object of this investigation is the Hardy-type weighted inequality

∥∥∥|x|β(·)−n/p′(·)−n/q(·)Hf
∥∥∥
Lq(·)(Rn)

≤ C
∥∥∥|x|β(·)f

∥∥∥
Lp(·)(Rn)

, Hf(x) =
∫

|y|≤|x|
f
(
y
)
dy (1.1)

in the norms of generalized Lebesgue spaces Lp(·)(Rn). This subject was investigated in the
papers [1–7]. For the one-dimensional Hardy operator in [1], the necessary and sufficient
condition was obtained for the exponents β, p, q. We give a new proof for this result in
more general settings for the multidimensional Hardy operator. Also we prove that the
logarithmic regularity conditions are essential one for such kind of inequalities to hold. In
that proposal, we improve a result sort of [8] (since, there is an estimation by the maximal
function |x|−nHf(x) ≤ CMf(x)).
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At the beginning, a one-dimensional Hardy inequality was considered assuming the
the local log condition at the finite interval [0, l]. Subsequently, the logarithmic condition
was assumed in an arbitrarily small neighborhood of zero, where an additional restriction
p(x) ≥ p(0)was imposed on the exponent. In [3, 9] it was shown that it is sufficient to assume
the logarithmic condition only at the zero point. In [10] the case of an entire semiaxis was
considered without using the condition p(x) ≥ p(0). However, a more rigid condition β+ <
1 − 1/p− was introduced for a range of exponents. The exact condition was found in [1].
They proved this result by using of interpolation approaches. In this paper, we use other
approaches, analogous to those in [10], based on the property of triangles for p(x)-norms and
binary decomposition near the origin and infinity. We consider the multidimensional case,
and the condition β(x) = const is not obligatory, while the necessary and sufficient condition
is obtained by a set of exponents p, q, βwithout imposing any preliminary restrictions on their
values (Theorems 3.1 and 3.2). In Theorem 3.3, it has been proved that logarithmic conditions
at zero and at infinity are exact for the Hardy inequality to be valid in the case q = p.

Problems of the boundedness of classical integral operators such as maximal and
singular operators, the Riesz potential, and others in Lebesgue spaces with variable exponent,
as well as the investigation of problems of regularity of nonlinear equationswith nonstandard
growth condition have become of late the arena of an intensive attack of many authors (see
[11–18]).

2. Lebesgue Spaces with a Variable Exponent

As to the basic properties of spaces Lp(·), we refer to [19]. Throughout this paper, it is assumed
that p(x) is a measurable function in Ω, where Ω ∈ R

n is an open domain, taking its values
from the interval [1,∞)with p+ = supx∈Rnp < ∞. The space of functions Lp(·)(Ω) is introduced
as the class of measurable functions f(x) in Ω, which have a finite Ip(f) :=

∫
Ω |f(x)|p(x)dx-

modular. A norm in Lp(·)(Ω) is given in the form

∥∥f
∥∥
Lp(·)(Ω) = inf

{
λ > 0 : Ip

(
f

λ

)
≤ 1

}
. (2.1)

For p− > 1, p+ < ∞ the space Lp(·)(Ω) is a reflexive Banach space.
Denote by Λ a class of measurable functions f : Rn → R satisfying the following

conditions:

∃m ∈
(
0,

1
2

)
, ∃f(0) ∈ R, sup

x∈B(0,m)

∣∣f(x) − f(0)
∣∣ ln

1
|x| < ∞, (2.2)

∃M > 1, ∃f(∞) ∈ R, sup
x∈Rn\B(0,M)

∣∣f(x) − f(∞)
∣∣ ln|x| < ∞. (2.3)

For the exponential functions β(x), p(x), and q(x), we further assume β, p, q ∈ Λ.
We will many times use the following statement in the proof of main results.
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Lemma 2.1. Let s ∈ Λ be a measurable function such that −∞ < s−, s+ < ∞. Then the condition
(2.2) for the function s(x) is equivalent to the estimate

C−1
3 |x|s(0) ≤ |x|s(x) ≤ C3|x|s(0) (2.4)

when |x| ≤ m and the condition (2.3) for s(x) is equivalent to the estimate

C−1
4 |x|s(∞) ≤ |x|s(x) ≤ C4|x|s(∞) (2.5)

when |x| ≥ M. Where the constants C3, C4 > 1 depend on s(0), s(∞), s−, s+, s(0), s(∞),m,M, C1,
C2.

To prove Lemma 2.1, for example (2.4), it suffices to rewrite the inequality (2.4) in the
form

C−1
3 ≤ |x|s(x)−s(0) ≤ C3 (2.6)

and pass to logarithmic in this inequality (see also, [1, 7, 17]).
For 1 < p < ∞, p′ denotes the conjugate number of p, p′ = p/(p − 1). It is further

assumed that p′ = ∞ for p = 1, and p′ = 1 for p = ∞, 1/∞ = 0, 1/0 = ∞. We denote by C,C1, C2

various positive constants whose values may vary at each appearance. B(x, r) denotes a ball
with center at x and radius r > 0. We write u ∼ v if there exist positive constants C3, C4 such
that C3u(x) ≤ v(x) ≤ C4u(x). By χE, we denote the characteristic function of the set E.

3. The Main Results

The main results of the paper are contained in the next statements. The theorem below gives
a solution of the two-weighted problem for the multidimensional Hardy operator in the case
of power-type weights.

Theorem 3.1. Let q(x) ≥ p(x) and β(x) be measurable functions taken from the class Λ. Let the
following conditions be fulfilled:

0 < p− ≤ p(x), q(x) ≤ q+ < ∞, −∞ < β− ≤ β(x) ≤ β+ < ∞. (3.1)

Then the inequality (1.1) for any positive measurable function f is fulfilled if and only if

p(0) > 1, p(∞) > 1, β(0) < n

(
1 − 1

p(0)

)
, β(∞) < n

(
1 − 1

p(∞)

)
. (3.2)

We have the following analogous result for the conjugate Hardy operator Hf(x) =∫
|y|≥|x| f(y)dy.
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Theorem 3.2. Let q(x) ≥ p(x) and β(x) be measurable functions taken from the class Λ. Let the
conditions (3.1) be fulfilled. Then the inequality (1.1) for any positive measurable function f and
operator Hf is fulfilled if and only if

p(0) > 1, p(∞) > 1, β(0) > n

(
1 − 1

p(0)

)
, β(∞) > n

(
1 − 1

p(∞)

)
. (3.3)

In the next theorem, we prove that the logarithmic conditions near zero and at infinity
are essentially one.

Theorem 3.3. If condition (2.2) or (2.3) does not hold, then there exists an example of functions p, β,
and a sequence f below index k violating the inequality

∥
∥
∥|x|β(·)−nHf

∥
∥
∥
Lp(·)(Rn)

≤ C
∥
∥
∥|x|β(·)f

∥
∥
∥
Lp(·)(Rn)

. (3.4)

4. Proofs of the Main Results

Proof of Theorem 3.1.

Sufficiency. Let f(x) ≥ 0 be a measurable function such that

∥∥∥|x|β(·)f
∥∥∥
Lp(·)(Rn)

≤ 1. (4.1)

We will prove that

∥∥∥|x|β(·)−n/p′(·)−n/q(·)Hf
∥∥∥
Lq(·)(Rn)

≤ C5. (4.2)

Assume that 0 < δ < m is a sufficiently small number such that n/p′(x) > n/p′(0) − ε
for all x ∈ B(0, δ), where ε = (n/p′(0)−β(0))/2. Let, furthermore,M < N < ∞ be a sufficiently
large number such that n/p′(x) > n/p′(∞)−δ1 for all x ∈ R

n \B(0,N), where δ1 = (n/p′(∞)−
β(∞))/2.

By Minkowski inequality, for p(x)-norms, we have

∥∥∥|x|β(·)−n/p′(·)−n/q(·)Hf
∥∥∥
Lq(·)(Rn)

≤
∥∥∥|x|β(·)−n/p′(·)−n/q(·)Hf

∥∥∥
Lq(·)(B(0,δ))

+
∥∥∥|x|β(·)−n/p′(·)−n/q(·)Hf

∥∥∥
Lq(·)(B(0,N)\B(0,δ))

+

∥∥∥∥∥
|x|β(·)−n/p′(·)−n/q(·)

∫

{t:|t|<N}
f(t)dt

∥∥∥∥∥
Lq(·)(Rn\B(0,N))

+

∥∥∥∥∥
|x|β(·)−n/p′(·)−n/q(·)

∫

{t:N<|t|<|x|}
f(t)dt

∥∥∥∥∥
Lq(·)(RN\B(0,N))

:= i1 + i2 + i3 + i4.

(4.3)
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The estimate near zero (i1).
By Minkowski inequality, we have the inequalities

i1 ≤
∥
∥
∥
∥
∥
|x|β(·)−n/p′(·)−n/q(·)

∞∑

k=0

∫ ∫

{t:2−k−1|x|<|t|<2−k |x|}
f(t)dt

∥
∥
∥
∥
∥
Lq(·)(B(0,δ)

≤
∞∑

k=0

∥
∥
∥∥
∥
|x|β(·)−n/p′(·)−n/q(·)

∫

{t:2−k−1|x|<|t|<2−k |x|}
f(t)dt

∥
∥
∥∥
∥
Lq(·)(B(0,δ))

.

(4.4)

Denote Bx,k = {y ∈ R
n : 2−k−1|x| < |y| < 2−k|x|} and p−

x,k
= min(p(x), infy∈Bx,kp(y)).

By (2.2) and Lemma 2.1, for x ∈ B(0, δ), t ∈ Bx,k, we have |x|β(x) ∼ 2kβ(0)tβ(t). To prove this
equivalence, we use that |t| ∼ |x|2−k, |x|β(x) ∼ |x|β(0) and |t|β(t) ∼ |t|β(0). Therefore, and due to
Holder’s inequality, for x ∈ B(0, δ), we get

|x|β(x)−n/p′(x)−n/q(x)
∫

Bx,k

f(t)dt

≤ C62kβ(0)|x|−n/p
′(x)−n/q(x)

∫

Bx,k

|t|β(t)f(t)dt

≤ C62kβ(0)|x|−n/p
′(0)−n/q(x)

(∫

Bx,k

(
|t|β(t)f(t)

)p−
x,k
dt

)1/p−
x,k(

2−k|x|
)n/(p−

x,k
)′

.

(4.5)

(a) If p−
x,k /= p(x), then by (2.2) and Lemma 2.1,

(
2−k|x|

)n/(p−
x,k

)′ ∼ tn/p
′(t) ∼ tn/p

′(0) ∼ 2−kn/p
′(0)|x|n/p′(0) ∼ 2−kn/p

′(0)|x|n/p′(x). (4.6)

Demonstrate details in proof of (4.6). For t ∈ Bx,k and x ∈ B(0, δ), we have 2−k−1|x| <
|t| ≤ 2−k|x|. Then

(
2−k|x|

)n/(p−
x,k

)′ ∼ |t|n/(p−x,k)′ . (4.7)

By hypothesis (a), p−
x,k

attains in the interval Bx,k, because there exists a point y ∈ Bx,k where

p−x,k ∼ p(y). Obviously, the point y depends on x, k. Then |t|n/(p−x,k)′ ∼ |t|n/p′(y). By virtue of

2−k−1|x| < |y| ≤ 2−k−1|x|, we have |t|/2 < |y| ≤ 2|t|. Hence, |t|n/p′(y) ∼ |y|n/p′(y), by Lemma 2.1,
|y|n/p′(y) ∼ |y|n/p′(0) ∼ |t|n/p′(0).

(b) If p−
x,k

= p(x), then by choice of δ,

(
2−k|x|

)n/(p−
x,k

)′ ∼ 2−kn/p
′(x)|x|n/p′(x) ≤ 2−kn/p

′(0)+εk|x|n/p′(x); x ∈ B(0, δ). (4.8)
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Applying estimate (4.8) to both hypotheses (a) and (b), by choosing of ε and δ, the right-hand
part of (4.5) is less than

C7|x|−n/q(x)2−kε
(∫

Bx,k

(
|t|β(t)f(t)

)p−
x,k
dt

)1/p−
x,k

. (4.9)

Simultaneously,

∫

Bx,k

(
|t|β(t)f(t)

)p−
x,k
dt

≤
∫

Bx,k∩{t∈Rn:|t|β(t)f(t)≥1}

(
|t|β(t)f(t)

)p(t)
dt +

∫

Bx,k

dt ≤ 1 + 2−knδn = C8.

(4.9′)

By (4.5) and (4.9′), we have

Iq;B(0,δ)

(

|x|β(·)−n/p′(·)−n/q(·)
∫

Bx,k

f(t)dt

)

≤ C92−kεq
−
∫

B(0,δ)
|x|−n

(∫

Bx,k

(
|t|β(t)f(t)

)p−
x,k
dt

)q(x)/p−
x,k

dx

≤ C9C
q+/p−−1
8 2−kεq

−
∫

B(0,δ)

(∫

Bx,k

((
|t|β(t)f(t)

)p(t)
+ 1

)
dt

)

|x|−ndx

(4.10)

which, due to Fubini’s theorem, yields

≤ C9C
q+/p−−1
8 2−kεq

−
∫

{t:|t|<2−kδ}

(
f(t)|t|β(t)

)p(t)
(∫

B(0,2k+1|t|)\B(0,2k |t|)
|x|−ndx

)

dt

= C102−kεq
−
ln 2

∫

{t:|t|<2−kδ}

((
f(t)|t|β(t)

)p(t)
+ 1

)
dt ≤ C112−kεq

−
.

(4.11)

Therefore,

∥∥∥∥∥
|x|β(·)−n/p′(·)−n/q(·)

∫

Bx,k

f(t)dt

∥∥∥∥∥
Lq(·)(B(0,δ))

≤ C122−kεq
−/q+ . (4.12)

By (4.12) and (4.4), we get

i1 ≤ C12

∞∑

k=0

2−kεq
−/q+ = C13 < ∞. (4.13)

The estimate at infinity (i4).
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Put fN(t) = f(t)χ|t|>N . Analogously to the case of (4.4), we have

i4 ≤
∞∑

k=0

∥
∥
∥
∥
∥
|x|β(·)−n/p′(·)−n/q(·)

∫

{t:2−k−1|x|<|t|<2−k |x|}
fN(t)dt

∥
∥
∥
∥
∥
Lq(·)(Rn\B(0,N))

. (4.14)

By |t| ∼ |x|2−k, condition (2.3) and Lemma 2.1 for x ∈ R
n \ B(0,N), t ∈ Bx,k, we have

|x|β(x) ∼ |x|β(∞) ∼ 2kβ(∞)tβ(∞) ∼ 2kβ(∞)tβ(t). (4.15)

Therefore, by virtue of Holder’s inequality,

|x|β(x)−n/p′(x)−n/q(x)
∫

Bx,k

fN(t)dt

≤ C142kβ(∞)|x|−n/p′(x)−n/q(x)
∫

Bx,k

|t|β(t)fN(t)dt

≤ C142kβ(∞)|x|−n/p′(x)−n/q(x)
(∫

Bx,k

(
|t|β(t)fN(t)

)p−
x,k
dt

)1/p−
x,k(

2−k|x|
)n/(p−

x,k
)′

.

(4.16)

(i) If p−x,k /= p(x) and t ∈ Bx,k, by (2.3) and Lemma 2.1, we have

(
2−k|x|

)n/(p−
x,k

)′ ∼ tn/p
′(t) ∼ tn/p

′(∞) ∼ 2−kn/p
′(∞)|x|n/p′(∞) ∼ 2−kn/p

′(∞)|x|n/p′(x). (4.17)

(ii) If p−x,k = p(x), then by choice of δ1,

(
2−k|x|

)n/(p−
x,k

)′ ∼ 2−kn/p
′(x)|x|n/p′(x) ≤ 2−kn/p

′(∞)+δ1k|x|n/p′(x). (4.18)

In both hypotheses (i) and (ii) by choosing of δ1, we have

|x|β(x)−n/p′(x)−n/q(x)
∫

Bx,k

fN(t)dt ≤ C15|x|−n/q(x)2−kδ1
(∫

Bx,k

(
|t|β(t)fN(t)

)p−
x,k
dt

)1/p−
x,k

. (4.19)

On the other hand,

∫

Bx,k

(
|t|β(t)f(t)

)p−
x,k
dt ≤

∫

Bx,k∩{t∈Rn:|t|β(t)f(t)≥G(t)}

(
|t|β(t)f(t)
G(t)

)p−
x,k

G(t)p
−
x,kdt +

∫

Bx,k

G(t)p
−
dt,

(4.20)
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where G(t) = 1/(1 + t2). Hence,

≤
∫

Bx,k

(
fN(t)|t|β(t)

)p(t)
G(t)p

−
x,k

−p(t) +
∫

Bx,k

G(t)dt. (4.21)

By (2.3), for t ∈ Bx,k, we have

G(t)p
−
x,k

−p(t) ≤
(
1 + t2

)p(t)−p−
x,k ≤ C16. (4.22)

Then (4.21) implies

∫

Bx,k

(
|t|β(t)fN(t)

)p−
x,k
dt ≤ C17. (4.23)

Therefore,

Iq;Rn\B(0,N)

(

|x|β(x)−n/p′(x)−n/q(x)
∫

Bx,k

fN(t)dt

)

≤ C
q+/p−

17 2−kδ1q
−
∫

Rn\B(0,N)
|x|−n

(∫

Bx,k

(
|t|β(t)fN(t)

)p(t)
dt

)

dx,

(4.24)

by Fubini’s theorem,

≤ C
q+/p−−1
17 2−kδ1q

−
ln 2

∫

{t:|t|>2−kN}

(
fN(t)|t|β(t)

)p(t)
dt ≤ C182−kδ1q

−
. (4.25)

From (4.25) and expansion (4.14), we get

i4 ≤ C18

∞∑

k=0

2−kq
−δ1/q+ = C19. (4.26)

The estimate in the middle (i2, i3).
We have

i2=

∥∥∥∥∥
|x|β(·)−n/p′(·)−n/q(·)

∫

{t∈Rn:|t|<|x|}
f(t)dt

∥∥∥∥∥
Lq(·)(B(0,N)\B(0,δ))

≤
(∫

B(0,N)
f(t)dt

)∥∥∥|x|β(·)−n/p′(·)−n/q(·)
∥∥∥
Lq(·)(B(0,N)\B(0,δ))

≤ C20

∫

B(0,N)
f(t)dt,

(4.27)
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from which, by virtue of Holder’s inequality, for p(x)-norms, we obtain the estimate

∫

B(0,N)
f(t)dt ≤

∥
∥
∥|t|β(·)f(t)

∥
∥
∥
Lp(·)(B(0,N))

∥
∥
∥|t|−β(·)

∥
∥
∥
Lp′(·)(B(0,N)

. (4.27′)

Using t−β(t)p
′(t) ∼ t−β(0)p

′(0) by Lemma 2.1 for t ∈ B(0,N) and taking the condition β(0) <
n/p′(0) into account, we find

Ip′;B(0,N)

(
|t|−β(·)

)
=
∫

B(0,N)
|t|−β(t)p′(t)dt ≤ C21

∫

B(0,N)
|t|−β(0)p′(0)dt = C22. (4.28)

From (4.27′) and (4.28), it follows that

i2 ≤ C23. (4.29)

Furthermore, we have

i3 ≤
(∫

B(0,N)
f(t)dt

)∥∥∥|x|β(x)−n/p′(x)−n/q(x)
∥∥∥
Lq(·)(Rn\B(0,δ))

. (4.30)

The boundedness of the first term follows by (4.27′). Due to (2.3) and Lemma 2.1, for x ∈
R

n \ B(0,N), we have

|x|(β(x)−n/p′(x))q(x)−n ∼ |x|(β(∞)−n/p′(∞))q(x)−n. (4.31)

Applying condition (4.31), we get

Iq;Rn/B(0,N)

(
|x|β(·)−n/p′(·)−n/q(·)

)
≤ C24

∫

Rn\B(0,N)
|x|−n−2δ1dx = C25. (4.32)

Then

i3 ≤ C
1/p−

25 . (4.33)

Necessity. Let β(0) > n/p′(0). Fix a sufficiently large τ > 0 and apply inequality (1.1) by the
test function

fτ(t) = t−n/p(t)−β(t)χB(0,δ/τ)\B(0,δ/2τ)(t). (4.34)
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We come to a contradiction

Ip
(
|t|β(·)fτ

)
=
∫

B(0,δ/τ)\B(0,δ/(2τ))
|x|−ndx = C0 ln 2 < ∞,

Iq

(

|t|β(·)−n/p′(·)−n/q(·)
∫

B(0,t)
fτ
(
y
)
dy

)

≥
∫

B(0,1)\B(0,δ/τ)
|t|(β(t)−n/p′(t)−n/q(t))q(t)

(∫

B(0,δ/τ)\B(0,δ/(2τ))

∣
∣y

∣
∣−n/p(0)−β(0)dy

)q(t)

dt

≥
(

δ

2τ

)(n/p′(0)−β(0))q− ∫

B(0,1)\B(0,δ/τ)
|t|(β(0)−n/p′(0))q(t)−ndt −→ ∞

(4.35)

as τ → ∞.
If 0 < p(0) ≤ 1, then by virtue of inequalities (4.35) and (3.2)we obtain

Iq

(

|t|β(t)−n/p′(t)−n/q(t)
∫

B(0,t)
fτ
(
y
)
dy

)

−→ ∞, as τ −→ ∞. (4.36)

Also,

Ip
(
|t|β(t)fτ(t)

)
= C0 ln 2, (4.37)

and we come to a contradiction.
If β(∞) ≥ n/p′(∞), then, using condition (2.3) and Lemma 2.1 assuming 0 < τ < 1, we

again obtain

Ip
(
|t|β(t)fτ(t)

)
= C0 ln 2,

Iq

(

|t|β(t)−n/p′(t)−n/q(t)
∫

B(0,t)
fτ(t)dy

)

≥
∫

Rn\B(0,δ/τ)
|t|(β(t)−n/p′(t))q(t)−n

(∫

B(0,δ/τ)\B(0,δ/(2τ))

∣∣y
∣∣−n/p(∞)−β(∞)

dy

)

dt

≥
(

δ

2τ

)(n/p′(∞)−β(∞))q+ ∫

Rn\B(0,δ/τ)
|t|(β(∞)−n/p′(∞))q(t)−ndt −→ ∞

(4.38)



Journal of Inequalities and Applications 11

as τ → ∞. If β(∞) = n/p′(∞), then from (4.38)we have

Iq

(

|t|β(t)−n/p′(t)−n/q(t)
∫

B(0,t)
fτ(t)dy

)

= ∞. (4.39)

From (4.38) and (3.2), we derive, as above, the necessity of the condition p(∞) > 1.
This completes the proof of Theorem 3.1.

The proof of Theorem 3.2 easily follows from Theorem 3.1 by using the equivalence of
inequalities

∥
∥∥|x|β(x)−n/p′(x)−n/q(x)Hf(x)

∥
∥∥
Lq(·)(Rn)

≤ C
∥
∥∥|x|β(x)f(x)

∥
∥∥
Lp(·)(Rn)

,

∥∥∥∥|z|n−
β(z)−2n/q(z)

Hf(x)
∥∥∥∥
Lq(·)(Rn)

≤ C
∥∥∥|z|−β(z)−2n/p(z)f(z)

∥∥∥
Lp(·)(Rn)

,

(4.40)

where p(x), q(x), and β(x) stand for the functions p(x/|x|2), q(x/|x|2), and β(x/|x|2),
respectively. The equivalence readily follows from the equality

∥∥g
∥∥
Lp(·)(Rn) =

∥∥∥|z|−2n/p(z)g
∥∥∥
Lp(·)(Rn)

(4.41)

for any function g : Rn → R, where g(z) = g(z/|z|2), which easily can be proved by changing
of variable x = z/|z|2 in the definition of p(x)-norm.

5. Exactness of the Logarithmic Conditions

Proof of Theorem 3.3. Assume δk = 1/4k, k ∈ N, fk(x) = |x|−n/p(x)−β(x)χB(0,2δk)\B(0,δk)(x), and
β(x) = β0. Define the function p : (0,∞) → (1,∞) as

p(x) =

⎧
⎨

⎩

p0, x ∈ B(0, 2δk) \ B(0, δk),
pk, x ∈ B(0, 4δk) \ B(0, 2δk), k ∈ N

(5.1)

where p0 > 1, pk = p0 + αk, β0 ∈ R, and {αk} is an arbitrary sequence of positive numbers
satisfying the condition

kαk −→ ∞ as k −→ ∞. (5.2)
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Then αk ln(1/δk) → ∞, and condition (2.2) does not hold for the function p(x). Since

Ip
(
|x|β(x)fk(x)

)
=
∫

B(0,2δk)\B(0,δk)

(
|t|β0 · |t|−n/p0−β0

)p0
dt

=
∫

B(0,2δk)\B(0,δk)
|t|−ndt = C0

∫2δk

δk

dt

t
= ωn−1 ln 2,

Ip
(
H
(
|·|β(·)−nfk(·)

))
≥
∫

B(0,4δk)\B(0,2δk)

(∫

B(0,2δk)\B(0,δk)
|t|−n/p(t)−β0dt

)pk

|x|(β0−n)pkdx

≥ C

∫

B(0,3δk)\B(0,2δk)
δk

(n−n/p0−β0)pk |x|(β0−n)(p0+αk)dx

≥ Cδ
−nαk/p0
k

= e(nαk/p0) ln(1/δk) −→ ∞

(5.3)

as k → ∞, we see that this contradicts inequality (3.4).
The given function fk(x) and the exponential functions p(x) and β(x) are also suitable

for proving the necessity of condition (2.3) for the function p. For this we define the numbers
δk from the equality δk = 4k, k ∈ N. Let fk(x) = |x|−n/p(x)−βχB(0,2δk)\B(0,δk)(x), β(x) = β∞, and
x ∈ R

n. We define the function p as

p(x) =

⎧
⎨

⎩

p∞, x ∈ B(0, 2δk) \ B(0, δk),
pk, x ∈ B(0, 4δk) \ B(0, 2δk), k ∈ N

(5.4)

where p∞ > 1, β∞ ∈ R, pk = p∞ − αk, and {αk} is an arbitrary sequence of positive numbers
satisfying the condition kαk → ∞ as k → ∞. Then αk ln δk → ∞; hence, condition (2.3)
does not hold for the function p(x). Furthermore, we have

Ip
(
|x|β(x)fk(x)

)
=
∫

B(0,2δk)\B(0,δk)

(
|t|β∞ · |t|−n/p∞−β∞

)p∞
dt = ωn−1 ln 2,

Ip
(
|x|β(x)−nfk(x)

)
≥
∫

B(0,4δk)\B(0,2δk)

(∫

B(0,2δk)\B(0,δk)
|t|−n/p(t)−β∞dt

)pk

|x|(β∞−n)pkdx

≥ C

∫

B(0,3δk)\B(0,2δk)
δk

(n−n/p∞−β∞)pk |x|(β∞−n)(p∞−αk)dx

≥ Cδ
nαk/p∞
k = Ce(nαk/p∞) ln δk −→ ∞

(5.5)

as k → ∞, which contradicts inequality (3.4).
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The same reasoning brings us to the proof of the exactness of conditions (2.2) and
(2.3) for the function β(x) also. For instance, to show the necessity of condition (2.2), it can
be assumed that p(x) ≡ p0 > 1, x ∈ R

n,

β(x) =

⎧
⎨

⎩

β0 + αk, x ∈ B(0, 2δk) \ B(0, δk),
β0, x ∈ B(0, 4δk) \ B(0, 2δk) k ∈ N.

(5.6)

Then

Ip
(
|x|β(x)−nfk(x)

)
≥ Cδ

−p0αk

k
−→ ∞ as k −→ ∞,

Ip
(
|x|β(x)fk(x)

)
≤ C0 ln 2.

(5.7)

This completes the proof of Theorem 3.3.
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