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By applying the way of weight functions and a Hardy’s integral inequality, a Hilbert-Hardy-type
integral operator is defined, and the norm of operator is obtained. As applications, a new Hilbert-

Hardy-type inequality similar to Hilbert-type integral inequality is given, and two equivalent
inequalities with the best constant factors as well as some particular examples are considered.

1. Introduction
In 1934, Hardy published the following theorem (cf. [1, Theorem 319]).

Theorem A. If k(x,y) (> 0) is a homogeneous function of degree —1 in (0,00) x (0,00), p > 1,
1/p+1/q =1,and ky, = [ k(u,1)u"Pdu € (0,00), then for f(x),g(y) > 0,0 < Ifll, =

{5 fr(x)dx}''? < o0, and 0 < ||gl|, < oo, one has

[[ kemr@smaxay <kl sl a

where the constant factor k,, is the best possible.

Hardy [2] also published the following Hardy’s integral inequality.
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Theorem B. Ifp > 1, p#1, f(x) 2 0, and F(x) := fgf(t)dt(p > 1); F(x) := f;o ftdt(p < 1),
0 < [5° xPP fP(x)dx < oo, then one has

[ee) p 0
f xPFP(x)dx < <L> I xP7P fP(x)dx, (1.2)
0 lp=11/ Jo

where the constant factor (p/|p — 1|)¥ is the best possible (cf. [1, Theorem 330]).
In 2009, Yang [3] published the following theorem.

Theorem C. Ifp>1,1/p+1/qg=1,1>0, ky(x,y) (>0) is a homogeneous function of degree —A
in (0,00) % (0,00), and for any r > 1(1/r+1/s =1),0 < ka(r) := [ ka(u, 1)u*/ " du < oo, then for

f(;), g(”y)nz 0, p(x) :=;”(1‘“’>‘1, g(y) =y VI 0<fll,, = 1[5 @)l f(x)Pdx} P < 00
and 0 < ||g|l, , < oo, we have
¥

[[ Kns@saray <@l s, 13)

where the constant factor k) (r) is the best possible.

For A =1,r = g, (1.3) reduces to (1.1). We name of (1.1) and (1.3) Hilbert-type integral
inequalities. Inequalities (1.1), (1.2) and (1.3) are important in analysis and its applications
(cf. [4-6]).

Setting k1(x,y) = (1/(x+y)")xR14y51/P(R, S > 0,R+S = y), F(x) = [; f(t)dt,G(y) =
[¢ g(t)dt, by applying (1.2) (for p = p > 1), Das and Sahoo gave a new integral inequality
similar to Pachpatte’s inequality (cf. [7, 8]) as follows:

® ,.R-1/q,,5-1/p G
[ )

dxdy <pgB(R, S
Gy = xdy <pqB(R S)| fll,ll8

q/

where the constant factor pgB(R,S) is the best possible (cf. [9]). Sulaiman [10] also
considered a Hilbert-Hardy-type integral inequality similar to (1.4) with the kernel k(x, y) =
(1/(max{x,y}))‘)xﬁ/‘”ly“/”’”(a,ﬁ >-1,p=A-a-1>1,g=1-p-1>1). But he cannot
show that the constant factor in the new inequality is the best possible.

In this paper, by applying the way of weight functions and inequality (1.2) for p < 1,
a Hilbert-Hardy-type integral operator is defined, and the norm of operator is obtained.
As applications, a new Hilbert-Hardy-type inequality similar to (1.3) is given, and two
equivalent inequalities with a best constant factor as well as some particular examples are
considered.



Journal of Inequalities and Applications

2. A Lemma and Two Equivalent Inequalities

Lemma 2.1. If A < 2, ky(x,y) is a nonnegative homogeneous function of degree —\ in (0, 00) x
(0,00) with ky(ux,uy) = u‘*k(x,y)(u,x,y > 0), and forany a € (A —-1,1), 0 < k(a) =

Jo ka (L w)us"'du < oo, then [ ky(u, 1)u**du = k(a) and
0< Jj ko (1, w)u™ YIn u|du = JZO ke (1, 1) In u|du < oo.
Proof. Setting v = 1/u, we find
J:j ko (u, D)% du = I: ki(1,0)v" do = k(a).

There exists f > 0, satisfying a + f € (A - 1,1) and 0 < k(a + ff) < o0. Since we find

Inu . Inu

4

m = =
u—0"yf +y P u—ooyf 4+ uf

there exists M > 0, such that |Inu| < M(uf + u™?) (u € (0,0)), and then

0< f Ky (u, D) In u|du = I ko (1, w)u” Y |In u|du
0 0

< MI ko (1, u)u™t (uﬁ + u"ﬁ>du
0

=Mlk(a+p)+k(a-p)] <oo.

The lemma is proved.

(2.1)

(2.2)

(2.3)

(2.4)

O

Theorem 2.2. Ifp>1,1/p+1/qg=1, A\ + Xy = X <2, ky(x, y)(= 0) is a homogeneous function of
degree =\ in (0,00) x (0, 0), and for any Ay € (A= 1,1), 0 < k(A1) = [ k(u, 1)uM'du < oo, then

for f(x),8(y) 20, §(x) := xPCAT () 1= yald-t)7l,

F)(x) ::f t%f(t)dt, Gi(y) ::J t%g(t)dt,
x Yy

0< ||f||p,¢ < oo,and 0 < “é/\“q,(p < oo, one has the following equivalent inequalities:

k(M)

1= [ ke R@G maxdy < TG

pe{ [T [[ iR ay) <O gy

(2.5)

(2.6)

2.7)
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Proof. Setting the weight functions w(\1,y) and @ (1, x) as follows:
*° g hid
yrax Y
w(h,y) = fo ky(x,y) PR @ (Ao, x) :—f ka(x, y) N (2.8)
then by Lemma 2.1, we find

) " [ttt = ),

(2.9)
@, x) J k(1,u)u " du = k(As).
By Holder’s inequality (cf. [11]) and (2.8), (2.9), we obtain
x(1-\)/q _ y(lflz)/r’
J‘ ki (x, y)Ey(x)dx = f ky(x, ) SO F)(x) Py dx
(-4 (p-1) p
{f ki(x, y)x Ff:(x)dx}
Y (2.10)
)de q
{yq(l A2)- 1’[ kl(x,y) x}
(=) (p-1) p
_ kl/Q(/\ )yl/P A2 I k,\(x y) Fp(x)dx )
Then by Fubini theorem (cf. [12]), it follows:
A (1=) (p-1)
JP < kP- 1()@” Ky (x,y) ——— FP(x)dx dy
o[ poo x-We-1 ]
= kp‘l(il)J f ki (x, y) ——dy | F} (x)dx (2.11)
o [Jo y =
= kP (\y) I x"PODHIER () dx,
0
Since \; <1, p=p(A1 —1) +1 <1, then by (1.2) (for p < 1), we have
R 1\ ([ £(x)
[p(M-1)+1] P p-lp(Li-1)+1]
[Fev o< (1) oo (52
(2.12)

p oo
_ <1—111> f xPCA-W-1 27 () dx,
0
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Hence by (2.11), we have (2.7). Still by Holder’s inequality, we find
[Tl [ menE@aprmewla el . e
0 0 :

Then by (2.7), we have (2.6).
On the other-hand, supposing that (2.6) is valid, by (2.11) and (1.2) (for p < 1), it
follows | < oo. If J = 0, then (2.7) is naturally valid; if 0 < J < oo, setting

- o - p-1
O RO | CHILTETH 214
0
then by (2.6), we find
=19 g k(ll)
[, =77 =1 <=1 sGa]
k()L ) (2.15)
~ 119-1 B 1
||G/\||q,(p - ”f”P(P
Hence, we have (2.7), which is equivalent to (2.6). O

3. A Hilbert-Hardy-Type Integral Operator and Applications

Setting a real function space as follows:
e'e) _ 1/P
L5(0,00) := {f; IA1,5 = {f <p<x>|f<x>|"dx} < oo}, (3.1)
0

for f(> 0) € Lg(O,oo), Fi(x) = [Z(f(t)/t")dt, define an integral operator T : LZ(O,oo) —

Lp]_p (0, o) as follows:
Tf(y) := J‘O ki(x, y)Erx(x)dx, y € (0, 0). (3.2)

Then, by (2.7), T f € LZ 1,(0,00), and T is bounded with

ITAN, L k()

ITh= sup ST

(3.3)
f(#O)ELE(0,00) ”f”p,@
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Theorem 3.1. Let the assumptions of Theorem 2.2 be fulfilled, and additionally setting (y) =
y1@=4=22)71 Then one has

® ~ ~ k(A
[[ ke FeG Wardy < 55 1l gllsls 54)

where the constant factor k(A1) /(1 — A1) (1 — \y) is the best possible. Moreover the constant factor in
(2.6) and (2.7) is the best possible and then

k(A
i = 2. 5)
Proof. Since A, < 1, by (1.2), for p = g(A, — 1) + 1 < 1, it follows:
~ U141 3 Y
- ~[9(2-1)+
o, = { ] o)
q . [g(-1)+1] g(y) ! v (3.6)
< qg-19(A2— o7 d .
1—[q()»z—1)+1]{foy <y*> y}
B 1 {J'OO q(2-1-1)-1 I(y)d }Uq ~ 1 ” ”
Then, by (2.6), we have (3.4).
For T > 2, setting f(x), 3(y) as follows:
(x)n+/\1—2, 1 S X S T/
f(x) =9
kO, O<x<1, x>T,
(3.7)
y"?, 1<y <T,
3(y) =
0, O<y<1l, y>T,
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then for1 < x, y < T, we find

~ ®© ~t T
Fy(x) = %dt :I =2 gy = ﬁ(x)q—l B T)‘l‘1>,

S P
G)L(y)zj- gt_)‘dtzl—.lz<y)l T_rd 1>,
Yy

T ijl(x,y)ﬂ ()G (y)dx dy = m o
oot ms

1

> m[h -L -1,

where Iy, I,, and I3 are indicated as follows;

T (T
L ::f [I kl(x,y)x)‘l_ly)‘z‘ldy:ldx,
1

1

T[ AT
L = T“‘lJ‘ I:I I (x,y)y)‘z‘ldy:I dx, (3.9)
111

T[ (T
Iy := T)‘z’lf I:I k)t(x,y)x)‘lldledy.
1 [J1

If there exists a positive constant k < k(11), such that (3.4) is still valid as we replace
k(A1) by k, then in particular, we find

- k TR
I<Tma—mw “f||,,,¢”g”q,¢
K T 1/p
_ p(2-A-A/r)-1 p(A+)L/r—2)dx
- - 1) {L ¥ ¥ } (3.10)

T Va
kInT
q@2-A-1/s5)-1, q(\+1/5-2) 4 =
x{fly y 3/} (1-1)(1-1p)

By (3.8) and (3.10), we find

1

1
- 3.11
ll’lTIl lnT(Iz+I3) <k. ( )
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Since by Fubini theorem, we obtain

T 1 T/x
I = f ;J‘ kl(l,u)u)‘z‘ldu dx
1

1/x
1 T 1 T T/u 1
= f J Zdx )k (1, u)u " du + f j Zdx )ky(1,w)u " du
0o \J1/uX 1 1 X

1 1
= lnTI:J‘ ko (1, w) w2 du + if o (1, u) (Inw)u'>tdu
0 InT ),

T 1 (T
.)Lz*l o )mz*l
+ L k(1 w)u™""du T L kx(,u)(Inuw)u""du|,

1 T/x

T
0<I=T4! f ky(1, w)u* dudx
1

xh 1/x

1/ T
(e
0 1/u X
T T/u 1
¥ f <f de> k)t(l,u)u“"ldu]
1 X
1 ! u\1-h la-1
= 1= )Ll {jo [1 + <T> ]k)t(l/u)u du
T
o
1

1 o)
{2f kl(l,u)u*rldmf kx(l,u)u)‘“du} < oo,
0 1

1- (%)Hl] kl(l,u)uh'ldu}

1
1-M

<

1 ©
0<I3< ! 2[ ky(u, D du +f ky(u, 1)t du § < oo,
1 - )Lz 0 1

then for T — oo in (3.10), by Lemma 2.1, we obtain k(A1) = [;" k(1,u)u">"'du < k. Hence
k = k(A1), and then k(1) /(1 — A1) (1 — Ap) is the best value of (3.4).

We conclude that the constant factor in (2.6) is the best possible, otherwise we can
get a contradiction by (1.2) that the constant factor in (3.4) is not the best possible. By the
same way, if the constant factor in (2.7) is not the best possible, then by (2.13), we can get
a contradiction that the constant factor in (2.6) is not the best possible. Therefore in view of
(3.3), we have (3.5). O
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Corollary 3.2. For A =1, M1 = 1/q, A, = 1/p, Fi(x) := [P(1/t) f(t)dt, Gi(y) = [y /hgbat,
in (2.6), (2.7) and (3.4), one has the following basic Hilbert-Hardy-type integral inequalities with the
best constant factors:

”O k1 (x,y) Fi ()G (y)dx dy < pky || £, |G ; (3.13)
© © ~ p 1/p

{J U ki(x, y)Fl(x)dx] dy} < pkp”f”p, (3.14)
0 0

[[ kG FiGi )dray < pak 1, sl (315)

where ky = k(1/q) = [ ka(u, 1)u"/Pdu, and (3.13) is equivalent to (3.14).

Example 3.3. Forp>1,r>1,1/p+1/q=1/r+1/s=1, 1 =1/r,and A\, = 1/sin(3.4),

(a) if 0 < A < max({r, s}, ky(x,v) = 1/(x + y)*, 1/(max{x, y})* and In(x/y)/ (x* - y*),
then we obtain the following integral inequalities:

wFA(x)Gl(y) T'SB()L/T',)L/S)
J[, 7y ety < TR W alsls

J'J' Fi(x)G, (y)

(max{x,y})

(max(x gt S annwnguw (3.16)

= In(x/y) F\ ()G /
ff n(x yx)li; *(y)dxdy ngm#ﬂf”p(p”g”w

(b)if 0 <A < 1,ki(x,y) = 1/]x - y|*, then we have

F)L(X)G)L(y) S[B(l—,\,)t/r) +B(1_)L,)L/S)] .
H |x-y/* Tt S (r—A)(s-A) AN, 511857 (3.17)

(0)if L <0,ky(x,y) = (min{x,y})‘A, then we find

J‘J‘ Fr(x)Gi(y) —r2s?

vy < oy 1l plsll (3.18)

0 (min{x,y})

where the constant factors in the above inequalities are the best possible.
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