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This paper is concernedwith a periodic system dependent on parameter. We study differentiability
with respect to parameters of the periodic solution of the system. Applying a fixed point theorem
and the results regarding parameters for C0-semigroups, we obtained some convenient conditions
for determining differentiability with parameters of the periodic solution. The paper is concluded
with an application of the obtained results to a periodic boundary value problem.

1. Introduction

One of the fundamental subjects in dynamic systems is the boundary value problem. When
studying boundary value problems of differential and integrodifferential equations, we often
encounter the problems involving parameters. Take, for example, a periodic boundary value
problem

ut = uxx, for t ≥ 0,

u(x, 0) = u0(x), for x ∈ [0, 1],

k1u(0, t) − h1ux(0, t) = f1(t), ki, hi ≥ 0 (i = 1, 2),

k2ut(1, t) + h2ux(1, t) = f2(t), ki + hi > 0 (i = 1, 2),

(1.1)

on the Banach space L2[0, 1], where f1(t) and f2(t) are both ρ-periodic and continuously
differentiable. It appears that the boundary conditions contain four scalars k1, k2, h1, and h2.
Because these scalars may vary as the environment of the system changes, they are considered
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as parameters. Reforming (1.1) (for details, see Section 5), we have the periodic boundary
value problem

wt = wxx + F(t, ε), ε = (k1, k2, h1, h2) ∈ R4, for t ≥ 0,

w(x, 0) = w0(x), for x ∈ [0, 1],

k1w(0, t) − h1wx(0, t) = 0,

k2w(1, t) + h2wx(1, t) = 0,

(1.2)

where F(t, ε)(x) = (1/(k1(k2+h2)+k2h1))[(k1f ′
2(t)−k2f ′

1(t))x+(h2+k2)f ′
1(t)+h1f

′
2(t)]. Clearly

F(t, ε) is ρ-periodic.
Furthermore, when (1.2) is written as a matrix equation (for details, see Section 5), its

associated abstract Cauchy problem has the following form:

dz(t)
dt

= A(ε)z(t) + f(t, z(t), ε),

z(0) = z0.

(1.3)

This example motivates the discussion on the parameter properties of the general
abstract periodic Cauchy Problem (1.3). Since the periodic system (1.3) depends on
parameters, it is a natural need for investigating continuity and differentiability with respect
to parameters of the solution of the system. Moreover, in applications, the differentiability
with respect to parameter is often a typical and necessary condition for studying problems
such as bifurcation and inverse problem [1]. It is worth mentioning that (1.1) indicates that
the occurrence of parameters in the boundary conditions leads to the dependence of the
domain of the operator A(ε) on the parameters. We have developed some effective methods
for dealing with this tricky phenomenon.

In our previous work [2], we have obtained results on continuity in parameters of
(1.3). In this paper, wewill discuss the differentiability with respect to parameters of solutions
of (1.3).

According to the semigroup theory, when A(ε) generates a C0-semigroup T(t, ε), the
weak solution of (1.3) can be expressed in terms of the C0-semigroup T(t, ε):

z(t, ε) = T(t, ε)z0 +
∫ t

0
T(t − s, ε)F(s, z(s, ε), ε)ds. (1.4)

It is clear that the differentiability with respect to parameter ε of semigroup T(t, ε)will
be the key for determining the differentiability with respect to parameter ε of the solution
z(t, ε) of (1.3). Some recent works [3, 4, and reference therein] have obtained fundamental
results on the differentiability with respect to parameters of C0-semigroup. Applying these
results together with some fixed point theorem, we are able to prove that (1.3) has a unique
periodic solution, which is continuously (Frechét) differentiable with respect to parameter ε.

We now give the outline of the approaches and contents of the paper. The general
approach is that we first prove some theorems for the general periodic system (1.3). Then,
by applying these results, we derive a theorem concerning (1.2) and thereby we obtain
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differentiability with respect to the parameter ε of the solution of (1.1). The paper begins with
the preliminary section, which presents some differentiability results, a fixed point theorem,
and related theorems. These results will be used in proving our theorems in later sections. In
order to obtain results for (1.3), we, in Section 3, first study a special case of (1.3)

z′ = A(ε)z + f(t, ε),

z(0) = z0,
(1.5)

where f(t + ρ, ε) = f(t, ε) for some ρ > 0, and f(t, ε) is continuous in (t, ε) ∈ R × P .
After obtaining the differentiability results for (1.5), we, in Section 4, employ a fixed point
theorem to attain the differentiability results of (1.3). Lastly, in Section 5, we will apply the
obtained abstract results to the periodic boundary value problem (1.1) and use this example
to illustrate the obtained results. One will see that the assumptions of the abstract theorems
are just natural properties of (1.1).

2. Preliminaries

In this section, we state some existing theorems that will be used in later proofs. We start by
giving the results on differentiability with respect to parameters.

Consider the abstract Cauchy problem (1.3), where A(ε) is a closed linear operator
on a Banach space (X, ‖ · ‖) and ε ∈ P is a multiparameter (P is an open subset of a finite-
dimensional normed linear space P with norm | · |). Let T(t, ε) be the C0-semigroup generated
by the operator A(ε). For further information on C0-semigroup, see [5].

In [3], we obtained a general theorem on differentiability with respect to the parameter
ε of C0-semigroup T(t, ε) on the entire space X. It is noticed that a major assumption of
the theorem is that the resolvent (λI −A(ε))−1 is continuously (Frechét) differentiable with
respect to ε. In a recent paper, Grimmer andHe [4] have developed several ways to determine
differentiability with respect to parameter ε of (λI −A(ε))−1. Here, we include one of such
theorems for reference.

Assumption Q. Let ε0 ∈ P be given. Then for each ε ∈ P there exist bounded operators
Q1(ε), Q2(ε) : X → X with bounded inverses Q−1

1 (ε) and Q−1
2 (ε), such that A(ε) =

Q1(ε)A(ε0)Q2(ε).
Note that if A(ε1) = Q1(ε1)A(ε0)Q2(ε1), then

A(ε) = Q1(ε)A(ε0)Q2(ε)

= Q1(ε)Q−1
1 (ε1)Q1(ε1)A(ε0)Q2(ε1)Q−1

2 (ε1)Q2(ε)

= Q̃1(ε)A(ε1)Q̃2(ε).

(2.1)

Thus, having such a relationship for some ε0 implies a similar relationship at any
other ε1 ∈ P . Without loss of generality then, we may just consider the differentiating of
the semigroup T(t, ε) at ε = ε0 ∈ P .

Define R(ε) = λ(λI −A(ε0))
−1(I − Q−1

1 (ε)Q−1
2 (ε)), for λ ∈ ρ(A(ε0)) ∩ ρ(A(ε)), and

assume that I − R(ε) : X → D(A(ε0)) is invertible.
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Theorem 2.1 (see [3]). Assume Assumption Q and that

(1) there are constantsM ≥ 1 and ω ∈ R such that

∥∥∥(λI −A(ε))−1
∥∥∥ ≤ M

(λ −ω)
, for λ > ω, n ∈ N, and all ε ∈ P. (2.2)

(2) There is K1 > 0 such that ‖Q−1
2 (ε)x‖

X
≤ K1‖x‖X, for all ε ∈ P .

(3) There is K2 > 0 such that ‖(I − R(ε))−1x‖X ≤ K2‖x‖X, for all ε ∈ P .

(4) For each x ∈ X,Q−1
i (ε)x (i = 1, 2) and (I − R(ε))−1x are (Frechét) differentiable with

respect to ε at ε = ε0.

Then for each x ∈ X, (λI −A(ε))−1x is (Frechét) differentiable with respect to ε at ε = ε0.

Theorem 2.2 (see [3]). Assume the following

(1) For some 0 < δ < π/2, ρ(A(ε)) ⊃ ∑
δ = {λ : | argλ| < π/2 + δ} ∪ {0}, for all ε ∈ P .

(2) For each ε ∈ P , there exists a constant M(ε) such that

∥∥∥(λI −A)−1
∥∥∥ ≤ M(ε)

|λ| for λ ∈
∑
δ

, λ /= 0. (2.3)

(3) for each x ∈ X and each λ ∈ ∑
δ \{0}, (λI −A(ε))−1x is continuously (Frechét)

differentiable with respect to ε on P . Moreover, for any ε0 ∈ P , there exists some ball
centered at ε0, say B(ε0, δ0), (δ0 > 0) such that ε ∈ B(ε0, δ0) implies

∥∥∥Dε(λI −A(ε))−1x
∥∥∥ ≤ η(λ, x), (2.4)

where η(λ, x), λ ∈ Γ, is measurable and for t > 0

∫
Γ

∣∣∣eλt
∣∣∣η(λ, x)|dλ| < ∞. (2.5)

Then for each x ∈ X, T(t, ε)x is continuously (Frechét) differentiable with respect to ε on P for t > 0.
In particular, for t > 0

DεT(t, ε)x =
1

2πi

∫
Γ
eλt

[
Dε(λI −A(ε))−1x

]
dλ, (2.6)

where Γ is a smooth curve in
∑

δ running from ∞e−iθ to∞eiθ for some θ, π/2 < θ < π/2 + δ.

Now we state a fixed point theorem from [6].
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Definition 2.3 (see [6, page 6]). Suppose that F is a subset of a Banach space (X, | · |),G is a
subset of a Banach space Y, and {Ty, y ∈ G} is a family of operators taking F → X. The
operator Ty is said to be a uniform contraction on F if Ty : F → F and there is a λ, 0 ≤ λ < 1
such that

∣∣Tyx − Tyx
∣∣ ≤ λ|x − x| ∀y in G, x, x in F. (2.7)

Theorem 2.4 (see [6, page 7]). If F is a closed subset of a Banach spaceX, G is a subset of a Banach
space Y, Ty : F → F, y in G is a uniform contraction on F, and Tyx is continuous in y for each
fixed x in F, then the unique fixed point g(y) of Ty, y in G, is continuous in y. Furthermore, if F,G
are the closures of open sets F◦,G◦ and Tyx has continuous first derivatives A(x, y), B(x, y) in y, x,
respectively, for x ∈ F◦, y ∈ G◦, then g(y) has a continuous first derivative with respect to y in G◦.

Theorem 2.5 (see [7, page 167]). Let f be a continuous mapping of an open subset Ω of E into F.
f is continuously (Frechét) differentiable in Ω if and only if f is (Frechét) differentiable at each point
with respect to the ith (i = 1, 2, . . . , n) variable, and the mapping (x1, . . . , xn) → Dif(x1, . . . , xn) (of
Ω into B(Ei, F)) is continuous in Ω. Then at each point (x1, . . . , xn) of Ω, the derivative of f is given
by

Df(x1, . . . , xn) · (t1, . . . , tn) =
n∑
i=1

Dif(x1, . . . , xn) · ti, (t1, . . . , tn) ∈ E. (2.8)

Theorem 2.6 (see [4]). Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces, and let {B(ε)}ε∈P ⊂
B(X,Y ). Assume that

(A) for each x ∈ X,B(ε)x is continuously (Frechét) differentiable in P . In particular, for ε0 ∈ P ,
[DεB(ε)x|ε=ε0] ∈ B(P, Y ) is the (Frechét) derivative of B(ε)x at ε = ε0, and DεB(ε)x is
continuous in P .

Then, for each ε0 ∈ P , there is a constant H(ε0) > 0 such that

∥∥[DεB(ε)x|ε=ε0
]
h
∥∥
Y
≤ H(ε0)‖x‖X · |h| for x ∈ X, h ∈ P. (2.9)

Lemma 2.7. Let B ∈ B(X,Y ). If ‖B‖ ≤ 1/2, then (I − B)−1 exists, and

(I − B)−1 =
∞∑
k=0

Bk. (2.10)

Moreover, ‖(I − B)−1‖ ≤ 2.

Proof. The proof is standard and is omitted here.

3. Differentiability Results of (1.5)

In this section, we study (1.5), which is a special case of (1.3). We will prove that the uniques
periodic solution of (1.5) is continuously (Frechét) differentiable with respect to parameter ε.
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We first state a theorem from [2]. This result shows that (1.5) has a unique periodic solution
which is continuous in parameter ε.

Theorem 3.1 (see [2]). Assume that

(1) T(t, ε)z is continuous in ε for each z ∈ X, and

‖T(t, ε)‖ ≤ M(t0) (3.1)

for some M(t0) > 0 and all ε ∈ P, t ∈ [0, t0], and

(2) ‖T(Nρ, ε)‖ ≤ k < 1 for some integerN withNρ < t0 and all ε ∈ P .

Then there exists a unique ρ-periodic solution of (1.5), say z(t, ε), which is continuous in ε for ε ∈ P .

Now we will discuss differentiability with respect to parameter ε of the periodic
solution of (1.5). The following lemma presents a general result on the differentiability with
respect to parameter of the fixed point of a parameter dependent operator.

Lemma 3.2. Let K(ε) ∈ B(X) for each ε ∈ P , and let z(ε) be the fixed point of K(ε) for each
ε ∈ P , which is continuous in ε. Also, let Q(z, ε) = K(ε)z. If Q(z, ε) has the first partial derivatives
DzQ(z, ε) and DεQ(z, ε) which satisfy

(1) Dz(z(ε), ε)x is continuous in ε for each x ∈ X and ‖DzQ(z, ε)‖ ≤ α < 1 for all (z, ε) ∈
X × P , and

(2) DεQ(z, ε) is continuous in (z, ε) ∈ X × P ,

then z(ε) is continuously (Frechét) differentiable with respect to ε ∈ P .

Proof. We begin by noting that the equation

y = DzQ(z(ε), ε)y +DεQ(z(ε), ε)h, h ∈ P, (3.2)

has a unique solution, say y(ε, h), which is linear in h.
It follows from Lemma 3.2(1) and Theorem 2.4 that

y(ε, h) = (I −DzQ(z(ε), ε))−1DεQ(z(ε), ε)h (3.3)

is the unique solution of (3.2) for (ε, h) ∈ P × P, which is continuous in (ε, h).
From the uniqueness, one observes that

y
(
ε, αh1 + βh2

)
= αy(ε, h1) + βy(ε, h2), (3.4)

for all scalars α, β and h1, h2 ∈ P. That is, y(ε, h) is linear in h and may be written as C(ε)h,
where C(ε) : P → X is a bounded linear operator for each ε ∈ P .

Now we show that C(ε) is the derivative of z(ε).
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Let w = z(ε + h) − z(ε) − C(ε)h. Since z(ε) = Q(z(ε), ε) by hypothesis, one sees that

w = Q(z(ε + h), ε + h) −Q(z(ε), ε) − C(ε)h

= Q(z(ε + h), ε + h) −Q(z(ε + h), ε) +Q(z(ε + h), ε) −Q(z(ε), ε) − C(ε)h

= DεQ(z(ε + h), ε)h + ◦(h) +DzQ(z(ε), ε)(z(ε + h) − z(ε))

+ ◦(z(ε + h) − z(ε)) − C(ε)h.

(3.5)

Note that there is a function k(ε, h) continuous in h and approaching zero as h → 0
such that

◦(z(ε + h) − z(ε)) = k(ε, h)(z(ε + h) − z(ε)). (3.6)

Now from (3.5) and since C(ε)h is a solution of (3.2), we have

w = DεQ(z(ε + h), ε)h + ◦(h) +DzQ(z(ε), ε)(z(ε + h) − z(ε))

+ k(ε, h)(z(ε + h) − z(ε)) − C(ε)h

= [DεQ(z(ε + h), ε) −DεQ(z(ε), ε)]h + ◦(h)
+ [DzQ(z(ε), ε) + k(ε, h)]w + k(ε, h)C(ε)h.

(3.7)

Thus

[I −DzQ(z(ε), ε) − k(ε, h)]w = [DεQ(z(ε + h), ε) −DεQ(z(ε), ε)]h + ◦(h) + k(ε, h)C(ε)h.
(3.8)

SinceDεQ(z(ε), ε) and z(ε) are continuous, and {p ∈ P | |p| = 1} is compact, the right-
hand side of this expression is ◦(|h|) as |h| → 0. Also, there is a γ0 > 0 such that ‖DzQ(z(ε), ε)+
k(ε, h)‖ ≤ β < 1 for |h| ≤ γ0, so (I −DzQ(z(ε), ε) − k(ε, h))−1 is bounded. Thus |w| = ◦(|h|) as
|h| → 0.

Remark 3.3. This proof is based on that of Theorem 3.2 from [6, page 7].

Now we prove the main theorem of the section.

Theorem 3.4. Assume that

(1) ‖T(ρ, ε)‖ ≤ α < 1 for all ε ∈ P .

(2) T(t, ε)z is continuously (Frechét) differentiable with respect to ε for each z ∈ X. Moreover
for any ε0 ∈ P there is some δ(ε0) > 0 such that ε ∈ B(ε0, δ(ε0))

‖DεT(t, ε)z‖ ≤ H(ε0)‖z‖ for some H(ε0) > 0, t ∈ [
0, ρ

]
. (3.9)

(3) f(t, ε) is continuously (Frechét) differentiable with respect to ε.
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Then there exists a unique ρ-periodic solution of (1.5), say z(t, ε), which is continuously (Frechét)
differentiable with respect to ε for ε ∈ P .

Proof. First note that from Theorem 3.1, we have that

z(t, ε) = T(t, ε)z0(ε) +
∫ t

0
T(t − s, ε)f(s, ε)ds (3.10)

is the unique ρ-periodic solution of (1.5).
Now we want to show that z0(ε) is continuously (Frechét) differentiable with respect

to ε by applying Lemma 3.2. To this end, we need to prove the following two claims first.

Claim 1. T(t− s, ε)f(s, ε) is continuously (Frechét) differentiable with respect to ε for t− s, s ∈
[0, ρ]. In particular, for any ε0 ∈ P ,

[
DεT(t − s, ε)f(s, ε)

]∣∣
ε=ε0

=
[
DεT(t − s, ε)f(s, ε0)

]∣∣
ε=ε0

+T(t − s, ε0)
[
Dεf(s, ε)

]∣∣
ε=ε0

. (3.11)

In fact, for any ε0 ∈ P and h ∈ P with ε0 + h ∈ P ,

1
|h|

∥∥T(t − s, ε0 + h)f(s, ε0 + h) − T(t − s, ε0)f(s, ε0)

−
{[

DεT(t − s, ε)f(s, ε0)
]∣∣

ε=ε0
+ T(t − s, ε0)

[
Dεf(s, ε)

]∣∣
ε=ε0

}
h
∥∥∥

≤ 1
|h|

∥∥∥T(t − s, ε0 + h)
{
f(s, ε0 + h) − f(s, ε0) −

[
Dεf(s, ε)

]∣∣
ε=ε0

}
h
∥∥∥

+
1
|h|

∥∥∥T(t − s, ε0 + h)f(s, ε0) − T(t − s, ε0)f(s, ε0) −
[
DεT(t − s, ε)f(s, ε0)

]∣∣
ε=ε0

h
∥∥∥

+
1
|h|

∥∥∥{T(t − s, ε0 + h) − T(s, ε0)}
[
Dεf(s, ε)

]∣∣
ε=ε0

h
∥∥∥.

(3.12)

The first two terms on the right go to 0 as |h| → 0 by Theorem 3.4(2) and (3) . The last term on
the right goes to 0 because T(t−s, ε)z is continuous at ε0 and the set {[Dεf(s, ε)]|ε=ε0p | |p| = 1}
is compact, so (3.11) holds.

Now for each fixed t and s, and any ε0 ∈ P , and ε ∈ B(ε0, δ(ε0)), from Theorem 3.4(2)-
(3) and (3.11), it is clear that [DεT(t−s, ε)f(s, ε)] is continuous at ε0. This completes the proof
of Claim 1.

Based on Claim 1, we have the following claim.

Claim 2. Dε[
∫ρ
0 T(ρ − s, ε)f(s, ε)ds] =

∫ρ
0 [DεT(ρ − s, ε)f(s, ε)]ds.

In fact, from Theorem 2.5 it suffices to show that

Dεi

[∫ρ

0
T
(
ρ − s, ε

)
f(s, ε)ds

]
=
∫ρ

0

[
DεiT

(
ρ − s, ε

)
f(s, ε)

]
ds (i = 1, . . . , n). (3.13)
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W.l.o.g. assume that P = Rn. Let ε0 = (ε0i , . . . , ε
0
n) be any point in P . Since f(s, ε) is

continuous on [0, ρ] × B(ε0, δ(ε0)), there exists L > 0 such that

∥∥f(s, ε)∥∥ ≤ L for (s, ε) ∈ [
0, ρ

] × B(ε0, δ(ε0)). (3.14)

Now from (3.9), we have

∫ εi

ε0i

∫ρ

0

∥∥DεiT
(
ρ − s, τ

)
f(s, τ)

∥∥dsdτ (τ = (ε1, . . . , τ, . . . , εn))

≤
∫ εi

ε0i

∫ρ

0

∥∥DεT
(
ρ − s, τ

)∥∥ · ∥∥f(s, τ)∥∥dsdτ ≤
∫ εi

ε0i

∫ρ

0
L ·H(ε0)dsdτ < ∞.

(3.15)

Thus by a theorem from [8, page 86], we have

∫ εi

ε0i

∫ρ

0
DεiT

(
ρ − s, τ

)
f(s, τ)dsdτ =

∫ρ

0

∫ εi

ε0i

DεiT
(
ρ − s, τ

)
f(s, τ)dτ ds. (3.16)

Furthermore,

Dεi

∫ εi

ε0i

∫ρ

0
eλtDεi(λI −A(τ))−1x dλdτ = Dεi

∫ρ

0

∫ εi

ε0i

eλtDεi(λI −A(τ))−1x dτ dλ. (3.17)

Now the left-hand side of (3.17) is

Dεi

∫ εi

ε0i

∫ρ

0
eλtDεi(λI −A(τ))−1x dλdτ =

∫ρ

0
eλtDεi(λI −A(ε))−1x dλ, (3.18)

and the right-hand side of (3.17) is

Dεi

∫ρ

0

∫ εi

ε0i

eλtDεi(λI −A(τ))−1x dτ dλ = Dεi

∫ρ

0
eλt

[
(λI −A(ε))−1x −

(
λI −A

(
ε0
))−1

x

]
dλ

= Dεi

∫ρ

0
eλt(λI −A(ε))−1x dλ,

(3.19)

where ε0 = (ε1, . . . , εi−1, ε0i , εi+1, . . . , εn).
That is,

Dεi

∫ρ

0
eλt(λI −A(ε))−1x dλ =

∫ρ

0
eλtDεi(λI −A(ε))−1x dλ. (3.20)

This completes the proof of Claim 2.
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Next, consider the operator

K(ε)z = T
(
ρ, ε

)
z +

∫ρ

0
T
(
ρ − s, ε

)
F(s, ε)ds. (3.21)

Wewill apply Lemma 3.2 and Claims 1-2 to show that the operatorK(ε) has z0(ε) as the fixed
point and z0(ε) is continuously (Frechét) differentiable with respect to ε.

Note that the operator K(ε) has the following properties.

(i) K(ε) is defined on the Banach space (X, ‖ · ‖).
(ii) K(ε) is a uniform contraction on X.

In fact, for all ε ∈ P and z1, z2 ∈ X,

‖K(ε)z1 −K(ε)z2‖ =
∥∥T(ρ, ε)(z1 − z2)

∥∥
≤ ∥∥T(ρ, ε)∥∥ · ‖z1 − z2‖ ≤ α‖z1 − z2‖

(
since

∥∥T(ρ, ε)∥∥ ≤ α < 1
)
.

(3.22)

(iii) K(ε)z is continuous in ε for each fixed z ∈ X. (For the detailed proof, see Theorem
3.2 from [2].)

Applying Theorem 2.4, we have that z0(ε) is the fixed point of K(ε).
Furthermore, it is clear that the first derivative of K(ε)zwith respect to z

DzK(ε)z = T
(
ρ, ε

)
(3.23)

satisfies Lemma 3.2(1) . It is also clear from Claim 2 that the first derivative of K(ε)z with
respect to ε

[DεK(ε)z] = Dε

[
T
(
ρ, ε

)
z
]
+
∫ρ

0

[
DεT

(
ρ − s, ε

)
f(s, ε)

]
ds (3.24)

is continuous in (z, ε) by Theorem 3.4(2) and (3). (Note that using the same argument as
in the proof of Claim 1, we can show that [DεT(ρ − s, ε)f(s, ε)] is continuous at ε = ε0 and
thereby

∫ρ
0 [DεT(ρ − s, ε)f(s, ε)]ds is continuous at ε0.)

Finally applying Lemma 3.2, we have that z0(ε) is continuously (Frechét) differen-
tiable with respect to ε. Using a similar argument as that in Claim 1 and Claim 2 we can
show that T(ρ, ε)z0(ε) and

∫ t
0 T(ρ−s, ε)f(s, ε)ds are continuously (Frechét) differentiable with

respect to ε. Thus,

z(t, ε) = T(t, ε)z0(ε) +
∫ t

0
T(t − s, ε)f(s, ε)ds (3.25)

is continuously (Frechét) differentiable with respect to ε for ε ∈ P .

Now we present a theorem with an assumption on the resolvent of the operator A(ε)
instead of the C0-semigroup T(t, ε).
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Theorem 3.5. Assume Theorem 3.4(1) and (3) and that

(1) for some 0 < δ < π/2, ρ(A(ε)) ⊃ ∑
δ = {λ : | argλ| < π/2 + δ} ∪ {0} for all ε ∈ P ,

(2) there exists a constant M such that ‖(λI −A(ε))−1‖ ≤ M/|λ| for λ ∈ ∑
δ, λ /= 0 and all

ε ∈ P,

(3) for each z ∈ X and each λ ∈ ∑
δ \{0}, (λI −A(ε))−1z is continuously (Frechét)

differentiable with respect to ε on P . Moreover, for any ε0 ∈ P there exists δ(ε0) > 0
such that ε ∈ B(ε0, δ(ε0)) implies

∥∥∥Dε(λI −A(ε))−1z
∥∥∥ ≤ η(λ, z), (3.26)

where η(λ, z), λ ∈ Γ, is measurable and for t > 0

∫
Γ
η(λ, z)

∣∣∣eλt
∣∣∣ |dλ| < ∞. (3.27)

Then there exists a unique ρ-periodic solution of (1.5), say z(t, ε), which is continuously (Frechét)
differentiable with respect to ε for ε ∈ P .

Proof. First note that from Theorem 2.2 we have, for each z ∈ X,

DεT(t, ε)z =
1

2πi

∫
Γ
eλt

[
Dε(λI −A(ε))−1z

]
dλ, (3.28)

where Γ is a smooth curve in
∑

δ running from∞e−iθ to∞eiθ for some θ, π/2 < θ < π/2 + δ.
Moreover, since Dε(λI −A(ε))−1z is continuous in ε, it is clear from (3.28) that

DεT(t, ε)z is continuous in ε, so Theorem 3.4(2) is satisfied. Also it is clear from (3.28) that
DεT(t, ε)z is continuous in (t, ε). By Theorem 2.6, we have

‖DεT(t, ε)z‖ ≤ H(t, ε)‖z‖, for some H(t, ε) > 0. (3.29)

Now by the Principle of Uniform Boundedness, there is a H(ε0) > 0 such that

‖DεT(t, ε)z‖ ≤ H(ε0)‖z‖ ∀(t, ε) ∈ [
0, ρ

] × B(ε0, δ(ε0)), (3.30)

thus (3.9) is satisfied. Now the desired result follows from Theorem 3.4.

4. Differentiability Results of (1.3)

In this section, we discuss the general (1.3). Let P = B(0, 1) ∈ P.

Lemma 4.1. Assume that Theorem 3.4(1) and (2) are satisfied. Then (I − T(ρ, ε))−1z is continuously
(Frechét) differentiable with respect to ε for each z ∈ X.
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Proof. First note that from Theorem 3.4(1), we see that (I − T(ρ, ε))−1 exists by Lemma 2.7.
Also,

∥∥∥(I − T
(
ρ, ε

))−1∥∥∥ ≤ 1
1 − α

.= H. (4.1)

Next consider the operator defined on X:

K(ε)z = T
(
ρ, ε

)
z + y, where y is a given point in X. (4.2)

Then we have

‖K(ε)z1 −K(ε)z2‖ ≤ ∥∥T(ρ, ε)∥∥ · ‖z1 − z2‖ ≤ α‖z1 − z2‖, (4.3)

so K(ε) is a uniform contraction. Also it is obvious that K(ε)z is continuous in ε by
Theorem 3.4(2). Therefore from Theorem 2.4 it follows that there is a unique fixed point of
K(ε), say z(ε).

Furthermore, since

DεK(ε)z = DεT
(
ρ, ε

)
z,

DzK(ε)z = T
(
ρ, ε

)
,

(4.4)

which clearly satisfy Lemma 3.2(1) and (2), so by Lemma 3.2, we have that

z(ε) =
(
I − T

(
ρ, ε

))−1
y (4.5)

is continuously (Frechét) differentiable w.r.t. ε.

Let PC[R, ρ] = {g ∈ C(R) | g(t + ρ) = g(t)}.
Consider the equation

z(t)′ = A(ε)z(t) + f
(
t, g(t), ε

)
z(0) = z0

(4.6)

on a Banach space (X, ‖ · ‖), where f(t + ρ, g, ε) = f(t, g, ε) for some ρ > 0 and g ∈ PC[R, ρ],
and f(t, g, ε) is continuous in (t, g, ε) ∈ R × PC[R, ρ] × P .

Lemma 4.2. Assume that Lemma 3.2(1) and Theorem 3.4(2) and (3.9) are satisfied and

(K) f(t, z, ε) is continuously (Frechét) differentiable with respect to ε.
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Then there exists a unique ρ-periodic solution of (4.6), say z(t, ε, g), which is continuously (Frechét)
differentiable with respect to ε for ε ∈ P . Also

z
(
0, ε, g

)
=
(
I − T

(
ρ, ε

))−1 ∫ρ

0
T
(
ρ − s, ε

)
f
(
s, g(s), ε

)
ds. (4.7)

which is continuously (Frechét) differentiable with respect to ε.

Proof. Let F(t, ε) = f(t, g(t), ε). Then F(t+ρ, ε) = F(t, ε). Also it is obvious that F(t, ε) satisfies
Theorem 3.4(3) . Therefore by Theorem 3.4, there is a unique ρ-solution z(t, ε, g) of (4.6)
which is continuously (Frechét) differentiable with respect to ε. In particular, z(0, ε, g) is
continuously (Frechét) differentiable with respect to ε. Moreover, using the same argument
as that in the proof of Theorem 3.4 we see that

z
(
0, ε, g

)
= T

(
ρ, ε

)
z
(
0, ε, g

)
+
∫ρ

0
T
(
ρ − s, ε

)
f
(
s, g(s), ε

)
ds. (4.8)

Thus

z
(
0, ε, g

)
=
(
I − T

(
ρ, ε

))−1 ∫ρ

0
T
(
ρ − s, ε

)
f
(
s, g(s), ε

)
ds, (4.9)

which is continuously (Frechét) differentiable w.r.t. ε by Lemma 4.1.

Define K(ε) : PC[R, ρ] → PC[R, ρ] by

K(ε)g(t) = T(t, ε)z
(
0, ε, g

)
+
∫ t

0
T(t − s, ε)f

(
s, g(s), ε

)
ds. (4.10)

Lemma 4.3. Assume that Theorem 3.4(1)-(2) and (3.9) and Lemma 4.2(K) are satisfied. In addition,
assume that

(1) T(t, ε)z is continuous in ε for each z ∈ X, and

‖T(t, ε)‖ ≤ M(t0) (4.11)

for some M(t0 > 0) and all ε ∈ P, t ∈ [0, t0].

(2) ‖f(t, z1, ε)−f(t, z2, ε)‖ ≤ L(ε)‖z1−z2‖, where L(ε) is continuous in ε ∈ P and L(0) = 0.

(3) f2(t, g, ε) = (∂/∂g)f(t, g, ε) is continuous in (t, g, ε).

Then the operator K(ε) has a unique fixed point g(·, ε) ∈ PC[R, ρ] which is continuously (Frechét)
differentiable with respect to ε.

Proof. It is clear that (PC[R, ρ], ‖ · ‖∞) is a Banach space. Since L(0) = 0, then, by the continuity
of L(ε), there is δ0 such that ε ∈ B(0, δ0) implies

L(ε) ≤ 1
4M(t0)H[M(t0)H + 1]

. (4.12)
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Now for ε ∈ P ,

‖T(t, ε)‖ · ∥∥z(0, g1, ε) − z
(
0, g2, ε

)∥∥

= ‖T(t, ε)‖ ·
∥∥∥∥(I − T

(
ρ, ε

))−1 ∫ρ

0
T
(
ρ − s, ε

)[
f
(
s, g1, ε

) − f
(
s, g2, ε

)]
ds

∥∥∥∥ (
by (4.7)

)

≤ M(t0)
∥∥∥(I − T

(
ρ, ε

))−1∥∥∥

×
∫ρ

0

∥∥T(ρ − s, ε
)∥∥ · ∥∥f(s, g1, ε) − f

(
s, g2, ε

)∥∥ds (
by Lemma 4.3(1)

)

≤ M(t0) ·H ·M(t0)
∫ρ

0

∥∥f(s, g1, ε) − f
(
s, g2, ε

)∥∥ds (
by Lemma 4.1

)

≤ H ·M2(t0) · ρL(ε)
∥∥g1 − g2

∥∥ ≤ 1
4
∥∥g1 − g2

∥∥ (
by (4.12)

)
,

(4.13)
∫ t

0
‖T(t − s, ε)‖ · ∥∥f(s, g1(s), ε) − f

(
s, g2(s), ε

)∥∥ds

≤ L(ε)
∫ t

0

∥∥g1(s) − g2(s)
∥∥ds (

by Lemma 4.3(1)-(2)
)

≤ M · ρL(ε)∥∥g1 − g2
∥∥ ≤ 1

4
∥∥g1 − g2

∥∥ (
by (4.12)

)
.

(4.14)

Hence,

∥∥K(ε)g1 −K(ε)g2
∥∥ ≤ ‖T(t, ε)‖∥∥z(0, g1, ε) − z

(
0, g2, ε

)∥∥

+
∫ t

0
‖T(t − s, ε)‖ · ∥∥f(s, g1(s), ε) − f

(
s, g2(s), ε

)∥∥ds

≤ 1
2
∥∥g1 − g2

∥∥ (
by(4.13) and (4.14)

)
.

(4.15)

Therefore K(ε) is a uniform contraction.
Furthermore, K(ε)g is continuous in ε for fixed g, and also

DgK(ε)g = T(t, ε)Dgz
(
0, ε, g

)
+
∫ t

0
T(t − s, ε)f2

(
s, g(s), ε

)
ds,

= T(t, ε)
(
I − T

(
ρ, ε

))−1 ∫ρ

0
f2
(
s, g(s), ε

)
ds +

∫ t

0
T(t − s, ε)f2

(
s, g(s), ε

)
ds,

DεK(ε)g =
[
DεT(t, ε)z

(
0, ε, g

)]
+
∫ t

0

[
DεT(t − s, ε)f

(
s, g(s), ε

)]
ds

(4.16)
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are continuous in (g, ε). Therefore from Theorem 2.4 it follows that K(ε) has a unique fixed
point, say g(·, ε) ∈ PC[R, ρ], which is continuously (Frechét) differentiable with respect
to ε.

Now we present the main theorem for (1.3).

Theorem 4.4. Assume that Theorem 3.4(1)-(2) and (3.5), Lemmas 4.2(K), and 4.3(1)–(3) are
satisfied.

Then there exists a unique ρ-periodic solution of (1.3), say z(t, ε), which is continuously
(Frechét) differentiable with respect to ε for ε ∈ P .

Proof. This is an immediate result from Lemmas 4.2 and 4.3.

5. Application to a Periodic Boundary Value Problem

Consider the periodic boundary value problem (1.1) on the Banach space L2[0, 1], where
f1(t + ρ) = f1(t), f2(t + ρ) = f2(t), for some ρ > 0 and f1, f2 ∈ C1(R).

Let

w = u −mx − b, (5.1)

where

m =
k1f2 − k2f1

k1(k2 + h2) + k2h1
,

b =
(k2 + h2)f1 + h1f2
k1(k2 + h2) + k2h1

.

(5.2)

Then (1.1) becomes

wt = wxx + F(t, ε), ε = (k1, k2, h1, h2) ∈ R4
+, for t ≥ 0,

w(x, 0) = w0(x) for x ∈ [0, 1],

k1w(0, t) − h1wx(0, t) = 0,

k2w(1, t) + h2wx(1, t) = 0,

(5.3)

where F(t, ε)(x) = (1/(k1(k2 + h2) + k2h1))[(k1f ′
2(t) − k2f

′
1(t))x + (h2 + k2)f ′

1(t) + h1f
′
2(t)].

Assume k1, k2 > 0 and let α = h1/k1 and β = h2/k2. Then the associated abstract
Cauchy problem is

dw(t)
dt

= A(ε)w(t) + F(t, ε),

w(0) = f,

(5.4)
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on X = (L2[0, 1], ‖ · ‖L2), t ∈ R, where

A(ε) =
d2

dx2
, ε =

(
α, β

) ∈ R2
+ =

{(
α, β

) ∈ R2 | α, β ≥ 0
}
,

D(A(ε)) =
{
w ∈ H2[0, 1] | w(0) − αw′(0) = 0, w(1) + βw′(1) = 0

}
.

(5.5)

We now show that (5.4) satisfies all assumptions of Theorem 3.5.
It is well known that the operatorA(ε) generates an analytic semigroup. The resolvent

(λI −A(ε))−1 of A(ε) satisfies, for all ε ∈ R2
+ and λ ∈ ∑

π/4 = {λ | | argλ| < (3π)/4},

∥∥∥(λI −A(ε))−1
∥∥∥ ≤ M

|λ| , where M =
√
2. (5.6)

Thus Assumptions Theorem 3.5(1) and (2) are satisfied. Also, refer to [3, Section 4],
we have shown that (λI −A(ε))−1x is continuously (Frechét) differentiable with respect to
ε. So Assumption Theorem 3.5(3) is satisfied. Furthermore, from the expression of F, it is
obvious that F(t, ε) is continuous in (t, ε) and is continuously (Frechét) differentiable with
respect to ε, so Theorem 3.4(3) is satisfied. Now to apply Theorem 3.5, we only need to show
that Theorem 3.4(1) is satisfied.

In fact, for w0 =
∑∞

n=1 anφn(x),

T(t, ε)w0 =
∞∑
n=1

ane
λntφn(x), (5.7)

where λn < 0, and an, λn, and φn depend on ε. Moreover,

∥∥T(ρ, ε)w0
∥∥2 =

∥∥∥∥∥
∞∑
n=1

ane
λnρφn(x)

∥∥∥∥∥
2

≤
[
eλ1ρ

∥∥∥∥∥
∞∑
n=1

ane
(λn−λ1)ρφn(x)

∥∥∥∥∥
]2

= e2λ1ρ
∞∑
n=1

|an|2e2(λn−λ1)ρ

≤ e2λ1ρ
∞∑
n=1

|an|2
(
since e2(λn−λ1)ρ ≤ 1

)

= e2λ1ρ‖w0‖2 = α2‖w0‖2
(
since α

.= eλ1ρ < 1
)
.

(5.8)

Thus Theorem 3.4(1) is satisfied. Now all the assumptions of Theorem 3.5 are satisfied,
therefore (5.4) has a unique ρ-periodic solution, say w(t, ε), which is continuously (Frechét)
differentiable with respect to ε. Moreover, u(t, ε) = w(t, ε) + mx + b is the unique ρ-periodic
solution of (1.1) and it is continuously (Frechét) differentiable with respect to ε.
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