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Firstly, we define an order for differential forms. Secondly, we also define the supersolution and
subsolution of the A-harmonic equation and the obstacle problems for differential forms which
satisfy theA-harmonic equation, and we obtain the relations between the solutions toA-harmonic
equation and the solution to the obstacle problem of the A-harmonic equation. Finally, as an
application of the obstacle problem, we prove the existence and uniqueness of the solution to
the A-harmonic equation on a bounded domain Ω with a smooth boundary ∂Ω, where the A-
harmonic equation satisfies d�A(x, du) = 0, x ∈ Ω; u = ρ, x ∈ ∂Ω, where ρ is any given differential
form which belongs to W1,p(Ω,Λl−1).

1. Introduction
Recently, a large amount of work about theA-harmonic equation for the differential forms has
been done. In 1999 Nolder gave some properties for the solution to the A-harmonic equation
in [1], and different versions of these properties had been established in [2–4]. The properties
of the nonhomogeneous A-harmonic equation have been discussed in [5–10]. In the above
papers, we can think that the boundary values were zero. In this paper, we mainly discuss
the existence and uniqueness of the solution to A-harmonic equation with boundary values
on a bounded domain Ω.

Now let us see some notions and definitions about the A-harmonic equation
d�A(x, du) = 0.

Let e1, e2, . . . , en denote the standard orthogonal basis of Rn. For l = 0, 1, . . . , n, we
denote by Λl = Λl(Rn) the linear space of all l-vectors, spanned by the exterior product eI =
ei1 ∧ei2 ∧· · ·∧eil corresponding to all ordered l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · < il ≤ n.
The Grassmann algebra Λ = ⊕Λl is a graded algebra with respect to the exterior products of
α =

∑
αIeI ∈ Λ and β =

∑
βIeI ∈ Λ, then its inner product is obtained by

〈
α, β

〉
=
∑

αIβI (1.1)
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with the summation over all I = (i1, i2, . . . , il) and all integers l = 0, 1, . . . , n. And the norm of
α =

∑
αIeI ∈ Λ is given by |α| = 〈α, α〉1/2.
The Hodge star operator � : Λl → Λn−l is defined by the rule if ω = ωIdxI =

ωi1,i2,...,ildxi1 ∧ dxi2 · · · ∧ dxil , then

�ω = (−1)
∑
(I)ωIdxJ , (1.2)

where
∑
(I) = l(l + 1)/2 +

∑l
k=1 ik and J = 1, 2, . . . , n − I. So we have � � ω = (−1)l(n−l)ω.

Throughout this paper, Ω ⊂ R
n is an open subset, for any constant σ > 1, Q denotes

a cube such that Q ⊂ σQ ⊂ Ω, where σQ denotes the cube whose center is as same as Q
and diam(σQ) = σ diamQ. We say that α =

∑
αIeI ∈ Λ is a differential l-form on Ω if every

coefficient αI of α is Schwartz distribution on Ω. The space spanned by differential l-form
on Ω is denoted by D′(Ω,Λl). We write Lp(Ω,Λl) for the l-form α =

∑
αIdxI on Ω with

αI ∈ Lp(Ω) for all ordered l-tuple I. Thus Lp(Ω,Λl) is a Banach space with the norm

‖α‖p,Ω =
(∫

Ω
|α|pdx

)1/p

=

⎛

⎝
∫

Ω

(
∑

I

|αI |2
)p/2

dx

⎞

⎠

1/p

. (1.3)

Similarly Wk,p(Ω,Λl) denotes those l-forms on Ω with all coefficients in Wk,p(Ω). We denote
the exterior derivative by

d : D′
(
Ω,Λl

)
−→ D′

(
Ω,Λl+1

)
for l = 0, 1, 2, . . . , n (1.4)

and its formal adjoint operator (the Hodge codifferential operator)

d� : D′
(
Ω,Λl

)
−→ D′

(
Ω,Λl−1

)
. (1.5)

The operators d and d� are given by the formulas

dα =
∑

I

dαI ∧ dxI, d� = (−1)nl+1 � d � . (1.6)

2. The Obstacle Problem

In this section, we introduce the main work of this paper, which defining the supersolution
and subsolution of theA-harmonic equation and the obstacle problems for differential forms
which satisfy the A-harmonic equation, and the proof for the uniqueness of the solution to
the obstacle problem of theA-harmonic equations for differential forms. We can see this work
about functions in [11, Chapter 3 and Appendix I] in detail. We use the similar methods in
[11] to do the main work for differential forms.

We firstly give the comparison about differential forms according to the comparison’s
definition about functions in R.
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Definition 2.1. Suppose that α =
∑

I αI(x)dxI and β =
∑

I βI(x)dxI belong to Λl, we say that
α ≥ β if for any given x, we have αI(x) ≥ βI(x) for all ordered l-tuples I = (i1, i2, . . . , il),
1 ≤ i1 < i2 < · · · < il ≤ n.

Remark 2.2. The above definition involves the order for differential forms which we have
been trying to avoid giving. We know that many differential forms can not be compared
based on the above definition since there are so many inequalities to be satisfied. However,
at the moment, we can not replace this definition by another one and we are working on it
now. We just started our research on the obstacle problem for differential forms satisfying
the A-harmonic equation and we hope that our work will stimulate further research in this
direction.

By the some definitions as the solution, supersolution (or subsolution) to quasilinear
elliptic equation, we can give the definitions of the solution, supersolution (or subsolution)
to A-harmonic equation

d�A(x, du) = 0. (2.1)

Definition 2.3. If a differential form u ∈ W
1,p
loc (Ω,Λl−1) satisfies

∫

Ω

〈
A(x, du), dϕ

〉
dx = 0, (2.2)

for any ϕ ∈ W
1,p
0 (Ω,Λl−1), then we say that u is a solution to (2.1). If for any 0 ≤ ϕ ∈

W
1,p
loc (Ω,Λl−1), we have

∫

Ω
〈A(x, du), dϕ〉dx ≥ 0(≤ 0), (2.3)

then we say that u is a supersolution (subsolution) to (2.1).

We can see that if u is a subsolution to (2.1), then for 0 ≥ ϕ ∈ W
1,p
0 (Ω,Λl−1), we have

∫

Ω
〈A(x, du), dϕ〉dx ≥ 0. (2.4)

According to the above definition, we can get the following theorem.

Theorem 2.4. A differential form u ∈ W
1,p
loc (Ω,Λl−1) is a solution to (2.1) if and only if u is both

supersolution and subsolution to (2.1).

Proof. The sufficiency is obvious, we only prove the necessity. For any ϕ ∈ W
1,p
0 (Ω,Λl−1), we

suppose that ϕ =
∑

I ϕIdxI ,

ϕ1 =
∑

I

ϕ+
I dxI ≥ 0, ϕ2 =

∑

I

ϕ−
I dxI ≤ 0; (2.5)
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by Definition 2.3, it holds that

∫

Ω
〈A(x, du), dϕ1〉dx ≥ 0,

∫

Ω
〈A(x, du), dϕ2〉dx ≥ 0. (2.6)

So

0 ≤
∫

Ω
〈A(x, du), dϕ1〉dx +

∫

Ω
〈A(x, du), dϕ2〉dx

=
∫

Ω
〈A(x, du), dϕ1 + dϕ2〉dx =

∫

Ω
〈A(x, du), dϕ〉dx.

(2.7)

Using −ϕ in place of ϕ, we also can get

∫

Ω
〈A(x, du), dϕ〉dx ≤ 0. (2.8)

Thus

∫

Ω
〈A(x, du), dϕ〉dx = 0. (2.9)

Therefore u is a solution to (2.1).

Next wewill introduce the obstacle problem toA-harmonic equation, whose definition
is according to the same definition as the obstacle problem of quasilinear elliptic equation. For
the obstacle problem of quasilinear elliptic equation we can see [11] for details.

Suppose that Ω is a bounded domain. that ψ =
∑

I ψIdxI is any differential form in Ω
which satisfies any ψI that is function in Ω with values in the extended reals [−∞,∞], and
ρ ∈ W1,p(Ω,Λl−1). Let

Kψ,ρ

(
Ω,Λl−1

)
=
{
v ∈ W1,p

(
Ω,Λl−1

)
: v ≥ ψ a.e., v − ρ ∈ W

1,p
0

(
Ω,Λl−1

)}
. (2.10)

The problem is to find a differential form in Kψ,ρ(Ω,Λl−1) such that for any v ∈
Kψ,ρ(Ω,Λl−1), we have

∫

Ω
〈A(x, du)d(v − u)〉 ≥ 0. (2.11)

Definition 2.5. Adifferential form u ∈ Kψ,ρ(Ω,Λl−1) is called a solution to the obstacle problem
of A-harmonic equation (2.1) with obstacle ψ and boundary values ρ or a solution to the
obstacle problem of A-harmonic equation (2.1) in Kψ,ρ(Ω,Λl−1) if u satisfies (2.11) for any
v ∈ Kψ,ρ(Ω,Λl−1).
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If ψ = ρ, then we denote that Kψ,ψ(Ω,Λl−1) = Kψ(Ω,Λl−1). We have some relations
between the solution to quasilinear elliptic equation and the solution to obstacle problem
in PDE. As to differential forms, we also have some relations between the solution to A-
harmonic equation and the solution to obstacle problem of A-harmonic equation. We have
the following two theorems.

Theorem 2.6. If a differential form u is a supersolution to (2.1), then u is a solution to the obstacle
problem of (2.1) inKψ,u(Ω,Λl−1). For anyKψ,ρ(Ω,Λl−1), if u is a solution to the obstacle problem of
(2.1) inKψ,ρ(Ω,Λl−1), then u is a supersolution to (2.1) in Ω.

Proof. If u is a solution to the obstacle problem of (2.1) in Kψ,ρ(Ω,Λl−1), then for any 0 ≤ ϕ ∈
W

1,p
0 (Ω,Λl−1), we have v = u + ϕ ∈ Kψ,ρ(Ω,Λl−1), so it holds that

∫

Ω
〈A(x, du), dϕ〉dx =

∫

Ω
〈A(x, du), dv − du〉dx ≥ 0. (2.12)

Thus u is a supersolution to (2.1) inΩ. Conversely, if u is a supersolution to (2.1) inΩ,
then for any v ∈ Ku(Ω,Λl−1), we have

v − u ≥ 0, v − u ∈ W
1,p
0

(
Ω,Λl−1

)
. (2.13)

Thus let ϕ = v − u, then we have

0 ≤
∫

Ω
〈A(x, du), dϕ〉dx =

∫

Ω
〈A(x, du), dv − du〉dx. (2.14)

So u is a solution to the obstacle problem of (2.1) inKψ,u(Ω,Λl−1).

Theorem 2.7. A differential form u is a solution to (2.1) if and only if u is a solution to the obstacle
problem of (2.1) inKψ,ρ(Ω,Λl−1) with ρ satisfying u − ρ ∈ W

1,p
0 (Ω,Λl−1).

Proof. If is a solution to the obstacle problem of (2.1) in Kψ,ρ(Ω,Λl−1), then for any ϕ ∈
W

1,p
0 (Ω,Λl−1), we have v = u + ϕ = u − ρ + ρ + ϕ ∈ K−∞,ρ(Ω,Λl−1). So we can obtain

∫

Ω
〈A(x, du), dϕ〉dx =

∫

Ω
〈A(x, du), dv − du〉dx ≥ 0. (2.15)

By using −ϕ in place of ϕ, we have
∫

Ω
〈A(x, du), d

(−ϕ)〉dx =
∫

Ω
〈A(x, du), dv − du〉dx ≥ 0. (2.16)

So
∫

Ω
〈A(x, du), dϕ〉dx = 0. (2.17)

Thus u is a solution to (2.1) in Ω.
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Conversely, if u is a solution to (2.1) in Ω, then for any v ∈ K−∞,ρ(Ω,Λl−1), we have
v − u ∈ W

1,p
0 (Ω,Λl−1). Now let ϕ = v − u, then we have

0 =
∫

Ω
〈A(x, du), dϕ〉dx =

∫

Ω
〈A(x, du), dv − du〉dx. (2.18)

Thus

0 ≤
∫

Ω
〈A(x, du), dv − du〉dx. (2.19)

So the theorem is proved.

The following we will discuss the existence and uniqueness of the solution to the
obstacle problem of (2.1) in Kψ,ρ(Ω,Λl−1) and the solution to (2.1). First we introduce a
definition and two lemmas.

Definition 2.8 (see [11]). Suppose that X is a reflexive Banach space in Ω with dual space
X′, and let (·, ·) denote a pairing between X′ and X. If K ⊂ X is a closed convex set, then a
mapping £ : K → X′ is called monotone if

(£u − £v, u − v) ≥ 0, (2.20)

for all uv in K. Further, £ is called coercive on K if there exists ϕ ∈ K such that

(
£uj − £ϕ, uj − ϕ

)

∥
∥uj − ϕ

∥
∥

−→ ∞, (2.21)

whenever uj is a sequence in K with ‖uj‖ → ∞.

By the definition of ∇u in [12], we can easily get the following lemma.

Lemma 2.9. For any u ∈ W1,p(Ω,Λl), we have |du| ≤ |∇u| and |∇|u|| ≤ |∇u|.

Lemma 2.10 (see [11]). Let K be a nonempty closed convex subset of X and let £ : K → X′ be
monotone, coercive, and weakly continuous on K. Then there exists an element u in K such that

(£u, u − v) ≥ 0, (2.22)

whenever v ∈ K.

Using the same methods in [11, Appendix I], we can prove the existence and
uniqueness of the solution to the obstacle problem of (2.1).

Theorem 2.11. If Kψ,ρ(Ω,Λl−1) is nonempty, then there exists a unique solution to the obstacle
problem of (2.1) inKψ,ρ(Ω,Λl−1).
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Proof. Let X = Lp(Ω,Λl), then X′ = Lp/(p−1)(Ω,Λl). Let

(
f, g

)
=
∫

Ω
〈f, g〉dx, (2.23)

where f ∈ Lp(Ω,Λl) and g ∈ Lp/(p−1)(Ω,Λl). Denote that

K =
{
dv : v ∈ Kψ,ρ

(
Ω,Λl−1

)}
. (2.24)

We define a mapping £ : K → X′ such that for any v ∈ K, we have £v = A(x, v). So for any
u ∈ Lp(Ω,Λl), we have

(£v, u) =
∫

Ω
〈A(x, v), u〉dx. (2.25)

Then we only prove that K is a closed convex subset of X and £ : K → X′ is monotone,
coercive, and weakly continuous on K.

(1) K is convex. For any x1, x2 ∈ K, we have v1, v2 ∈ Kψ,ρ(Ω,Λl−1) such that

x1 = dv1, x2 = dv2. (2.26)

So for any t ∈ (0, 1), we have

tx1 + (1 − t)x2 = tdv1 + (1 − t)dv2 = d(tv1 + (1 − t)v2). (2.27)

Since

tv1 + (1 − t)v2 − ρ = t
(
v1 − ρ

)
+ (1 − t)

(
v2 − ρ

) ∈ Kψ,ρ

(
Ω,Λl−1

)
, (2.28)

thus

tx1 + (1 − t)x2 ∈ K. (2.29)

So K is convex.
(2) K is closed in X. Suppose that dvi ∈ K is a sequence converging to ṽ in X. Then by

the real functions’ Poincaré inequality and Lemma 2.9, we have

∫

Ω

∣
∣vi − ρ

∣
∣pdx ≤ c(diamΩ)p

∫

Ω

∣
∣∇∣

∣vi − ρ
∣
∣
∣
∣pdx

≤ c(diamΩ)p
∫

Ω

∣
∣∇vi − ∇ρ

∣
∣pdx ≤ M < ∞.

(2.30)
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Thus vi is a bounded sequence inW1,p(Ω,Λl−1). BecauseKψ,ρ(Ω,Λl−1) is a closed and convex
subset of W1,p(Ω,Λl−1), we denote that vi =

∑
I v

I
i dxI and ρ =

∑
I ρ

IdxI . Then for any I in
l − 1 tuples, according to Theorems 1.30 and 1.31 in [11], we have a function vI such that

vI
i −→ vI weakly, vI − ρI ∈ W

1,p
0 (Ω), ∇vI

i −→ ∇vI =

(
∂vI

∂x1
, . . . ,

∂vI

∂xn

)

weakly.

(2.31)

According to Lemma 2.9 and the uniqueness of a limit of a convergence sequence, we only
let

ṽ =
∑

I

n∑

i=1

∂vI

∂xi
dxi ∧ dxI. (2.32)

Thus ṽ ∈ K, so K is closed in X.
(3) £ is monotone. Since operator A satisfies

〈A(x, ξ1) −A(x, ξ2), ξ1 − ξ2〉 ≥ 0, (2.33)

so for all u, v ∈ K, it holds that

(£u − £v, u − v) =
∫

Ω
〈A(x, u) −A(x, v), u − v〉dx ≥ 0. (2.34)

Thus £ is monotone.
(4) £ is coercive on K. For any fixed ϕ ∈ K, we have

(
£u − £ϕ, u − ϕ

)
=
∫

Ω

〈
A(x, u) −A

(
x, ϕ

)
, u − ϕ

〉
dx

=
∫

Ω
〈A(x, u), u〉dx +

∫

Ω

〈
A
(
x, ϕ

)
, ϕ

〉
dx −

∫

Ω

〈
A(x, u), ϕ

〉
dx

−
∫

Ω

〈
A
(
x, ϕ

)
, u

〉
dx

≥ K−1
∫

Ω
|u|pdx +K−1

∫

Ω

∣
∣ϕ

∣
∣pdx −K

∫

Ω
|u|p−1∣∣ϕ∣∣dx −

∫

Ω

∣
∣ϕ

∣
∣p−1|u|dx

≥ K−1(‖u‖p + ∥
∥ϕ

∥
∥p) −K

(
‖u‖p−1∥∥ϕ∥∥ + ‖u‖∥∥ϕ∥∥p−1)

≥ K−12−p
∥
∥u − ϕ

∥
∥
∥
∥u − ϕ

∥
∥p−1 −K2p−1

∥
∥ϕ

∥
∥
(∥
∥ϕ

∥
∥p−1 +

∥
∥u − ϕ

∥
∥p−1)

−K
∥
∥ϕ

∥
∥p−1(∥∥ϕ

∥
∥ +

∥
∥u − ϕ

∥
∥
)
.

(2.35)
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So

(
£uj − £ϕ, uj − ϕ

)

∥
∥uj − ϕ

∥
∥

≥ K−12−p
∥
∥uj − ϕ

∥
∥p−1 −K2p−1

∥
∥ϕ

∥
∥

( ∥
∥ϕ

∥
∥p−1

∥
∥uj − ϕ

∥
∥
+
∥
∥uj − ϕ

∥
∥p−2

)

−K
∥
∥ϕ

∥
∥p−1

( ∥
∥ϕ

∥
∥

∥
∥uj − ϕ

∥
∥
+ 1

)

.

(2.36)

When ‖uj‖ → ∞ and ‖uj − ϕ‖ → ∞, we can obtain

(
£uj − £ϕ, uj − ϕ

)

∥
∥uj − ϕ

∥
∥

−→ ∞. (2.37)

Therefore £ is coercive on K.
(5) £ is weakly continuous on K. Suppose that ui ∈ K is a sequence that converge to

u ∈ K onX. Pick a subsequence uij such that uij → u a.e. inΩ. Since themapping ξ → A(x, ξ)
is continuous for a.e. x, we have

A
(
x, uij

)
−→ A(x, u), (2.38)

a.e. x ∈ Ω. Because Lp/(p−1)(Ω,Λl)-norms of A(x, uij ) are uniformly bounded, we have that

A
(
x, uij

)
−→ A(x, u) (2.39)

weakly in Lp/(p−1)(Ω,Λl). Because the weak limit is independent of the choice of the
subsequence, it follows that

A(x, ui) −→ A(x, u) (2.40)

weakly in Lp/(p−1)(Ω,Λl). Thus for any v ∈ Lp(Ω,Λl), we have

(£ui, v) =
∫

Ω
〈£ui, v〉dx −→

∫

Ω
〈£u, v〉dx = (£u, v). (2.41)

Thus £ is weakly continuous on K.
By Lemma 2.10, we can find an element ũ in K such that

(£ũ, ṽ − ũ) ≥ 0, (2.42)

for any ṽ ∈ K, that is to say, there exists u ∈ Kψ,ρ(Ω,Λl−1) such that du = ũ and
∫

Ω
〈A(x, du), dv − du〉dx = (£du, dv − du) ≥ 0, (2.43)

for any v ∈ Kψ,ρ(Ω,Λl−1). Then the theorem is proved.
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By Theorem 2.7, we can see that the solution u to the obstacle problem of (2.1) in
K−∞,ρ(Ω,Λl−1) is a solution of (2.1) in Ω. Then by theorem, we can get the existence and
uniqueness of the solution to A-harmonic equation.

Corollary 2.12. Suppose that Ω is a bounded domain with a smooth boundary ∂Ω and ρ ∈
W1,p(Ω,Λl−1). There is a differential form u ∈ W1,p(Ω,Λl−1) such that

d�A(x, du) = 0, x ∈ Ω,

u = ρ, x ∈ ∂Ω
(2.44)

weakly in Ω, that is to say,

∫

Ω

〈
A(x, du), dϕ

〉
dx = 0, (2.45)

for any ϕ ∈ W
1,p
0 (Ω,Λl−1).

Proof. Let ψ = −∞ and u be a solution to the obstacle problem of (2.1) in Kψ,ρ(Ω,Λl−1). For
any ϕ ∈ W

1,p
0 (Ω,Λl−1), we have both u + ϕ and u − ϕ belong toKψ,ρ(Ω,Λl−1). Then

∫

Ω
〈A(x, du), dϕ〉dx ≥ 0, −

∫

Ω
〈A(x, du), dϕ〉dx ≥ 0. (2.46)

Thus

∫

Ω
〈A(x, du), dϕ〉dx = 0. (2.47)

So u is solution to A-harmonic equation d�A(x, du) = 0 in Ωwith a boundary value ρ.
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