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We prove positive semidefiniteness of matrices generated by differences deduced from
majorization-type results which implies exponential convexity and log-convexity of these
differences and also obtain Lyapunov’s and Dresher’s inequalities for these differences. We
introduce new Cauchy means and show that these means are monotone.

1. Introduction and Preliminaries

Let x = (x1, . . . , xn), p = (p1, . . . , pn) denote two sequences of positive real numbers with
∑n

i=1 pi = 1. The well-known Jensen inequality for convex function [1, page 43] gives that, for
t < 0 or t > 1,

n∑

i=1

pix
t
i ≥
(

n∑

i=1

pixi

)t

, (1.1)

and vice versa for 0 < t < 1.
In [2], the following generalization of this theorem is given.

Theorem 1.1. For −∞ < r < s < t < +∞,

λt−rs ≤ λt−sr λs−rt , (1.2)
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where

λt :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 pix

t
i −
(∑n

i=1 pi xi

)t

t(t − 1)
, t /= 0, 1,

log

(
n∑

i=1

pixi

)

−
n∑

i=1

pi logxi, t = 0,

n∑

i=1

pixi logxi −
(

n∑

i=1

pixi

)

log

(
n∑

i=1

pixi

)

, t = 1.

(1.3)

For fixed n ≥ 2 let

x = (x1, . . . , xn), y =
(
y1, . . . , yn

)
(1.4)

denote two n-tuples. Let

x[1] ≥ x[2] ≥ · · · ≥ x[n], y[1] ≥ y[2] ≥ · · · ≥ y[n],

x(1) ≤ x(2) ≤ · · · ≤ x(n), y(1) ≤ y(2) ≤ · · · ≤ y(n)

(1.5)

be their ordered components.

Definition 1.2 (see [1, page 319]). y is said to majorize x (or x is said to be majorized by y), in
symbol, y � x, if

m∑

i=1

x[i] ≤
m∑

i=1

y[i] (1.6)

holds for m = 1, 2, . . . , n − 1 and

n∑

i=1

xi =
n∑

i=1

yi. (1.7)

Note that (1.6) is equivalent to

n∑

i=n−m+1

x(i) ≤
n∑

i=n−m+1

y(i) (1.8)

for m = 1, 2, . . . , n − 1.

The following theorem is well-known as the majorization theorem and a convenient
reference for its proof is given by Marshall and Olkin [3, page11] (see also [1, page 320]).
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Theorem 1.3. Let I be an interval in R, and let x, y be two n-tuples such that xi, yi ∈ I (i =
1, . . . , n). Then

n∑

i=1

φ(xi) ≤
n∑

i=1

φ
(
yi

)
(1.9)

holds for every continuous convex function φ : I → R if and only if y � x holds.

Remark 1.4 (see [4]). If φ(x) is a strictly convex function, then equality in (1.9) is valid iff
x[i] = y[i], i = 1, . . . , n.

The following theorem can be regarded as a generalization of Theorem 1.3 and is
proved by Fuchs in [5] (see also [1, page 323]).

Theorem 1.5. Let x, y be two decreasing real n-tuples, and let p = (p1, . . . , pn) be a real n-tuple such
that

k∑

i=1

pixi ≤
k∑

i=1

piyi for k = 1, . . . , n − 1,

n∑

i=1

pixi =
n∑

i=1

piyi.

(1.10)

Then for every continuous convex function φ : I → R, one has

n∑

i=1

piφ(xi) ≤
n∑

i=1

piφ
(
yi

)
. (1.11)

Definition 1.6. A function h : (a, b) → R is exponentially convex function if it is continuous
and

n∑

i,j=1

ξiξjh
(
xi + xj

) ≥ 0 (1.12)

for all n ∈ N and all choices ξi ∈ R and xi ∈ (a, b), i = 1, . . . , n such that xi + xj ∈ (a, b),
1 ≤ i, j ≤ n.

The following proposition is given in [6].

Proposition 1.7. Let h : (a, b) → R. The following propositions are equivalent.

(i) h is exponentially convex.
(ii) h is continuous and

n∑

i,j=1

ξiξjh

(
xi + xj

2

)

≥ 0, (1.13)

for every n ∈ N, every ξi ∈ R, and every xi, xj ∈ (a, b), 1 ≤ i, j ≤ n.
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Corollary 1.8. If h is exponentially convex, then

det
[

h

(
xi + xj

2

)]n

i,j=1
≥ 0, (1.14)

for every n ∈ N and every xi ∈ (a, b), i = 1, . . . , n.

Corollary 1.9. If h : (a, b) → R
+ is exponentially convex function, then h is a log-convex function

in Jensens sense:

h

(
x + y

2

)

≤
√
h(x)h

(
y
)
, ∀x, y ∈ (a, b). (1.15)

In this paper, we prove positive semidefiniteness of matrices generated by differences
deduced from majorization-type results (1.9), (1.11), (4.2), and (4.5) which implies
exponential convexity and log-convexity of these differences and also obtain Lyapunov’s and
Dresher’s inequalities for these differences. In [7], new Cauchy means are introduced. By
using these means, a generalization of (1.2)was given (see [7]). In the present paper, we give
related results in discrete and indiscrete cases and some new means of the Cauchy type.

2. Main Results

Lemma 2.1. Define the function

ϕs(x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xs

s(s − 1)
, s /= 0, 1,

− logx, s = 0,

x logx, s = 1.

(2.1)

Then ϕ′′
s = xs−2, that is, ϕs is convex for x > 0.

Definition 2.2. It is said that a positive function f is log-convex in the Jensen sense on some
interval I ⊆ R if

f(s)f(t) ≥ f2
(
s + t

2

)

(2.2)

holds for every s, t ∈ I.

The following lemma gives an equivalent condition for convexity of function f [1,
page 2].

Lemma 2.3. If φ is convex on an interval I ⊆ R, then

φ(s1)(s3 − s2) + φ(s2)(s1 − s3) + φ(s3)(s2 − s1) ≥ 0 (2.3)

holds for every s1 < s2 < s3, s1, s2, s3 ∈ I.
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Theorem 2.4. Let x and y be two positive n-tuples, y � x,

Λt = Λt(x;y) :=
n∑

i=1

ϕt

(
yi

) −
n∑

i=1

ϕt(xi), (2.4)

and all x[i]’s and y[i]’s are not equal.
Then the following statements are valid.

(a) For every n ∈ N and s1, . . . , sn ∈ R, the matrix [Λ(si+sj )/2]
n

i,j=1
is a positive semidefinite

matrix. Particularly

det
[
Λ(si+sj )/2

]k

i,j=1
≥ 0 (2.5)

for k = 1, . . . , n.

(b) The function s �→ Λs is exponentially convex.

(c) The function s �→ Λs is log-convex on R and the following inequality holds for −∞ < r <
s < t < ∞:

Λt−r
s ≤ Λt−s

r Λs−r
t . (2.6)

Proof. (a) Consider the function

μ(x) =
k∑

i,j

uiujϕsij (x) (2.7)

for k = 1, . . . , n, x > 0, ui ∈ R, sij ∈ R, where sij = (si + sj)/2 and ϕsij is defined in (2.1).
We have

μ′′(x) =
k∑

i,j

uiujx
sij−2 =

(
k∑

i

uix
si/2−1

)2

≥ 0, x ≥ 0. (2.8)

This shows that μ is a convex function for x ≥ 0.
Using Theorem 1.3,

n∑

m=1

μ
(
ym

) −
n∑

m=1

μ(xm) ≥ 0. (2.9)

This implies that

n∑

m=1

⎛

⎝
k∑

i,j

uiujϕsij

(
ym

)
⎞

⎠ −
n∑

m=1

⎛

⎝
k∑

i,j

uiujϕsij (xm)

⎞

⎠ ≥ 0, (2.10)
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or equivalently

k∑

i,j

uiujΛsij ≥ 0. (2.11)

From last inequality, it follows that the matrix [Λ(si+sj )/2]
n
i,j=1

is a positive semidefinite matrix,
that is, (2.5) is valid.

(b) Note that Λs is continuous for s ∈ R. Then by using Proposition 1.7, we get
exponentially convexity of the function s → Λs.

(c) Since ϕt(x) is continuous and strictly convex function for x > 0 and all x[i]’s and
y[i]’s are not equal, therefore by Theorem 1.3 with φ = ϕt we have

n∑

i=1

ϕt

(
yi

)
>

n∑

i=1

ϕt(xi). (2.12)

This implies

Λt = Λt(x;y) =
n∑

i=1

ϕt

(
yi

) −
n∑

i=1

ϕt(xi) > 0, (2.13)

that is, Λt is a positive-valued function.
A simple consequence of Corollary 1.9 is that Λs is log-convex; then by definition

logΛt−r
s ≤ logΛt−s

r + logΛs−r
t , (2.14)

which is equivalent to (2.6).

Theorem 2.5. Let Λt be defined as in Theorem 2.4 and t, s, u, v ∈ R such that s ≤ u, t ≤ v, s /= t, and
u/=v. Then

(
Λt

Λs

)1/(t−s)
≤
(
Λv

Λu

)1/(v−u)
. (2.15)

Proof. For a convex function ϕ, a simple consequence of (2.3) is the following inequality [1,
page 2]:

ϕ(x2) − ϕ(x1)
x2 − x1

≤ ϕ
(
y2
) − ϕ

(
y1
)

y2 − y1
, (2.16)



Journal of Inequalities and Applications 7

with x1 ≤ y1, x2 ≤ y2, x1 /=x2, y1 /=y2. Since by Theorem 2.4(c) and Λt is log-convex, we can
set in (2.16) ϕ(x) = logΛt, x1 = s, x2 = t, y1 = u, and y2 = v. We get

logΛt − logΛs

t − s
≤ logΛv − logΛu

v − u
, (2.17)

from which (2.15) follows.

Theorem 2.6. Let x and y be two positive decreasing n-tuples, let p = (p1, . . . , pn) be a real n-tuple
and let

λt = λt(x,y;p) :=
n∑

i=1

piϕt

(
yi

) −
n∑

i=1

piϕt(xi) (2.18)

such that conditions (1.10) are satisfied and λt is positive.
Then the following statements are valid.

(a) For every n ∈ N and s1, . . . , sn ∈ R, the matrix [λ(si+sj )/2]
n
i,j=1

is a positive semidefinite
matrix. Particularly

det
[
λ(si+sj )/2

]k

i,j=1
≥ 0 (2.19)

for k = 1, . . . , n.

(b) The function s �→ λs is exponentially convex.

(c) The function s �→ λs is log-convex on R and the following inequality holds for −∞ < r <
s < t < ∞:

λt−rs ≤ λt−sr λs−rt . (2.20)

Proof. As in the proof of Theorem 2.4, we use Theorem 1.5 instead of Theorem 1.3.

Theorem 2.7. Let λt be defined as in Theorem 2.6 and t, s, u, v ∈ R such that s ≤ u, t ≤ v, s /= t, and
u/=v. Then

(
λt
λs

)1/(t−s)
≤
(
λv
λu

)1/(v−u)
. (2.21)

Proof. Similar to the proof of Theorem 2.5.

3. Cauchy Means

Let us note that (2.15) and (2.21) have the form of some known inequalities between means
(e.g., Stolarsky means, Gini means, etc). Here we will prove that expressions on both sides of
(2.15) and (2.21) are also means.
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Lemma 3.1. Let f ∈ C2(I), I interval in R, be such that

m ≤ f ′′(x) ≤ M. (3.1)

Consider the functions φ1, φ2 defined as

φ1(x) =
Mx2

2
− f(x),

φ2(x) = f(x) − mx2

2
,

(3.2)

then φi(x) for i = 1, 2 are convex.

Proof. Since

φ′′
1(x) = M − f ′′(x) ≥ 0,

φ′′
2(x) = f ′′(x) −m ≥ 0,

(3.3)

that is, φi for i = 1, 2 are convex.

Denote

I1 = [m1,M1], where m1 = min
{
mx, my

}
, M1 = max

{
Mx,My

}
. (3.4)

In the above expression, mx and my are the minimums of x and y, respectively. Similarly, Mx

and My are the maximums of x and y respectively.

Theorem 3.2. Let x and y be two positive n-tuples, y � x, all x[i]’s and y[i]’s are not equal, and
f ∈ C2(I1), with I1 being defined as in (3.4), then there exists ξ ∈ I1 such that

n∑

i=1

f
(
yi

) −
n∑

i=1

f(xi) =
f ′′(ξ)
2

{
n∑

i=1

yi
2 −

n∑

i=1

x2
i

}

. (3.5)

Proof. Since f ∈ C2(I1) and I1 is compact, then m1 ≤ f ′′(x) ≤ M1 for x ∈ I1. Then by applying
φ1 and φ2 defined in Lemma 3.1 for φ in Theorem 1.3, we have

n∑

i=1

φ1(xi) ≤
n∑

i=1

φ1
(
yi

)
,

n∑

i=1

φ2(xi) ≤
n∑

i=1

φ2
(
yi

)
,

(3.6)
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that is,

n∑

i=1

f
(
yi

) −
n∑

i=1

f(xi) ≤ M1

2

{
n∑

i=1

yi
2 −

n∑

i=1

x2
i

}

, (3.7)

n∑

i=1

f
(
yi

) −
n∑

i=1

f(xi) ≥ m1

2

{
n∑

i=1

yi
2 −

n∑

i=1

x2
i

}

. (3.8)

By combining (3.7) and (3.8)

m1 ≤ 2

(∑n
i=1 f
(
yi

) −∑n
i=1 f(xi)

∑n
i=1 yi

2 −∑n
i=1 xi

2

)

≤ M1. (3.9)

∑n
i=1 yi

2 −∑n
i=1 xi

2 /= 0 because x[i] /=y[i], for i = 1, . . . , n by using Remark 1.4. Using the fact
that for m1 ≤ ρ ≤ M1, there exists ξ ∈ I1 such that f ′′(ξ) = ρ, we get (3.5).

Theorem 3.3. Let x and y be two positive n-tuples, y � x, all x[i]’s and y[i]’s are not equa,and
f, g ∈ C2(I1), with I1 being defined as in (3.4), then there exists ξ ∈ I1 such that

∑n
i=1 f
(
yi

) −∑n
i=1 f(xi)

∑n
i=1 g
(
yi

) −∑n
i=1 g(xi)

=
f ′′(ξ)
g ′′(ξ)

, (3.10)

provided that g ′′(x)/= 0 for every x ∈ I1.

Proof. Let a function k ∈ C2(I1) be defined as

k = c1f − c2g, (3.11)

where c1 and c2 are defined as

c1 =
n∑

i=1

g
(
yi

) −
n∑

i=1

g(xi),

c2 =
n∑

i=1

f
(
yi

) −
n∑

i=1

f(xi).

(3.12)

Then, using Theorem 3.2 with f = k, we have

0 =
(

c1
f ′′(ξ)
2

− c2
g ′′(ξ)
2

){ n∑

i=1

yi
2 −

n∑

i=1

xi
2

}

. (3.13)

Since

n∑

i=1

yi
2 −

n∑

i=1

xi
2
/= 0, (3.14)
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therefore, (3.13) gives

c2
c1

=
f ′′(ξ)
g ′′(ξ)

. (3.15)

After putting values, we get (3.10). The denominator of left-hand side is nonzero by using
f = g in Theorem 3.2.

Corollary 3.4. Let x and y be two positive n-tuples such that y � x and all x[i]’s and y[i]’s are not
equal, then for −∞ < s/= t /= 0, 1/= s < +∞ there exists ξ ∈ I1, with I1 being defined as in (3.4), such
that

ξt−s =
s(s − 1)
t(t − 1)

∑n
i=1 yi

t −∑n
i=1 xi

t

∑n
i=1 yi

s −∑n
i=1 xi

s
. (3.16)

Proof. Setting f(x) = xt and g(x) = xs, t /= s /= 0, 1 in (3.10), we get (3.16).

Remark 3.5. Since the function ξ �→ ξt−s is invertible, then from (3.16)we have

m1 ≤
{
s(s − 1)
t(t − 1)

∑n
i=1 yi

t −∑n
i=1 xi

t

∑n
i=1 yi

s −∑n
i=1 xi

s

}1/(t−s)
≤ M1. (3.17)

In fact, similar result can also be given for (3.10). Namely, suppose that f ′′/g ′′ has
inverse function. Then from (3.10), we have

ξ =
(
f ′′

g ′′

)−1(∑n
i=1 f
(
yi

) −∑n
i=1 f(xi)

∑n
i=1 g
(
yi

) −∑n
i=1 g(xi)

)

. (3.18)

So, we have that the expression on the right-hand side of (3.18) is also a mean. By the
inequality (3.17), we can consider for positive n-tuples x and y such that y � x,

Mt,s =
(
Λt

Λs

)1/(t−s)
(3.19)

for −∞ < s/= t < +∞, as means in broader sense. Moreover we can extend these means in
other cases. So passing to the limit, we have

Ms,s = exp
(∑n

i=1 yi
s logyi −

∑n
i=1 xi

s logxi
∑n

i=1 yi
s −∑n

i=1 xi
s

− 2s − 1
s(s − 1)

)

, s /= 0, 1,

M0,0 = exp

( ∑n
i=1 log

2yi −
∑n

i=1 log
2xi

2
[∑n

i=1 logyi −
∑n

i=1 logxi

] + 1

)

,

M1,1 = exp

( ∑n
i=1 yilog

2yi −
∑n

i=1 xilog
2xi

2
[∑n

i=1 yi logyi −
∑n

i=1 xi logxi

] − 1

)

.

(3.20)
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Theorem 3.6. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following inequality is valid:

Mt,s ≤ Mu,v. (3.21)

Proof. Since Λs is log-convex, therefore by (2.15)we get (3.21).

Theorem 3.7. Let x and y be two positive decreasing n-tuples, let p be a real n-tuple such that
conditions (1.10) are satisfied, λt is positive defined as in Theorem 2.6, and f ∈ C2(I1), with I1 being
defined as in (3.4), then there exists ξ ∈ I1 such that

n∑

i=1

pif
(
yi

) −
n∑

i=1

pif(xi) =
f ′′(ξ)
2

{
n∑

i=1

piyi
2 −

n∑

i=1

pix
2
i

}

, (3.22)

Proof. As in the proof of Theorem 3.2, we use Theorem 1.5 instead of Theorem 1.3.

Theorem 3.8. Let x and y be two positive decreasing n-tuples, p be a real n-tuple such that conditions
(1.10) are satisfied, λt is positive defined as in Theorem 2.6 and f, g ∈ C2(I1), I1 is defined as in (3.4).
Then there exists ξ ∈ I1 such that

∑n
i=1 pif

(
yi

) −∑n
i=1 pif(xi)

∑n
i=1 pig

(
yi

) −∑n
i=1 pig(xi)

=
f ′′(ξ)
g ′′(ξ)

. (3.23)

provided that g ′′(x)/= 0 for every x ∈ I1.

Proof. Similar to the proof of Theorem 3.3.

Corollary 3.9. Let x and y be two positive decreasing n-tuples, let p be a real n-tuple such
that conditions (1.10) are satisfied and λt is positive defined as in Theorem 2.6, then for −∞ <
s/= t /= 0, 1/= s < +∞ there exists ξ ∈ I1, with I1 being defined as in (3.4), such that

ξt−s =
s(s − 1)
t(t − 1)

∑n
i=1 piyi

t −∑n
i=1 pixi

t

∑n
i=1 piyi

s −∑n
i=1 pixi

s
. (3.24)

Proof. Setting f(x) = xt and g(x) = xs, t /= s /= 0, 1 in (3.23), we get (3.24).

Remark 3.10. Since the function ξ �→ ξt−s is invertible, then from (3.24) we have

m1 ≤
{
s(s − 1)
t(t − 1)

∑n
i=1 piyi

t −∑n
i=1 pixi

t

∑n
i=1 piyi

s −∑n
i=1 pixi

s

}1/(t−s)
≤ M1. (3.25)

In fact, similar result can also be given for (3.23). Namely, suppose that f ′′/g ′′ has
inverse function. Then from (3.23), we have

ξ =
(
f ′′

g ′′

)−1(∑n
i=1 pif

(
yi

) −∑n
i=1 pif(xi)

∑n
i=1 pig

(
yi

) −∑n
i=1 pig(xi)

)

. (3.26)
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So, we have that the expression on the right-hand side of (3.26) is also a mean. By the
inequality (3.25), we can consider for positive n-tuples x and y such that conditions (1.10)
are satisfied, and

M̃t,s =
(
λt
λs

)1/(t−s)
(3.27)

for −∞ < s/= t < +∞, as means in broader sense. Moreover we can extend these means in
other cases. So passing to the limit, we have

M̃s,s = exp
(∑n

i=1 pi yi
s logyi −

∑n
i=1 pixi

s logxi
∑n

i=1 piyi
s −∑n

i=1 pixi
s

− 2s − 1
s(s − 1)

)

, s /= 0, 1.

M̃0,0 = exp

( ∑n
i=1 pilog

2yi −
∑n

i=1 pilog
2xi

2
(∑n

i=1 pi logyi −
∑n

i=1 pi logxi

) + 1

)

.

M̃1,1 = exp

( ∑n
i=1 piyilog

2yi −
∑n

i=1 pixilog
2xi

2
(∑n

i=1 piyi logyi −
∑n

i=1 pixi logxi

) − 1

)

.

(3.28)

Theorem 3.11. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following inequality is valid:

M̃t,s ≤ M̃u,v. (3.29)

Proof. Since λs is log-convex, therefore by (2.21)we get (3.29).

4. Some Related Results

Let x(τ), y(τ) be real valued functions defined on an interval [a, b] such that
∫s
a x(τ)dτ ,∫s

a y(τ)dτ both exist for all s ∈ [a, b].

Definition 4.1 (see [1, page 324]). y(τ) is said to majorize x(τ), in symbol, y(τ) � x(τ), for
τ ∈ [a, b] if they are decreasing in τ ∈ [a, b] and

∫s

a

x(τ)dτ ≤
∫s

a

y(τ)dτ for s ∈ [a, b], (4.1)

and equality in (4.1) holds for s = b.

The following theorem can be regarded as a majorization theorem in integral case [1,
page 325].
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Theorem 4.2. y(τ) � x(τ) for τ ∈ [a, b] iff they are decreasing in [a, b] and

∫b

a

φ(x(τ))dτ ≤
∫b

a

φ
(
y(τ)

)
dτ (4.2)

holds for every φ that is continuous, and convex in [a, b] such that the integrals exist.

The following theorem is a simple consequence of Theorem 12.14 in [8] (see also [1,
page 328]):

Theorem 4.3. Let x(τ), y(τ) : [a, b] → R, x(τ) and y(τ) are continuous and increasing and let
G : [a, b] → R be a function of bounded variation.

(a) If

∫b

ν

x(τ)dG(τ) ≤
∫b

ν

y(τ)dG(τ) for every ν ∈ [a, b], (4.3)

∫b

a

x(τ)dG(τ) =
∫b

a

y(τ)dG(τ) (4.4)

hold, then for every continuous convex function f , one has

∫b

a

f(x(τ))dG(τ) ≤
∫b

a

f
(
y(τ)

)
dG(τ). (4.5)

(b) If (4.3) holds, then (4.5) holds for every continuous increasing convex function f .

Theorem 4.4. Let x(τ) and y(τ) be two positive functions defined on an interval [a, b], decreasing
in [a, b], y(τ) � x(τ),

βt
(
x(τ);y(τ)

)
:=
∫b

a

ϕt

(
y(τ)

)
dτ −

∫b

a

ϕt(x(τ))dτ, (4.6)

and βt is positive.
Then the following statements are valid.

(a) For every n ∈ N and s1, . . . , sn ∈ R, the matrix [β(si+sj )/2]
n

i,j=1
is a positive semidefinite

matrix. Particularly

det
[
β(si+sj )/2

]k

i,j=1
≥ 0 (4.7)

for k = 1, . . . , n.

(b) The function s �→ βs is exponentially convex.
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(c) The function s �→ βs is log-convex on R and the following inequality holds for −∞ < r <
s < t < ∞ :

βt−rs ≤ βt−sr βs−rt . (4.8)

Proof. As in the proof of Theorem 2.4, we use Theorem 4.2 instead of Theorem 1.3.

Theorem 4.5. Let βt be defined as in Theorem 4.4 and t, s, u, v ∈ R such that s ≤ u, t ≤ v, s /= t, and
u/=v. Then

(
βt
βs

)1/(t−s)
≤
(
βv
βu

)1/(v−u)
. (4.9)

Proof. Similar to the proof of Theorem 2.5.

Denote

I2 = [m2,M2], where m2 = min
{
mx(τ), my(τ)

}
, M2 = max

{
Mx(τ),My(τ)

}
. (4.10)

In the above expression, mx(τ) and my(τ) are the minimums of x(τ) and y(τ), respectively.
Similarly, Mx(τ) and My(τ) are the maximums of x(τ) and y(τ), respectively.

Theorem 4.6. Let x(τ) and y(τ) be two positive decreasing functions in [a, b] such that y(τ) �
x(τ), βt is positive defined as in Theorem 4.4, and f ∈ C2(I2), with I2 being defined as in (4.10), then
there exists ξ ∈ I2 such that

∫b

a

f
(
y(τ)

)
dτ −

∫b

a

f(x(τ))dτ =
f ′′(ξ)
2

{∫b

a

y2(τ)dτ −
∫b

a

x2(τ)dτ

}

. (4.11)

Proof. As in the proof of Theorem 3.2, we use Theorem 4.2 instead of Theorem 1.3.

Theorem 4.7. Let x(τ) and y(τ) be two positive decreasing functions in [a, b] such that y(τ) �
x(τ), βt is positive defined as in Theorem 4.4, and f, g ∈ C2(I2), with I2 being defined as in (4.10).
Then there exists ξ ∈ I2 such that

∫b
a f
(
y(τ)

)
dτ − ∫ba f(x(τ))dτ

∫b
a g
(
y(τ)

)
dτ − ∫ba g(x(τ))dτ

=
f ′′(ξ)
g ′′(ξ)

, (4.12)

provided that g ′′(z)/= 0 for every z ∈ I2.

Proof. Similar to the proof of Theorem 3.3.
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Corollary 4.8. Let x(τ) and y(τ) be two positive decreasing functions in [a, b] such that y(τ) �
x(τ) and βt is positive defined as in Theorem 4.4, then for −∞ < s/= t /= 0, 1/= s < +∞ there exists
ξ ∈ I2, with I2 being defined as in (4.10), such that

ξt−s =
s(s − 1)
t(t − 1)

∫b
a y

t(τ)dτ − ∫ba xt(τ)dτ
∫b
a y

s(τ)dτ − ∫ba xs(τ)dτ
. (4.13)

Proof. Set f(x) = xt and g(x) = xs, t /= s /= 0, 1 in (4.12), we get (4.13).

Remark 4.9. Since the function ξ �→ ξt−s is invertible, then from (4.13)we have

m2 ≤
⎧
⎨

⎩

s(s − 1)
t(t − 1)

∫b
a y

t(τ)dτ − ∫ba xt(τ)dτ
∫b
a y

s(τ)dτ − ∫ba xs(τ)dτ

⎫
⎬

⎭

1/(t−s)

≤ M2. (4.14)

In fact, similar result can also be given for (4.12). Namely, suppose that f ′′/g ′′ has
inverse function. Then from (4.12), we have

ξ =
(
f ′′

g ′′

)−1
⎛

⎝

∫b
a f
(
y(τ)

)
dτ − ∫ba f(x(τ))dτ

∫b
a g
(
y(τ)

)
dτ − ∫ba g(x(τ))dτ

⎞

⎠. (4.15)

So, we have that the expression on the right-hand side of (4.15) is also a mean. By the
inequality (4.14), we can consider for positive functions x(τ) and y(τ) such that y(τ) � x(τ),
and

M̂t,s =
(
βt
βs

)1/(t−s)
(4.16)

for −∞ < s/= t < +∞, as means in broader sense. Moreover we can extend these means in
other cases. So passing to the limit, we have

M̂s,s = exp

⎛

⎝

∫b
a y

s(τ) logy(τ)dτ − ∫ba xs(τ) logx(τ)dτ
∫b
a y

s(τ)dτ − ∫ba xs(τ)dτ
− 2s − 1
s(s − 1)

⎞

⎠, s /= 0, 1,

M̂0,0 = exp

⎛

⎜
⎝

∫b
a log

2y(τ)dτ − ∫ba log2x(τ)dτ
2
[∫b

a logy(τ)dτ − ∫ba logx(τ)dτ
] + 1

⎞

⎟
⎠,

M̂1,1 = exp

⎛

⎜
⎝

∫b
a y(τ)log

2y(τ)dτ − ∫ba x(τ)log2x(τ)dτ
2
[∫b

a y(τ) logy(τ)dτ − ∫ba x(τ) logx(τ)dτ
] − 1

⎞

⎟
⎠.

(4.17)
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Theorem 4.10. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following inequality is valid:

M̂t,s ≤ M̂u,v. (4.18)

Proof. Since βs is log-convex, therefore by (4.9) we get (4.18).

Theorem 4.11. Let x(τ), y(τ) : [a, b] → R, x(τ) and y(τ) are positive, continuous, and increasing
and let G : [a, b] → R be a function of bounded variation. Also let

Γt
(
x(τ), y(τ); G(τ)

)
:=
∫b

a

ϕt

(
y(τ)

)
dG(τ) −

∫b

a

ϕt(x(τ))dG(τ), (4.19)

such that conditions (4.3) and (4.4) are satisfied and Γt is positive.
Then the following statements are valid.

(a) For every n ∈ N and s1, . . . , sn ∈ R, the matrix [Γ(si+sj )/2]
n
i,j=1

is a positive semidefinite
matrix. Particularly

det
[
Γ(si+sj )/2

]k

i,j=1
≥ 0 (4.20)

for k = 1, . . . , n.

(b) The function s �→ Γs is exponentially convex.

(c) The function s �→ Γs is log-convex on R and the following inequality holds for −∞ < r <
s < t < ∞ :

Γt−rs ≤ Γt−sr Γs−rt . (4.21)

Proof. As in the proof of Theorem 2.4, we use Theorem 4.3 instead of Theorem 1.3.

Theorem 4.12. Let Γt be defined as in Theorem 4.11 and t, s, u, v ∈ R such that s ≤ u, t ≤ v, s /= t,
and u/=v. Then

(
Γt
Γs

)1/(t−s)
≤
(
Γv
Γu

)1/(v−u)
. (4.22)

Proof. Similar to the proof of Theorem 2.5.

Theorem 4.13. Let x(τ) and y(τ) be positive, continuous, and increasing functions in [a, b] such
that conditions (4.3) and (4.4) are satisfied, Γt is positive defined as in Theorem 4.11, f ∈ C2(I2),with
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I2 being defined as in (4.10), and G : [a, b] → R be a function of bounded variation, then there exists
ξ ∈ I2 such that

∫b

a

f
(
y(τ)

)
dG(τ) −

∫b

a

f(x(τ))dG(τ) =
f ′′(ξ)
2

{∫b

a

y2(τ)dG(τ) −
∫b

a

x2(τ)dG(τ)

}

. (4.23)

Proof. As in the proof of Theorem 3.2, we use Theorem 4.3 instead of Theorem 1.3.

Theorem 4.14. Let x(τ) and y(τ) be positive, continuous and increasing functions in [a, b] such
that conditions (4.3) and (4.4) are satisfied, G : [a, b] → R be a function of bounded variation, Γt is
positive defined as in Theorem 4.11, and f, g ∈ C2(I2), with I2 being defined as in (4.10). Then there
exists ξ ∈ I2 such that

∫b
a f
(
y(τ)

)
dG(τ) − ∫ba f(x(τ))dG(τ)

∫b
a g
(
y(τ)

)
dG(τ) − ∫ba g(x(τ))dG(τ)

=
f ′′(ξ)
g ′′(ξ)

, (4.24)

provided that g ′′(z)/= 0 for every z ∈ I2.

Proof. Similar to the proof of Theorem 3.3.

Corollary 4.15. Let x(τ) and y(τ) be positive, continuous, and increasing functions in [a, b] such
that conditions (4.3) and (4.4) be satisfied, Γt is positive defined as in Theorem 4.11, and G : [a, b] →
R be a function of bounded variation, then for −∞ < s/= t /= 0, 1/= s < +∞ there exists ξ ∈ I2, with I2
being defined as in (4.10), such that

ξt−s =
s(s − 1)
t(t − 1)

∫b
a y

t(τ)dG(τ) − ∫ba xt(τ)dG(τ)
∫b
a y

s(τ)dG(τ) − ∫ba xs(τ)dG(τ)
. (4.25)

Proof. Setting f(x) = xt and g(x) = xs, t /= s /= 0, 1 in (4.24), we get (4.25).

Remark 4.16. Since the function ξ �→ ξt−s is invertible, then from (4.25) we have

m2 ≤
⎧
⎨

⎩

s(s − 1)
t(t − 1)

∫b
a y

t(τ)dG(τ) − ∫ba xt(τ)dG(τ)
∫b
a y

s(τ)dG(τ) − ∫ba xs(τ)dG(τ)

⎫
⎬

⎭

1/(t−s)

≤ M2. (4.26)

In fact, similar result can also be given for (4.24). Namely, suppose that f ′′/g ′′ has
inverse function. Then from (4.24), we have

ξ =
(
f ′′

g ′′

)−1
⎛

⎝

∫b
a f
(
y(τ)

)
dG(τ) − ∫ba f(x(τ)) dG(τ)

∫b
a g
(
y(τ)

)
dG(τ) − ∫ba g(x(τ)) dG(τ)

⎞

⎠. (4.27)
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So, we have that the expression on the right-hand side of (4.27) is also a mean. By the
inequality (4.26), we can consider for positive functions x(τ) and y(τ) such that conditions
(4.3) and (4.4) are satisfied, and

Mt,s =
(
Γt
Γs

)1/(t−s)
(4.28)

for −∞ < s/= t < +∞, as means in broader sense. Moreover we can extend these means in
other cases. So passing to the limit, we have

Ms,s = exp

⎛

⎝

∫b
a y

s(τ) logy(τ)dG(τ) − ∫ba xs(τ) logx(τ)dG(τ)
∫b
a y

s(τ)dG(τ) − ∫ba xs(τ)dG(τ)
− 2s − 1
s(s − 1)

⎞

⎠, s /= 0, 1,

M0,0 = exp

⎛

⎜
⎝

∫b
a log

2y(τ)dG(τ) − ∫ba log2x(τ)dG(τ)

2
[∫b

a logy(τ)dG(τ) − ∫ba logx(τ)dG(τ)
] + 1

⎞

⎟
⎠,

M1,1 = exp

⎛

⎜
⎝

∫b
a y(τ)log

2y(τ)dG(τ) − ∫ba x(τ)log2x(τ)dG(τ)

2
[∫b

a y(τ) logy(τ)dG(τ) − ∫ba x(τ) logx(τ)dG(τ)
] − 1

⎞

⎟
⎠.

(4.29)

Theorem 4.17. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following inequality is valid:

Mt,s ≤ Mu,v. (4.30)

Proof. Since Γs is log-convex, therefore by (4.22) we get (4.30).

Remark 4.18. Let x =
∑n

i=1 piyi/
∑n

i=1 pi such that pi > 0 and
∑n

i=1 pi = 1. If we substitute in
Theorem 2.6 (x1;x2; . . . ;xn) = (x;x; . . . ;x), we get (1.2). In fact in such results we have that y
is monotonic n-tuple. But since the weights are positive, our results are also valid for arbitrary
y.
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