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We present a new method to study analytic inequalities involving n variables. Regarding its
applications, we proved some well-known inequalities and improved Carleman’s inequality.

1. Monotonicity Theorems

Throughout this paper, we denote R the set of real numbers and R, the set of strictly positive
real numbers, n e N, n > 2.
In this section, we present the main results of this paper.

Theorem 1.1. Suppose that a,b € R with a < band c € [a,b], f : [a,b]" — R has continuous
partial derivatives and

D, = {(xl,xz,...,xn,l,c)|1min {xx} >c¢, x, = max {xk}7éc}, m=12,...,n-1.

<k<n-1 1<k<n-1
(1.1)
IFOf(x) /0%y > 0 forallx € Dy (m=1,2,...,1 1), then
f(y1,y2,-.., Yn1,¢) 2 f(c,c,...c0), (1.2)

forall y,, € [c,b] (m=1,2,...,n-1).
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Proof. Without loss of generality, since we assume that n =3 and y; > 1> > c.
For x1 € [y2, 1], we clearly see that (x1, 15, ¢) € D, then

of (x)

6x1

> 0. (1.3)

x=(x1,Y2,€)

From the continuity of the partial derivatives of f and

of (x)

o, >0, (1.4)

x=(Y2,Y2,€)

we know that there exists € > 0 such that 1, — € > c and

0f(x)

6x1

>0, (1.5)

x=(x1,2,€)

for any x1 € [y2 — €, 12]. Hence, since f (-, y2,¢) : x1 € [y2 —€,y1] — f(x1,Y2,¢) is strictly
monotone increasing, then we have

fyi,y2,¢) > f(y2,y2,¢) > f(y2 - & 2, ). (1.6)

Next, for x € [y2 — €, 2], then (y2 — €,x2,¢) € D; and

of (x)
0x x=(y2-€,22,0) 70 1.7
Hence, we get
f(y1,y2,¢) > f(y2,y2.¢) > f(ya— & y2,0) > f(y2 - &, y2 - £,). (1.8)

If y» — € = ¢, then Theorem 1.1 is true. Otherwise, we repeat the above process and we clearly
see that the first and second variables in f are decreasing and no less than c. Let s,t be
their limit values, respectively, then f(y1,y2,¢) > f(s,t,c) and s,t > c. If s = ¢,t = ¢, then
Theorem 1.1 is also true; otherwise, we repeat the above process again and denote p and g
the greatest lower bounds for the first and the second variables , respectively. We clearly see
that p = q = ¢; therefore, f(y1,y2,¢) > f(c,c,c) and Theorem 1.1 is true. O

Similarly, we have the following theorem.
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Theorem 1.2. Suppose that a,b € R with a < band c € [a,b], f : [a,b]" — R has continuous
partial derivatives and

| max (xi) <6 %= min () £c), m=12.01 (19)

Em = {(xlfoI cee s Xn-1, C)

IFOF(x) /0% <0 for allx € Ep (m=1,2,...,n 1), then
f(ylryZI‘- -1yn—1rC) > f(cl c, . "CIC)I (110)

forall y, € [a,c] m=1,2,...,n-1).
It follows from Theorems 1.1 and 1.2 that we get the following Corollaries 1.3-1.6.

Corollary 1.3. Suppose that a,b € Rwitha <b, f : [a,b]" — R has continuous partial derivatives
and

D,, = {xz (x1,%2,...,%,) | a < min{xx} < x,, = max{xy} Sb}, m=1,2,...,n. (1.11)
1<k<n 1<k<n

Ifof(x)/0xm >0 forallx € Dyyand m=1,2,...,n, then
f(xll X2, '/xn) 2 f(xmin/ Xminy - - -/xmin)/ (112)

forall x,, € [a,b] (m=1,2,...,1n) With Xmin = Minj<k<n { Xk}

Corollary 1.4. Suppose a,b € R with a < b, then

D = {x = (x1,%2,..., %) | a < min {xg} < x; = max{xx} < b}, (1.13)
1<k<n 1<k<n

and f : [a,b]" — R is symmetric with continuous partial derivatives. If df (x)/0x1 > 0 for all
x = (x1,%2,...,x,) € Dy, then

fx1,x2,..., %) 2 f (Xmin, Xmin, - - - Xmin), (1.14)

where Xmin = Minj<x<n { Xk }. Equality holds if and only if x1 = xp = -+ = xy,.

Corollary 1.5. Suppose a,b € Rwitha <b, f : [a,b]" — R has continuous partial derivatives and

Ep = {x = (e, x) | @< o = min () < max [x) < b}. (1.15)
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Ifof(x)/oxm <0forallx € Eand m=1,2,...,n, then
f(xll X2, -1xn) 2 f(xmaxr Xmaxy - '/xmax)r (116)

where Xmax = MaXi<k<n{ Xk }. Equality holds if and only if x1 = xp = -+ - = x.

Corollary 1.6. Suppose a,b € R with a < b, then

E,= {x =(x1,%2,...,%Xn) | a <x, = min {x;} < max{xk} < b}, (1.17)
1<ksn 1<ksn

and f : [a,b]" — R is symmetric with continuous partial derivatives . If f (x)/0x, < 0 for all
x = (x1,%2,...,%,) € Ey, then

f(xlr X2, /xn) 2 f(xmaxr Xmaxs - - - /xmax)/ (118)
where Xmax = MaXi<k<y{ Xk }. Equality holds if and only if x1 = xp = -+ = xy.

2. Unifying Proof of Some Well-Known Inequality

In this section, we denote a = (ay, az, ..., an), Amin = MiN1<k<y { Ak}, Amax = Maxi<k<n {ax}, and

Dy, ={a| am = amax > Amin >0}, m=1,2,...,n (2.1)

Proposition 2.1 (Power Mean Inequality). If the power mean M,(a) of order r is defined by
M,(a) = (1/n) 31, a{)l/r for r#0 and My(a) = H?:la}/", then M,(a) > M;(a) forr > s;
equality holds if and only if ay = a» = -+ - = a,.

Proof. It is well known that M, (a) is symmetric with respect to aj, as,...,a, and r — M, (a)
is continuous. Without loss of generality, we assume that r, s #0. Then

1 S al 1 i a;
=-In{ &=L ) --In &£ R}
f(a) p n( P ) S n< P , a€eRY,

of(a)  aj”! as!
0 Sha; Xiha
(e -asta)) S, aya[(an/a) - 1]

Sia il a; Sia il a;

(2.2)
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If a € Dy, then 0f(a)/0ay > 0. It follows from Corollary 1.4 that we get

f(alr az,..., an) 2 f(amin/ Aminy -+« amin)/

n.oar 1/r noas /s (23)
<z,;11a,-> 2<ZTM"> , M,(@) > M, (a).

Equality holds if and only if a; = ay = --- = a,. O

Proposition 2.2 (Holder Inequality). Suppose that (x1,x2,...,%), (Y1, Y2,---,Yn) € R} (p,q >

1).If1/p+1/q=1, then
n 1/p n 1/q
(in> <Zyz> 2 ZXkyk- (2.4)
k=1 k=1

k=1

=

Proof. Letb = (by,bs,...,b,) € R} and

n Vp / n Va  n
f rac Rf — <Zbk> (Zbkak> - Zbkallc/q/ ac Rf. (2-5)
k=1 k=1

k=1

If a € Dy, then

af(a) 1 1/p< n >1/q 1 1/q )
= b b - —b
da; <Z > b q

/e[ / » 1/p 1/p7]
= —bl - p<2bkak> <Zbk> 1/p <Zbkak>
= ) (2.6)

n -1/p T n 1/p n 1/p7
> G]b a_l/p <Zbkak> <Zbk> ai/p - <Zbka1>
k=1 k=1

k=1

=0.
Similarly, ifa € D, (m=2,3,...,n), then 0f(a)/0a,, > 0. From Theorem 1.1, we get

f(al/ az,..., an) > f(amin/ Aminy -+« s amin)/

N VI (2.7)
(5) ()" o
k=1 k=1

k=1

Therefore, Proposition 2.2 follows from aj = yz / xZ and by = xi. O
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Proposition 2.3 (Minkowski Inequality). Suppose that (x1,x2,...,%n),(Y1, Y2, ..., Yn) € REIf

p > 1, then
n 1/p n 1/p n 1/p
<in> + <Zyz> > <Z(xk + yk)p> . (2.8)
k=1 k=1 k=1

Proof. Letb = (by,bs,...,b,) € R} and

n 1/p 1/p
f rac Rf — <Zbkak> <Zbk< UP ) > , ae€ Rf. (2.9)
k=1

If a € Dy, then
of@@ _1, zn:bkak 1/p-1 1, p- 1< 1/p+1>p 1 Zbk< 1/p 1)17
aal p ! p 14
n 1/p-1 , , 1/p-1
by <Zbkak> (Zbk<ai/P + 1>P>
n 1-1/p 1-1/p
: [<Z bk( 1/’”+1) > —< 71/”) <Zbkak> ]
k=1

1 n 1/p-1 n y p 1/p-1
- b b P+l
p 1<kz; kak) <k§; (a”1) > (2:10)
Z 1/p p iy L 1/p 1/p -1/p\P -1p
: Zbk (ak + 1> - kzﬂbk< r ta. aq )

1/p-1

k=1
1 n 1/p-1 , , » 1/p-1
> ];bl <;bkak> (;bk<ai/lg +1> >
n Uy ) 1—1/p_ n , p Vp U\ 1-1/p
. kz_;bk<ak +1> kz_; k(ak +a, " a, )
=0.

Similarly, If a € D,, (m = 2,3,...,n), then 0f(a)/0a,, > 0. It follows from Theorem 1.1 that
we get

f(alr az,..., an) > f(aminr Aminy - -+, amin)/

<ébkak> ! <Zbk< p )>1/p‘<§bk>1/p- (211)

Therefore, Proposition 2.3 follows from aj = yz / xi and by = xZ. O
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3. A Brief Proof for Hardy’s Inequality

Ifa, >0 (neN, n>1)with X2, a) < +co, then the well-known Hardy’s inequality (see [1,

Theorem 326]) is

In this section, we establish the following result involving Hardy’s inequality.

Theorem 3.1. Letn e N,n>1,and ar >0 (ke N,k >1). If

then

and B,, = minj<x<, { by }. Let

Dm:{b|bm—max{bk}>mm{bk} 0}, m=1,2,...,n,

1<k<n 1<k<n

) n 1< '
f:be0,+0) *( >Zk 1/2 Z<E,Z( 1/2)1/p>.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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IfbeD,, (im=1,2,...,n), then

p-1
af(b)_ < p >P bpl p k b;
b, P\p-1) m-1/2 Z kp(m—1/2)"7 ];(J'—W)””

=m

p-1
PO 1) — - Sa (35—
> (m — 1/2)1/p p- 1 (m _ 1/2)1—1/P Igﬂkl’ 721 (] _ 1/2)1/p .

(3.6)

Making use of the well-known Hadamard’s inequality of convex functions, we get

k+1/2 1 p-1
L j B N
" <m (x-1/2)"7 >

® q
>
—1 - 1 o
__ pbn ( 14 )p 1 _< P >plzk(—2p+l)/p
m-1/2"7|\p-1/ m-1/2""V" \p-1/ &,
( p
p-

o) pth' ( p )” 1
Obm (m—1/2)1/’” pP-1/ m-1/2)\"V"

p-1 -1 w©
. Pb ( p )p 1 _ >p f £ C2H)/P gy
(m—1/2)1/” | p-1 (m—1/2)1—1/p m-1/2
=0.
(3.7)
Then Theorem 1.1 leads to
f(by,by,...,by) > f(By,By,...,Bn), (3.8)
and we clearly see that inequalities (3.4) and (3.3) are true. O

Corollary 3.2. Letne N, n>1,and ar >0 (keN, k>1).If

1 1/p
B, = 112{121{ <k - §> ak}, (3.9)

then

n n ’
(;%)péai—é(%g”"> (5t >Zk(2k n° (}7%1)? (310)
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Proof. From inequality (3.3), we clearly see that

p
p >pn bp n l k b]
<p—1 kz -1/2 g k;(] 1/2)1/P
p pn 1 n 1Ik+1/2 1 p
B, - — ——d
g [(P—1> ,;k—l/z ,;<k 12 (x-1/2)VP *

Bn<p?1)pkz:<k 1/2 11<> o1
- B"(pﬁ 1)ka:k<2k1— )
s

Remark 3.3. If n — +oo, then inequality (3.1) follows from inequality (3.10).

4. A Refinement of Carleman’s Inequality

Ifa, >0 (neN, n>1)with0< >7, a, < oo, then the well-known Carleman’s inequality is

o0 n 1/". [o'e)
> <Hak> <ed ay, (4.1)
n=1 k=1 n=1

with the best possible constant factor e (see [2]).
Recently, Yang and Debnath [3] gave a strengthened version of (4.1) as follows:

[e'e] n 1/n [e'e] 1
Zl<ﬂak> <3, (1- 5z ) (12)

Some other strengthened versions of (4.1) were given in [4-9]. In this section, we give a
refinement for Carleman’s inequality (see Corollary 4.4).

Lemma4.1. If m € Nand m > 1, then

2 1 & 1
e(l - 3m+7>a > é—k(k!)l/k’ (4.3)

2 1 1
e(l_ 3m+10)m+1 g ((m + 1))/ D (4.4)
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Proof. Let ¢s(m) = e(1-2/(Bm+7))(1/m)- 32 (1/k(k!)*/*), then inequality ¢s(1m) > ¢s(m+1)
is equivalent to inequality

_2m+2+ 2m . m+1
3m+7 3m+10 " e(mn)'/m

(4.5)

If 1 < m < 16, then simple computation leads to inequality (4.5).
If m > 17, then it is not difficult to verify that v/2orm > e’/3 and

\/232_7 > e(21m2+71m+70) /(9m2+39m+50). (4.6)

If x > 0, then e > (1 +1/x)%; this implies that

(4.7)

< 21m2 + 71m + 70
e > +(

(9m2+39m+50)m / (21m2+71m+70)
9m? + 39m + 50)m>

From inequalities (4.6) and (4.7), we get

20m? +71m+70 \
%27rm><1 me + m+0>’

" Om? + 39m + 50)m

(m+1)(3m+7)(3m+10) (4.8)

2 1/(2m) N ,
(2om) m(Om? + 39m + 50)

m+5+ 2m - m+1
3m+7 3m+10 m(Z.n'm)l/(zm) ’

From the well-known Stirling Formula m! = v2zxm(m/e)" exp(6y/12m) (0 < 6, < 1), we
get

m! > @(%)m (4.9)

Therefore, inequality (4.5) follows from inequalities (4.8) and (4.9).
From the monotonicity of sequence {¢(m)}>_; and lim,, . ..¢s(m) = 0, we get ¢(m) >
0; therefore, inequality (4.3) is proved.
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Meanwhile, we have

\V2mr(m+1) > e*/3,
/271'(111 + 1) > e(2m+2)/(3m+8),

) (3m+8)/2-(2m+2)/ (3m+8)
\V2mr(m+1) > (1 + CP— 8)

(2o (m + 1))/ Cm+2) 5

7

3m + 10
3m+8’

e(l— 2 > 1 - e
3m+10/ m+1 (m+1)(29r(m+1))1/(2m+2)'

Therefore, inequality (4.4) follows from inequalities (4.10) and

(m +1)! > \/27(m + 1)(’";r 1>m+1.

Theorem 4.2. Letne N, n>1,and ar >0 (k=1,2,...,n). If B, = mini<k<,{kax}, then

Z(gk—7)2<n> S (- ) bS]

Proof. Let by = kax, k=1,2,...,n,and b = (b1, by,...,b,),

{b | b, = mkax{bk} > mm{bk} >O} m=1,2,...,n,

<k<n

1/k
n 2 bk n 1 k
f:beR] —e ( > — 1 |bj , beRl
’ é 3k+7) k ; kzgf *

Then inequality (4.12) is equivalent to the following inequality:

where B,, = minj<k<, {bx}-

11

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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IfbeD,, (im=1,2,...,n), then

1/k
of (b) 2 1 &1 1 &
o, :e<l‘3m+7)a‘ZTm<THbI‘>

k=m j=1
2 1 &1 4.15)
1- - (4.
>e< 3m+7)m ,;nk(ky)l/k
2 1 & 1
se(l-222 ) -3 —
< 3m+7/)m ,gnk(k!)l/k

From inequality (4.3) and 0f (b)/0b,, > 0 together with Theorem 1.1, we clearly see that
f(bi,by,...,by) > f(By,By,...,By). (4.16)

Therefore, inequality (4.14) is proved. O

Corollary 4.3. Letne N, n>1,and a, >0 (k=1,2,...,n). If B, = minj<<, {kay}, then

1/k
n 2 n k 4
2 _ _E | | . Ze— 4.17
€k=1<1 3k+7>ak k=1<j—1a]> 2Bn<56 1>' ( )

Proof. Let T(m) = eI, (1 -2/Bk + 7))(1/k) = X", (1/(k)Y*) (m = 1,2,...,n), then
inequality (4.4) implies that {T(m)}/,_; is a strictly increasing sequence. Then from inequality
(4.12) we get

1/k
n 2 n k 4
eé (1— 3k+7)ak_z<:]l:[aj> > B,T(n) 2B,T(1) = Bn<§e_1>, (4.18)

k=1

Letn — +oo; thus, we know that Corollary 4.4 is true.

Corollary 44. Ifa, >0 neN,n>1) with0 < X7 a, < oo, then

1/n
[c] n [e] 2
$(11) <5052

n=1
Remark 4.5. Many other applications for Theorem 1.1 appeared in [10].
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