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We consider the interior regularity for weak solutions of second-order nonlinear elliptic systems
with subquadratic growth under natural growth condition. We obtain a general criterion for a
weak solution to be regular in the neighborhood of a given point. In particularly the regularity we
obtained is optimal.

1. Introduction

In this paper we consider optimal interior partial regularity for the weak solutions of
nonlinear elliptic systems with subquadratic growth under natural growth condition of the
following type:

n
- Do Af(x,u,Du) = Bi(x,u,Du), i=1,...,N inQ, (1.1)

a=1
where Q is a bounded domain in R", u and B; taking values in RV, and A¥(-,-,-) has value
in RN N >1,u:Qw~ RVDu = {Dyu'}, 1 <a <n 1<i< N stand for the div of u
and 1 < m < 2. To define weak solution to (1.1), one needs to impose certain structural and
regularity conditions on A{ and the inhomogeneity B;, as well as to restrict u to a particular

class of functions as follows, for 1 <m < 2,
(E1) A?(x,u,p) are differentiable functions in p and there exists L > 0 such that

0AY (x,u,p) (m-2)/2

ap‘é SL<1+ |P|2>

, Y(x,u,p) € QxRN x R"™N, (1.2)
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(E2) Af is uniformly strongly elliptic, that is, for some A > 0, we have

0A%(x,u,p) m-2)/2

. (
o g1+ fpf)" kP VxeQ ueRN, pEeRYN, (13
B

(E3) There exists f € (0,1) and K : [0,00) — [0, o0) monotone nondecreasing such that

5o tp) - Ax(R )| < ke (-2 + Je-8) e )™ a9

forallx,¥ € Q, ¢,¢é € RN, and p € R™N; without loss of generality, we take K > 1.

Furthermore (E1) allows us to deduce the existence of a function w(t,s) : [0,00) x
[0, 00) — [0, 00) with w(t,0) = 0 for all ¢ such that t — w(t, s) is monotone nondecreasing for
fixed s, s — w(t, s) is concave and monotone nondecreasing for fixed t, and such that for all
(x,u) € Qx RN and p,q € R"N, we have

ALy (e p) = AL (2, q)| <c(i+lpl*+ |q|2>(m72)/2w(|p|, lp-al), (15
(E4) there exist constants a and b, such that
|Bi(x,u,p)| < alp|" +b, (1.6)
or
(E4)
|Bi(x,u,p)] <C([p|" " +b), &>0. (1.7)

Definition 1.1. By a weak solution of (1.1) with structure assumptions (E1)-(E4) (or (E4')),
we mean a vector valued function u € W (Q, RN) n L*(Q, RN) such that

j Af(x,u, Du)Da(pidx :J Bi(x,u, Du)(pidx, (1.8)
Q Q

for all ¢ € C(Q, RN).

Even under reasonable assumptions on A and B;, in the case of systems (i.e., N >
1) one cannot, in general, expect that weak solutions of (1.1) will be classical, that is, C2-
solutions. This was first shown by De Giorgi [1, 2]. The goal, then, is to establish partial
regularity theory. We refer the reader to monographs of Giaquinta [3, 4] for an extensive
treatment of partial regularity theory for systems of the form (1.1), as well as more general
elliptic systems.
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In the class direct proofs, one “freezes the coefficients” with constant coefficients. The
solution of the Dirichlet problem associated to these coefficients with boundary data u and
the solution itself can then be compared. This procedure was first carried out by Giaquinta
and Modica [5].

But the technique of harmonic approximation is to show that a function which is
“approximately-harmonic” lies L?close to some harmonic function. This technique has its
origins in Simon’s proof [6] of the regularity theorem of Allard [7]. Which also be used in [8]
to find a so-called e-regularity theorem for energy minimizing harmonic maps. The technique
of harmonic approximation allows the author to simplify the original e-regularity theorem
due to Schoen and Uhlenbeck [9].

In the remarkable proof when m = 2 given by Duzaar and Grotowski in [10], the
key difference is that the solution is compared not to the solution of the Dirichlet problem
for the system with frozen coefficients, but rather to an A-harmonic function which is close
to w in L?, where w is a function corresponding from weak solutions. In particular, the
optimal regularity result can be obtained. In [11, 12], we deal with the optimal partial
regularity of the weak solution to (1.1) for the case m > 2 by the method of A-harmonic
approximation technique, which is advantage to the result of [13]. The extension of A-
harmonic approximation technique also can be found in [14, 15].

The purpose of this paper is to establish the optimal partial regularity of weak solution
to (1.1) under natural growth condition with subquadratic growth, that is, the case of
1 < m < 2, directly. Indeed the main difficulty in our setting is that the exponent of the
integral function is negative (-1/2 < (m —2)/2 < 0), which means we cannot use the amplify
technique as usually. Motivated by the technique used in [16], where the authors considered
the minimizers of nonquadratic functional, we removed the hinder at last. And then with the

help of «##-harmonic approximation technique, one can find a (0A{/ 6p;5)(x0, Usg,pr (D) 4 )=
harmonic function, which is close to a function w in sense of L?, the function w is which
we defined in Lemma 4.2 and which is a corresponding function from the weak solution u.
Thanks to the standard results of linear theory presented in Section 2 and the elementary

inequalities, we obtain the decay estimate of
@ (x0,p,p0) = Jj |V(Du) =V (po) |"dx (1.9)
Bp(x[))

and the optimal regularity. Now we may state the main result.

Theorem 1.2. Let u € W' (Q, RN) N L®(Q, RN) (m € (1,2)) be a weak solution of (1.1) with
supg|u| = M. Suppose that the natural growth conditions (E1)—(E4) (or (E4')) and 2aM < A hold.
Then there exists Qg that is open in Q and u € CY#(Qq, RN) for B is defined in (E3). Furthermore,

Q\ Q=3 5, (1.10)
where
31 =1 x9 € Q:liminf Du - (Du),, mdx >0¢,
P=0" J B, (x0) ’

(1.11)

.X'[),p

2 = {xo €eQ: 1imsup<|(Du)
p—0*

)==}

In particular, meas(Q2 '\ Qo) = 0.
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2. The #-Harmonic Approximation Technique and
Preliminary Lemmas

In this section, we present the «#/-harmonic approximation lemma, the key ingredient in
proving our regularity result, and some useful preliminaries will be need in later. At first,
we introduce two new functions.

Throughout the paper we will use the functions V =V, : R* — R"and W = W, :
R" — R" defined by

g 7
(1+122)*™"

4

W’ (2.1)

for each ¢ € R" and for any m > 1. From the elementary inequality

V@) = W) =

1202/ ey < llxlly <257 Dlix]ly 0, (2.2)

applied to the vector x = (1, |¢|*™) € R? we deduce that

) (2-m)/

(2.3)

2 (2-m)/2
< 1+ |§|2—m < 2m/2<1 + |§|2> m

(1+1eP

7

which immediately yields
W@l < V()] < Cm) W ()l (2.4)

The purpose of introducing W is the fact that in contrast to [V[>/™, the function [W|*/™
is a convex function on R¥. This can easily be shown as follows. Firstly a direct computation
yields that t — W2/™(t) = 2/m(1 + £27m)7/™ js convex and monotone increasing on [0, %)
with W2/™(0) = 0. Secondly we have

Pl ()

W <|§| + [n] )2/’" WD W ()" WP + W () [

< 4
- 2 2 2

(2.5)

forany ¢, € R™.
We use a number of properties of V = V,, which can be found in [17, Lemma 2.1].

Lemma 2.1. Let m € (1,2) and V,W : R* — R" be the functions defined in (2.1). Then for any
&, n € R"and t > 0 there holds:

(i) 1/v2min(|¢], [2[/2) < |V (¢)] < min(j¢], |¢[™/2);
(i) |V (t8)| < max(t, t"/?)|V (é)];
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(iii) [V(§ +m)| < c(m)([V(E)] + [V (m)]);
(iv) (m/2)1g = <|V(&) = VDI/ (L + &P + 1) 2" < Clk, m)lg - n;
W) V() -Vl < clk,m)[V(¢-mn)l;
(vi) [V(¢ = m)| < C(m, M)V (§) = V()] for all n with |n| < M.
The inequalities (i)—(iii) also hold if we replace V by W.
For later purposes we state the following two simple estimates which can easily be

deduced from Lemma 2.1(i) and (vi). For ¢, € R" with |7| < M we have for |¢ — 77| < 1 the
estimate

¢ - n]* < Cm, M)|V©E) - V()| (2.6)
as for |¢ — 77| > 1 we have
|2 -n|" < Cm, M|V () - V(). (2.7)

The next result we would state is the «#/-harmonic approximation lemma, which is
prove in [18].

Lemma 2.2 («#-harmonic approximation lemma). Let «, K be positive constants. Then for any
€ > 0 there exist & = 6(n, N, «x, K, ) € (0,1] with the following property. For any bilinear form <4 on
R"™ which is elliptic in the sense of Legendre-Hadamard with ellipticity constant x and upper bound
K, for any v € W'™(B,,(x0), RN) satisfying

Jf |W (Do)Pdx <y> <1,
By, (x0)

(2.8)
Jj #(Dv, Dy)dx < y6 sup |Dy|,
Bp(x()) Bp(-’CO)
for all ¢ € Cy(B,(x0), RN), there exists an #-harmonic function h satisfying
2 v—yh\? 2
[W(Dh)|"dx <1, w dx < y“e. (2.9)
By (x0) By (x0) P
Definition 2.3. Here a function h is called «#-harmonic if it satisfies
f 4 (Dh,Dy)dx =0, (2.10)
Bp(xo)

forall ¢ € C(l) (B, RN).

Then we would recall a simple consequence of the a prior estimates for solutions of
linear elliptic systems of second order with constant coefficients; see [17, Proposition 2.10]
for a similar result.
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Lemma 2.4. Let h € WY'(B,(x0), RN) be such that

f <4(Dh, Dy)dx =0, (2.11)
Bp(x())

for any ¢ € Cy(B,(x0), RN), where 4 € R™ is elliptic in the sense of Legendre-Hadamard with
ellipticity constant x and upper bound K. Then h € C*(B,(xo), RN) and

p sup D2h| + sup |Dh| < CQJ[ |Dh|dx, (2.12)
BP

Bp/a(x0) Bp/a(x0)
where the constant C, depends only on n, N, x, and K.
The next lemma is a more general version of [17, Lemma 2.7], which itself is an

extension of [3, Lemma 3.1, Chapter V]. The proof in which can easily be adapted to the
present situation by replacing the condition of homogeneity by Lemma 2.1(ii).

Lemma 2.5. Let 0 <v <1, a,b >0, v € LP(B,(x0)), and g be a nonnegative bounded function
satisfying
e
s—t
forall p/2 <t < s < p. Then there exists a constant C = C(v) such that

Dseoef,, ()

And then we state a Poincare type inequality involving the function V, which have
been found in [17] and, in a sharp way, in [18].

2
g(t) <vg(s) + af dx +b, (2.13)

By (xo)

2
dx + b>. (2.14)

p(x())

Lemma 2.6 (Poincare-type inequality). Let m € (1,2) and u € Wlf’"(Bp,RN ), By, CQ, then

Uu-—u m/ 1/m’
<Jf V<J>‘ dx> gcp(n,N,m)G
B, P B

where m' = 2n/(n — m). In particular, the previous inequality is valid with m’ replaced by 2.

1/2
|V(Du)|2dx> , (2.15)

P

We conclude the section with an algebraic fact can be retrieved again from [16],
Lemma 2.1.
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Lemma 2.7. For every t € (=1/2,0) and u > 0, one has

B ]ars(i-a)Yas

~12\} St
<y2+|A|2+|A' )

1<

(2.16)

forany A, A € R™, not both zero if p = 0.

3. A Caccioppoli Second Inequality

For xp € Q, ug € RN, py € R™N, we define P = {p;(x)}, i =1,--- ,N, p; = u}) + p}) (Xa — Xox)
and we simply write P = ug + po(x — xp).

In order to prove the main result, our first aim is to establish a suitable Caccioppoli
inequality.

Lemma 3.1 (Caccioppoli second inequality). Let u € W' (Q, RN) n L*(Q,RN) (1 < m < 2)
be a weak solution of (1.1) with supg|u| = M and 2aM < A hold under natural growth conditions
(E1)—(E4) (or (E4')). Then for every xo € Q, ug € RN, py € R™, and arbitrary p with 0 < p <
min{1,dist(x, 0Q)}, one has

V<u—uo—;;o(x—xo))

2
J[ |V(Du—p0)|2dx < C, I:J: dx+G], (3.1)
By /2(xp)

Bp(x())
for
G = [K (uol + [po]) (1 + [po])™"*]"p* + max{ [alpo]" +b]", [alpo]” +]"™" " " }p%. (3:2)

where o = max{2m/(m-2p), (m+2p)/(m—1)} > 2 and the constant C. = C.(n, N,m,L, A, M).

Proof. Let B,(x9) C Q. Choose p/2 <t < s < p and a standard cut off function 1 €
Cy(By(x0),[0,1]) with 77 = 1 on By(xo), which satisfies V| < 1/(s - t). For ug € RN and
po € RnN, let

v =u—1uy—po(x —xp) (3.3)
and define
¢=mno, ¢=(1-npo (34)
Then

Dy + D¢ = Dv = Du — py, (3.5)
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and further there holds

IDg|" < C<m><|Dv|m .

L|m>,- |Dg|™ < C(m)<|Dv|m + m>. (3.6)

s—t

s—t

Using hypothesis (E2), from Lemma 2.7, and as the elementary inequality
1 2 2 2 2 2 2
5(1 + 6] + | ) <1+laf+b-a §3<1+ la? +|b| ) (3.7)
we can get

[ G+ D) - A5 )| Dl
Bs(x(])

Bs(x())

0 aP;j
(3.8)

! 2\ (m-2)/2 )
zxf f (1+ |po +6Dg|*) d6|Dy| dx
BS(XO) 0

-2)/
>3m0 [ (1 o2+ D) " | Dy,
B (x0)

A simple calculation yields

-2)/2
3220 [ (14 po+ Do) " | Dy Pax
Bs(x())
g J‘ J‘l 0A%(x,u, Du - 6Dy)
a Bs(xﬂ) '

dODsg/' D' dx
. ap[; s’ Datp

- (ArGrup) - 47 () D
Bs(xo (3-9)

[ (ARG P = 47 o)) Dagl
Bs(x(])

+ f Bi(x,u, Du)(pidx
Bs(xU)

I+IT+IIT+1V.
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By (E1), Lemma 2.7 and (3.7), there holds

m-2)/2
ISCI <1+|Du|2+|Du—qu|2>( " |Dy| | Dy dx. (3.10)
Bs(x0)

Noting that suppDy C By \ B and -1/2 < (m —2)/2 < 0, one can take the domain
B (x0) into B, (x0) N {IDgs| > 1} 1 {|Dg]| > 1}, Bo(x0) N {|Dy| > 1)n{|Dyp| < 1}, B,(x0) N {|Dyp] <
1}n{|Dey| > 1}, and Bs(xo) N {|Dy| < 1}N{|Dy| < 1}, four parts, and then by Young inequality
and the estimations (2.6) and (2.7), thus there is

2
1<C <I |V(Du—po)|2dx+f V<9> dx>. (3.11)
By (x0)\Bi(x0) By (xo) P
From the structure condition (E3) yields
1< J K (Juo| + |po|) (1 + |po|) " * 10l | Dy | dx. (3.12)
Bs(x())

Similar to I, we split the domain of integration into four parts as follows. And on the
part Bs(xo) N {|v/s] > 1} N {|Dy| < 1}, we see

K (Juol + [po]) (1 + [po) ™ *[ol’ [ Dy
m 2
< e[ Dy|” + C(&) [K (juol + [po]) (1 + |po] )™ *Io¥

2m/ (m-2p) (3.13)
§5|D(p|2+C(£) ] /

z‘m +C(e) [K(|u0| + |po|) (1 + |p0|)m/2sﬂ
V(3)

as on the set Bs(x) N {|v/s| < 1} N {|Dey| > 1}, there are

2m/ (m-2p)
[

2
< £CIV (Do) + C(e) +C(e) [K (fuol + [pol) (1 + [po]) "2

K (Juo| + |po]) (1 + |po]) "™ * 10| D]

< K (Juol + |po]) (1 + |po|)™*s" | Dyp|

m my2_g|m/ (m=1) (3.14)
< £|Dg|" + C(e) [K (Iuol + [po] ) (1 + |po])""?s"]
V<E) m/(m—l)szp’
S

2
< eC|V(Do)* + C(e) +C@)[K (luol + [po]) (1 + [po])"]
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and on the case B;(xg) N {|v/s| <1} N {|Dy| < 1}, one can get

K (Juol + |po) (1 + |po])™* 10| Dyp|
< K([uol + |po|) (1 + |po|) ™" | Dy|

m 3.15
< e|Dy[* + C(e) [K (ol + [pol) (1 + [pol)"™/s#]” (3.15)

V(%)

Finally, noting that supg|u| = M, then for the case Bs(xo) N {|v/s| > 1} N {|D¢y| > 1}, there
exists a constant 0 < 2(m — 1) /m + 2f < 1 such that

2
< eC|V(Do)f? +C(e) +C(&)[K (fuol + [pol) (1 + )™ s,

K (Juo| + |po) (1 + |po]) "™ * 10l | Dyp|

)2(m—1)/(m+2[5)

< K (Juol + [po]) (1 + [po]) ™" (ol (2M + pos) @20 Dy

m m/21m/ (m=1)
< | Dyl + C (&) [K (juol + |po]) (1 + [po]) ™|

% |v|2mﬁ/(m+2ﬂ) (ZM " POS) (2-m+2B)/ (m+2p)-(m/ (m-1)) < E|D(p|2 " C(E)

o) m
S (3.16)

m /2] (m+2p)/ (m-1)

+ () [K (ol + po]) (1+ ] B (2M + pys) D 0D

v(5)

= C@)[K(lal + [pol) (1 + o)) ™|

2
< e|V(Do)|* + C(e)

(m+2p)/(m-1) _ _
(2M + pys) AR mD 2%,

Combining these estimations on I, we have

V(%)

+C(e)[1+ @M + pos) P IN[K (uol + [po]) (1 + [po])™"?]” aas™,

2
II< CEI |V(Do)|*dx + C(e) dx

Bs(x0) Bs(x0)

(3.17)

for o = max{2,m/(m-1), (m+2p)/(m-1), 2m/(m-2p)} = max{(m+2p)/(m-1), 2m/(m-
2p)}-

And noting that K > 1, and that m/(m — 1) > 2, and similarly as I1, we see

2
111 < Cgf |V (Do) Pdx + C(e) V<9> dx
B, (x0) Bi() | \S (3.18)

m m/(m-1) n
+ C@)[K (ol + [pol) (1 o)™ 27" "5,
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and for p positive to be fixed later, we have

IV:J‘ a|Du|m|u—uo—po(x—x0)|rldx+j
Bs(xO) B

§| (bsn)dx. (3.19)

S(XU)

On the part {Bs(x9) } N {|Du—-po| > 1} N {|v/s| < 1}, argue anginous as I and 11, by Young’s
inequality and (2.6) and (2.7), we have

alDu|™|u - ug — po(x — xo) |1 +

2| s

m 1 m
Sa[(l + 1) |Du = po|" + <1+l;)|P0| ]|”—”0—P0(x—xo)|11

2

+ 517252712 +C(¢) g

2
<a(l+p)(2M +pos)|V (Do)[* + a<1 + i) |po|™ vl + eb?s*n* + C(e)

V(%)
V(%)

(3.20)

2 2
<a(1+p)(2M +pos)|V(Dv)|* + ea? (1 + i) lpo|*"s*n? + eb?s*n? + C(e)

Similarly, on the part {Bs(xo)} N {|Du —pol > 1} N {|v/s| < 1}, we see

alDu|™|u - ug — po(x — xo) |1 +

2| s

< a(1+ ) (2M + pos)|V (Do) > + es™” (=1 yym/ (m=1)

/(m-1) 3.21
% [bm/(m—l) " am/(m—1)<1 n l)m (o |P0|m2/(ml)] ( )
U

V(%)

and on the part {B,(xo)} N {|Du —po| > 1} N {|v/s| < 1},

2
+C(¢e)

7

alDu|™|u —ug — po(x — x0) |1 +

2| wsn)

N 1\, (m
<a(l+p)|Du—po|”lvln+ a<1+p)|P0| +b

[vln
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ZJZ

< 8?|Du - po|* + C(€) (2M + pos) ™ /™ (g(1 + p)) ¥ &™)
p p " -

,02
S

2
+e[a<l + i) lpo|™ + b] sn* + C(e)

2
< e|V(Do)* + C(e) (M + pos)z(m-l)/(Z—m) (a(1 + #))z/(z-m)

V(%)

v(3)

2

4

2
+s[a<1 + i) lpo|™ + b] s+ C(e)

(3.22)
and on the part {Bs(xo)} N {|Du - po| > 1} N {[v/s] > 1},
m v
alDu|™ |u — ug — po(x — xo) |1 + S ‘ (bsn)
< es?|Du—po|* + Ce) (2M + pos) @2 @I (51 4 )P @) g
1 " m/(m-1) o™
+e a<1 + /7> |po|™ +b s/ Dy D 1 Cle) | (3.23)

' 2
< e|V(Do)|? + C(e) (2M + pos) 2™ & (1 4 ) > ) ‘V( g)
1 m 2
a<1+—>|p0| +b V(2>
U S
Combining these estimates in IV, and noting that m/(m —-1) >2and s <1, 1 <1, we
have
IV < C(e, M, a) |V (Do) Pdx + Ce, M, m, a) j V<3>
B(x0) B. (xo) s

l m 2 1 m m/(m—l)
+ max [a<1+;>|p0| +b|, [a<1+ﬁ>|p0| +b] a,s™.

Finally, on B;(xp) we use Lemma 2.1(iv) and (vi) to bound the integrand of the left-
hand side of (3.9) from below:

m/(m-1)

+€ S"’/(’"‘l)q"‘/(’”‘l) +C(¢e)

2
dx

(3.24)

2)/2
|Dof?

(m-2)/2 (m—

A(1+Ipof* +[Dg?) ™ Dol = 1(1+ ol + Do)
(m-2)/2

ZC(m)A<1+ |p0|2+|Du|2> |Du—po|2
> C(n,N,m,1)|V(Du) -V (py)|’

Z C(n/ N/ m/ )LI M)|V(Dv)|2
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Using this in (3.9) together with the estimates I, II, I11, and IV we finally arrive at

()

2 o
)dx + CulK(l + [pol) (1 + [po]) ™ s

C f |V (Dv)[*dx < czf <|V(Dv)|2 +
By (x0) B

s(x0)\ Bt (x0)

+c3f V(Do) + v<i>
Bi(x9) s—t

+ Cs max [a<1+ﬁ>|po| +b|, [ﬂ<1+ﬁ>|Po| +b] a,s™.

(3.26)
The proof is now completed by applying Lemma 2.5. O

4. The Proof of the Main Theorem

In this section we proceed to the proof of the partial regularity result and hence consider
ue W (Q,RN)NL®(Q,RN) (1 < m < 2) to be a weak solution of (1.1). Then we have the
following.

Lemma 4.1. Consider p < 1 and ¢ € C3°(Bp(xo),RN) with supo(xU)|D(p| < 1. Furthermore fixed
po in R™ and set ug = Uy, = Jpr(xO)udx and ®(xg, p,po) < 1. Then for the weak solution u €

Wm(Q, RN) N L (Q, RN)(1 < m < 2) to systems (1.1) with supg|u| = M and 2aM < A being
hold, there holds

DAX .
f [ ; (xo,uo,Po)(Du—Po)] Dagp'dx
Bp(xl))

opg 4.1)
< Ceatnp" [0 (Jpol, ©/2(x0,p,p0) ) ®'/2 (0, p, o) + © (0, p, p0) + PP H (|po]) |
for C. = C.(Cp, N, n, L) and where one defines
Gapp) = | |VOW-V(po)
By (x0) (4 2)

G
7

H(t) = [IZ(M +H)(1+ M+ t)’”/z]

for & = max{c,2m/(m—1)} and K(M +t) = max{K(M +1), a,b, a2, b2, a™/ (m=1) pm/(m-1)}
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Proof. We assume initially that supg . \[Dy| < 1. Applying Lemma 2.7 and noting that the
definition of the weak solution of (1.1), for 0 <t <1, we deduce

1 H5A% )
J f ]’ (x0, 10, po + t(Du—po))dt(Du—po) | - Datp'dx
B, (x0) 0 apﬁ

= f (A?(xo, Uop, Du) - A?(XQ, uo,po)) . Da(pidx (4-3)
By (x0)

) f (Af (xo, uo, Du) = A7 (x,u, Du)) - Dug'dx + f Bi(-,u, Du) - ¢'dx.
By (x0)

B, (x0)

Rearranging this, we find

0A” .
f [ — (x0, 1o, po) (Du — po)] - Dygp'dx
Bp(xO)

ap;,

L 9AS .
= I f ]’ (x0, 10, po)dt(Du —py) | - Dayp'dx
B, (xo) 0 apﬁ

[ (1 (oA DA?
= I f ]l (x0, 1o, po) = — (0, g, po + t(Du —po)) | dt(Du - po)
Bp(xo) | 0 ap ap]

B B

Dygp'dx + J‘ [AF (x0, uo, Du) — Af (x, ug + po(x — x0), Du)] - D, ¢'dx
By (x0)

+ f [A% (x, uo + po(x — x0), Du) — A%(x,u, Du)] - Datp'dx
By (x0)

+ f Bi(-,u, Du) - (pidx
Bp(xo)

=I[+II+II1+]IV.
(4.4)

Using the structure condition (E1) and the estimate (1.5) for the modulus of continuity
of 0AT/ ap;,, by Lemma 2.7 and let

s1=B,(xo) N {|Du—po| <1}, s2 = B,(x0) N {|Du—po| > 1}, (4.5)
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we can derive

1
=f,)
Bp(x0) /0

. [L(l + |pol? + |po + H(Du - po) |

_ (m-2)/2]11/2
L(1+ |p0|2)(’" 2)/2+L<1+ |P0+t(Du—P0)|2> " ]

1/2

(m-2)/2
) |t (Du—-po)|)|  dt|Du - po|dx

w(|po

Du - po|)|Du —po|m/2dx.

7 7

SCJ‘ w"?(|po Du—Pol)IDu—PoIdHCf w'?(|po

S2

(4.6)

Noting that the estimates (2.6) and (2.7), using first Holder’s inequality and then
Jensen’s inequality:

I< Canp"¢>”2(xo,p,po)wm(Ipol,fI)”z(xo,p,po)), (4.7)

here we have used ®'/"(x,, p, po) < ®/?(x0, p, po) for d(xo, p, po) < 1.
By (E3), Young inequality, (2.6), (2.7), and noting the function K monotone
nondecreasing and K(M + [py|) > 1 and that p < 1, we can estimate II as follows

1< [ Kol + [pol)p L+ [po]) (1 + D™ 2dx

Bp( 0)

+m n+ 2 n+
< K(M + [po])pP (1 + [po] )" Zanp™ + [K (M + [po]) (1 + [po] )] aup™ % ws)

4/(4-m)
+ @ (x0,p,po)tap™ + [K(M + [po]) (1 + [po])*] "t G/ o)

m/2]° 1+,
< @(xo,p,po) anp” + Z[K(M +[pol) (1 + [po])™ /2] anp",

forl<4/(4-m)<2<o.
Similar to (3.11), to estimate I1I, one can divide the domain B,(xp) as previously
mentioned. On the set B, (xo) N {|v/p| > 1} N{|Du-po| <1}, for m/(m-p) <2m/(m-2p) < o,

K (Juol + |po]) (1 + |Dul)™*[vff
< K(M + [po|) (1 + |po] )™ *olf + K(M + |po| )0l

(4

m m/21m/ (m=p) " B
<2 +C(e) [K(M+ |pol) (1 + [po])™"?] B/ m=p)

(4.9)
+C(e) [K (M + |po| )] P b/ m=p)

%
v(3)

2 o
<2eC +2C(E) [K(M + [po]) (1 + |po])™?] o,




16 Journal of Inequalities and Applications

while on the part Bs(xp) N {|v/p| < 1} N {|Du - po| > 1} and noting that 1 <2/(2-p) <2 <o,

K (|uol + |po|) (1 + |Dul)™*|v)f

p
m/ (4 m/
<K(M+|po|) (1 + |po]) Zp"; + K (M + |po|)pP| Du ~ po|™"?
2 212/ 2P)
<e|=| +Cle)[K(M+|pol) (1 + [po])™?] " g/ (4.10)

+g|[Du—po|" + C(e) [K(M + |po])]*p*
(%
V —
;)

On Bs(xo) N {[v/p| < 1} N {[Du —po| < 1}

2 o
<eC +eC|[V(Do)* + C(e) [K(M + |pol) (1 + |Po|)m/2] o

K (Juol + |po|) (1 + |Dul) |0
< K(M + |po|) (1 + |po|)™*olf + K(M + |po]) o)
2

m/212/ 2P) B 411
+C(€)[K(M+|po|)(1+|p0|) /2] /@) (4.11)

')

Finally, on the case Bs(xo) N {[v/p| > 1} N {|Du — po| > 1}, there exists a constant
0 <m/(m+ p) <1 such that

<eg

2 (o)
+ CO[KM + [pu]) 1+ o)™ ¢

K (luo] + |po|) (1 + |1Dul)™?o|

)m/(m+ﬂ)

< KM+ |po]) (1 + [po)™* (lof (2M + pop)?/ P

m/ (m+p)
+K(M+ [po]) [ Du o] " (o) (2M + pop)

m (m+p)/m 2 'm
<€) "] (2M+pop)” " pf

+C(e)|Du—po|™" +Cl(e) [K(M+|po|)(1+|p0|)

g
p
# CEOIKM + [po )PP 20 1 pop) /" gt

V()

for1 <2(m+p)/(m-p)+p*/(m-p) <2m/(m-2p) <o.

’ o
+C@IV(DV) + Cle,n, N) [K(M + [po]) (1+ M+ [po])™] o,

(4.12)

<C(e)
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Whereas, Lemma 2.1 yields

111 < C(e) |V(Du) - V(po)|*dx + C(e) 2dx

B, (xo) Bs(xo)

v()

+Cle,m, N)[K(M + [po]) (1+ M+ [po])""?| aup™?,

where o is defined in Lemma 3.1.
Noting that SUPE, (xy) lp| < p <1, and by Young’s inequality, we see

IVSCI (alDu|™ + b) |p|dx

BP X0

SCJ‘ a|Du—pO|m|(p|dx+Cf
B, (x0)

Bp X0

)(b + |po|™) pex.

On D; = {B,(x0) N {|Du - po| > 1}}, by (2.7) and Young inequality, we have

(4.14) < Cf a|V(Du) -V (po) |2dx + Canp™ (b + |po]™).
Dy

17

(4.13)

(4.14)

(4.15)

On the other hand, on D, = {B,(xo) N {|Du - po| < 1}}, using (2.6) and Young inequality, we

have
|Du— po|™ < |Du—po|* +1 < |V(Du) - V(po)|* + 1.
Thus

(4.14) < CI a|V(Du) - V(po)|*dx + Canp™' (a + b+ |po|™).
D,

Combining these estimates and noting that definition of H (t), we derive

V< Cf |V (Du) - V (po) |*dx + Canp™ H([po] )
B, (x0)

By Lemma 2.6, there is

111 < C(¢,Cp,n, N) j |V(Du) - V (po) | dx + C(e) H(|po| ) anp"**.

Bp X0

(4.16)

(4.17)

(4.18)

(4.19)

Combining the above of I, 11,111, 1V with (4.4) and noting the definition of H(t), we

can get the lemma immediately.

O
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We next establish an initial excess-improvement estimate, assuming that the excess
@(p) is initially sufficient small. We also define I'(p) = \/(I)(p) +462H2p%, w(x) = u(x) -
(uxO,p—yh(xo))—(Du)xU,p (x—x9),and y = C¢C.I'(p), where C¢ stands for the constants C(m, M)
form Lemma 2.1(vi). The precise statement is the following.

Lemma 4.2 (excess-improvement). Consider weak solution u € W™(Q, RN) n L®(Q,RN) (1 <
m < 2) satisfying the conditions of Theorem 1.2 and f fixed in (E3). Then we can find positive
constants C;, Cy, and 6,and 0 € (0,1/4] (with C; depends only on n, N, m, A, and L and with C,
6 and 0 depending only on these quantities as well as p) such that the smallness condition p € (0, p]:

2V2C,y <1,

6
W2(|(Du),, |, @72(p)) + @' 2(p) < 3,

|(Du)

< M, for given constant 0 < M < oo (4.20)

)sg,

Xo,p

2C1~pﬁH<1 + |(Du)

X0,P

C.C,@(p) <1,
together imply the growth condition

©(6p) < 6% |0 (p) + Cip? H* (1 + | (Dw)

)] : (4.21)

X0,p

Here one uses the abbreviate D (p) = D(xo, p, (Du)xo,p).

Proof. For € > 0 to be determined later, we take & = 6(n, N, A, A, €) € (0, 1) to be corresponding
constant from the «#-harmonic approximation lemma, that is, Lemma 2.2, and set

w(x) = u(x) = (ux,p — Yh(x0)) = (Du),, ,(x = x0),

(4.22)
[(p) = \/®(p) +462H2p¥, y = CeCuT (p).
where Cg stands for the constant C(m, M) from Lemma 2.1(vi).
Then, from (2.4) and Lemma 2.1(vi), we have
Jf |W (Dw)[*dx < Jf |V (Dw)[Pdx < Ce®?(p) < y>. (4.23)
By (x0) By (x0)

And by Lemma 4.1 and the smallness condition

X0.P

W2(| (D), | @72 (p) ) + @72(p) < 2, (4.24)




Journal of Inequalities and Applications 19

we can deduce

0A% .
]f ]’ <xo, Uy ps (Du)xo,p> Dw| - Dag'dx
By, (x0) apﬂ

wl/z (| (Du)X(],p

LD (p) )02 (p) + D(p) + pPH (| (D), ,

)

<y sup |Deg
CiI'(p) Bp(x0)| | (4.25)
<ylw2(|Du),, | @72(p)) + @2(p) + 2| sup | D]
<y wp| @3 (p p)+ 3| sup Dy
P
<y6 sup |Dy|.
B;J(xO)

Inequalities (4.23) and (4.25) fulfill the condition of <#-harmonic approximation
lemma, which allow us to apply Lemma 2.2. Therefore we can find a function h €
WM (B, (x0), RN) which is (aA;."/ap;) (0, Uy p, (Dir)

x,p)-harmonic such that

2

—yh
][ \W(Dh)Pdx <1, ]f W(w Y > dx < y2e. (4.26)
B, (x0) B, (x0) P
With the help of Lemma 2.1(iii) and (v), we have
2
*(0p) = f V(Du) - V((Du)x()/ep)i dx
BGP(XO)
2
< CJ( |V<Du - (Du)xO,9P>| dx
Bop(x0) (4.27)

2
< CJ(BG,,(xO) |V (Du - (Du),,,, - yDh(x0)) | dx

2
+ C'V<(Du)xo,9.0 - (Du)xo,P - YDh(xO)) !

where the constant C depends only on n, N, and m.
We proceed to estimate the right-hand side of (4.27). Decomposing By, (x) into the set
with |Du - (Du)xw —yDh(xp)| £ 1 and that with |Du - (Du),_ , — yDh(xo)| > 1, that using

Xo,p
Lemma 2.1(i) and Holder inequality, we obtain

Du — (Du)

xo0,p

(D)., (Du) =~ YDh(xo)| < f

~yDh(x0)|dx = V2(12 4 1'/m),
Bgp (x0)
(4.28)
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where we have abbreviated

2
I= J(Bepm) )V(Du - (Du),,, - th(x0)>| dx. (4.29)

Now, since [V (A)| = V(|A]) and t — V (t) is monotone increasing, we deduce from
(4.27), also by using Lemma 2.1(i) and (ii), that there holds

©?(0p) < C(1+ V(124 1Vm)) < C(1+17™), (4.30)

where C depends only on n, N, and m. Therefore it remains for us to estimate the quantity
I. By considering the cases |Dh| < 1 and |Dh| > 1 seperately and keeping in mind (4.26), we
have (using Lemma 2.1(i)):

]f |Dh|dx < 2V/2. (4.31)
By (xo)

Using the assumption |(Du),, ,| < M; and Lemma 2.4, this shows

|(Du)

+y[Dh(xo)| < My + y|Dh(xo)]

X0,p

<M+ YCaJ[ |Dh|dx
B, (x0) (4.32)

<M+ ZﬁyCa
< M1 +1.

Lemma 3.1 applied on By, (xo) with uy,,, respectively (Du), , + yDh(x,), instead of
Uy, respectively, po; note that the constant C. depends only on n, N,m, L, A, M:

2

=1ty = ((Du)y, , + YDh(x0) ) (x = x0)

I<C, )[ 1% dx+G]|, (4.33)
Bagy (x0) 29P

for
G= [K<|uxo,p| +|(Du)y, , + yDh(x0)|) (1+ | (Du),, , + YDh(x0) |>m/2] " (20p)

+ max{ |a|(Dw),,,, + yDh(xo)|” + b]z, |a|(Dw),,,, + yDh(xo)|" + b]m/(m_l) } (20p)°.

(4.34)
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Lemma 2.1(iii) yields

U= Uy p — <(Du)xo,p + th(x0)> (x = x9)
J[ \%4 dx
Bagp (x0) 26P
_ J[ , <u ~ (it~ Yh(%0)) = (D), (x = %0) = h(x) + Yh(x)
= J By ) 20p (4.35)

2

dx

—yh(x0) = yDh(xo)(x — x0)
" 26p >

lf (1MC25) )

where the constant C is given by C(m)C.. To estimate the right-hand side of (4.33) we use
(2.4), Lemma 2.1(ii) (note that 1/26 > 1) and (4.26) to infer

w—-yh w—-vyh
() ()
fBzgp(XQ) 29p 29p
w—yh
W( 26p )

(5

2+ ‘V<Yh—ho—D2he(;co)(x‘x0)>

2

dx

de < C(m)J[

Bagp (x0)

2
dx

< C(m)(26)”;[:8

(x0)

(4.36)

2
dx

< C<m><29>‘"‘2f

B, (x0)

< C(m)27 2072y %.

Using Lemma 2.1(i), Taylor’s theorem applied to h on Bag,(xo), Lemma 2.4 and (4.31),

we obtain
)( Bagy (x0)

< sz[
Bagy (x0)

2

Y
< —
= 407p2

V( h—ho - D;lg(;co)(x — Xo) > rdx

h — ho — Dh(x)(x — x)

2
20p dx

(4.37)

sup |h(x) - h(xo) — Dh(xo) (x - xo)

Bag, (x0)

< 8C20%y2.
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Using the smallness condition 2v/2C,y < 1 and (4.32) together with the definition of
H yields

[K(|uxo,,,| +| (D), , + yDR(x0)|) (1+ | (Dw),, , + YDh(x0) |)m/2] " (20p)

+1) (2+ | (Du),,

Xo0,pP

< [K(M + |(Du) )m/z]g(zep)zﬂ

< H(l + |(Du) >(29p)2ﬂ, (4.38)

Xo,p
max{ [a|(Du), , +yDh(xo)|" + 8|, [a|(Duw), ,+yDhxo)|" +8]™ "V (26p)?
o @u., |+ ”

<H(1+|(Du),,,|) 20p)*.

Combining all the above estimates with (4.33), and let € = 0" for 0 € (0,1/4], we get

1<C; [62y2 + H<1 + |(Du)xw|) (26p)2"], (4.39)

where the constant C; depends only onn, N, L, m, A, M, and 0 (the dependency from 0 occurs
due to the fact that 6 depends on 6). Choose 0 € (0,1/4) suitable such that C;6* < 6%, and
inserting this into (4.30) we easily find (recalling also that ®(p) < 1):

D(6p) < 6% [(D(p) + CkH2<1 + |(Du)xO,P|> p2ﬂ], (4.40)

where the constant C has the same dependencies as C;. O

The regularity result then follows from the fact that this excess-decay estimate for any
x in a neighborhood of xy. From this estimate we conclude (by Campanato’s characterization
of Holder continuous functions [19, 20]) that V(Du) has the modulus of continuity p
®@(xo, p) by a constant times p*. By Lemma 2.1(iv) this modulus of continuity carries over to
Du.
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