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A class of a-potentials represented as the sum of modified Green potential and modified Poisson

integral are proved to have the growth estimates R, ;(x) = o(xg|x|l_2p +2h(|x|)_1) at infinity in the
upper-half space of the n-dimensional Euclidean space, where the function h(|x|) is a positive non-
decreasing function on the interval (0, o) satisfying certain conditions. This result generalizes the
growth properties of analytic functions, harmonic functions, and superharmonic functions.

1. Introduction and Main Results

Let R*(n > 2) denote the n-dimensional Euclidean space with points x =
(x1,%2,...,Xp-1,%n) = (x',x,), where x' € R"! and x, € R. The boundary and closure of
an open Q of R” are denoted by dQ and Q, respectively. The upper half-space is the set
H = {x = (¥, x,) € R"; x, > 0}, whose boundary is 0H. We identify R” with R*! x R
and R™! with R"! x {0}, writing typical points x, y € R" as x = (x,x,), ¥y = (¥, yn),
where x' = (x1,x2,...,%0-1), ¥ = (Y1,Y2,...,Yn-1) € R"! and putting x - y = Z;‘zl Xy =
XY+ xpyn, X =Vx-x, X = VXX

For x e R" and r > 0, let B, (x,r) denote the open ball with center at x and radius r in
R™

It is well known that (see, e.g., [1, Chapter 6]) the positive powers of the Laplace
operator A can be defined by

(=8 f () = F (121°F @), (1.1)
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where a > 0, f is a Schwarz function and
FIO=f@) =] fleidx. (12)

It follows that we can extend definition (1.1) to certain negative powers of —A,
(~A)™/% for 0 < & < n and define an operator I, by

Lf = (A2 f =1 (18F), (1.3)

where 0 < « < nand f is a function in the Schwartz class.
If I, is defined as the inverse Fourier transform of |¢|™ (in the sense of distributions),
one can show that

L () = yalx|*™™, (1.4)

where y, is a certain constant (see, e.g., [1, page 414] for the exact value of y,).

The function I, is known as the Riesz kernel. It follows immediately from the rules
for manipulating Fourier transforms that any Schwartz function f can be written as a Riesz
potential,

g(y)

f(x) = Lig(x) = (I * ) (X) = Ya fRn W‘i% (1.5)

where 0 < a < nand g = (-A)*?f.
This Riesz kernel I, in R" inspired us to introduce the modified Riesz kernel for H. To
do this, we first set

—-log|x| ifa=n=2,
Eq(x) = (1.6)
|| if0<a<n.

Let G4(x, y) be the modified Riesz kernel for H, that is,
Gu(x,y) =Ex(x-y) —Ex(x-y*), xy€H, x#y, 0<a<n, (1.7)

where * denotes reflection in the boundary plane 0H just as y* = (y1, Y2, .-, Yn-1,~Yn)-
We define the kernel function P,(x,y') when x € H and y' € 0H by
_ Gy - X
n-a+2

! —
Pu(x/y) ayn o =La |x— y’|

(1.8)

where C, =2(n—a)if0<a<nand=2ifa=n=2.
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We remark that G,(x,y) and P(x,y’) are the classical Green function and classical
Poisson kernel for H respectively (see, e.g., [2, page 127]).
Next we use the following modified kernel function Py ,,(x,y’) defined by

Pu(x, y') if |y'| <1,

Pa,m(x/yl) = ,) = Caxnlxl (71 R+2)/2< x-y’ > if |y’| 21 )
2ot xl]y] )

where m is a nonnegative integer; Ci/(t) w = (n—a)/2is the ultraspherical (or Gegenbauer)
polynomials (see [3]). The Gegenbauer polynomials come from the generating function

<1 - 2tr+r2)’“’ = in(t)rk, (1.10)
k=0

where [r| < 1, [t| < 1, and w > 0. The coefficients C{/(t) are called the ultraspherical (or
Gegenbauer) polynomials of degree k associated with w, each function C{/(t) is a polynomial
of degree k in t. Here note that P ,,, (x, y') is the modified Poisson kernel in H, which has been
used by several authors (see, e.g., [4-8]).

Motivated by this modified kernel function P, (x,y’'), it is natural to ask if the
function G4 (x, y) can also be modified? In this paper, we give an affirmative answer to this
question.

First we consider the modified kernel function in case & = n = 2, which is defined by

E.(x-vy) if |y| <1,

Sk (1.11)
En(x—y)+i)%<logy— <ﬁ>> if |y| > 1.

k=1 \ kY

In case 0 < a < n, we define

Eni(x-y) =

Ei(x-y) if ly| <1,
Fuale=) = -y) - > m( Ty > if [y >1 (112

=y EENFT

where [ is a nonnegative integer, x, y € H,and x Y.
Then we define the modified kernel function G,;(x, y) by

Eni1(x-y) = Epa(x-y*) ifa=n=2,
w1 (x,y) = { (1.13)

Exjii(x—y) —Eaa(x—-y*) if0O<a<n.
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Write

Gai(x, 1) = fH Gt (x,y)du(y),
(1.14)

ua,m (xr v) = ’[ Pa,m (xl yl)dv(y,)’
oH

where p(resp., v) is a nonnegative measure on H(resp., 0H). Here note that G, (x, p) is
nothing but the Green potential of general order (see [9-11]).
Following Fuglede (see [6]), we set

K = [ K@ odue, k) = [ k), (115)

for a nonnegative Borel measurable function k on R" x R" and a nonnegative measure y on a
Borel set E C R”. We define a capacity Ci by

Ck(E) =sup u(R"), ECH, (1.16)

where the supremum is taken over all nonnegative measures y such that S, (the support of
u) is contained in E and k(y, u) <1 for every y € H.
For f <1and 6 <1, we consider the function k, s defined by

kaps(y,x) = x;py;'SGu (x,y) forx,yeH. (1.17)

If p =6 =1, then k; = ky1,1 is extended to be continuous on H x H in the extended sense,
where H = H UOH.

Now we will discuss the behavior at infinity of the modified Green potential and
modified Poisson integral in the upper-half space, respectively. For related results, we refer
the readers to the papers by Mizuta (see [9]), Siegel and Talvila (see [8]), and Mizuta and
Shimomura (see [7]).

Theorem 1.1. Let h(r) be a positive nondecreasing function on the interval (0, oo) such that

(@) rP"h(r) is nondecreasing on (0, o),
(b) rP2h(r) is nonincreasing on (0, 00) and lim, _, ,7#2h(r) = 0,

(c) there exists a positive constant M such that h(2r) < Mh(r) for any r > 0.

Let p be a nonnegative measure on H satisfying

du(y) < oo. (1.18)

J‘ vah(ly|)

n+l-a—p+6+
(1+ [y

Then there exists a Borel set E' C H with properties
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(i) 1y oo xer-p X X221 (|x]) Gy (x, ) = 0;
(i) 32y 271a Oy (E}) < oo,

where E} = {x € E' : 2! <|x| < 2"*}.

Corollary 1.2. Let p be a nonnegative measure on H satisfying
j %d#@) < . (1.19)
H(L+yl)

Then there exists a Borel set E C H with properties

(i) Timy - oo xerr_£Xo |XIP 1 Gt (x, 1) = 0;
(i) 32, 27 =Py (Ey) < oo,

where E; = {x € E : 2 < |x| < 2*1}.

Theorem 1.3. Let h be defined as in Theorem 1.1 and v a nonnegative measure on OH satisfying

dv(y') < co. (1.20)

f h(ly'])

H (1 i |y,|)n+m—u—[5+3

Then there exists a Borel set F C H with properties

(i) iMoo ci—F X 1] 2021 (X)) U g o (x, v) = 0;

(i) 375 27 PIC,  (F) < oo,

where F; = {x € F : 21 < |x| < 211},
Remark 1.4. Inthecasem =1, F = E.

Corollary 1.5. Let v be a nonnegative measure on OH satisfying

1
—_——dv y, < oo. 1.21
J@H (1 i |y,|)n+l—a+2 ( ) ( )

Then there exists a Borel set E C H satisfying Corollary 1.2 (ii) such that

lim Ex;ﬂ P U (x, v) = 0. (1.22)

|x| — c0,xe H-
We define the modified a-potentials on H by
Ra,l,m (x) = Ga,l (x/ ‘l/l) + ua,m(xr V), (123)

where 0 < a < mand p (resp., v) is a nonnegative measure on H (resp., 0H) satisfying (1.18) (6 = 1)
(resp., (1.20)). Clearly, Ro 0, (x) is a superharmonic function on H.
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The following theorem follows readily from Theorems 1.1 and 1.3.

Theorem 1.6. Let h be defined as in Theorem 1.1 and Ry 1(x) defined by (1.23). Then there exists a
Borel set E C H satisfying Corollary 1.2 (ii) such that

o 1 () Raga (x) = 0. (1.24)

|| — o0,xe H-

Remark 1.7. In the case h(|x|) = |x|*#(0 < < 1), by using Lemma 2.5 below, we can easily
show that Corollary 1.2 (ii) with & = 2 means that E is f-rarefied at infinity in the sense of
[12]. In particular, This condition with « = 2, § = 1, and h(|x|) = 1(resp., a = 2, p = 0, and
h(]x|) = |x|) means that E is minimally thin at infinity (resp., rarefied at infinity) in the sense
of [13].

Theorem 1.6 is the best possibility as to the size of the exceptional set. In fact we have
the following result. The proof of it is essentially due to Mizuta (see [9, Theorem 2]), so we
omit the proof here.

Theorem 1.8. Let E C H be a Borel set satisfying Corollary 1.2 (ii), h defined as in Theorem 1.1, and
Ry11(x) defined by (1.23). Then we can find a nonnegative measure A defined on H satisfying

h(lyl)
dA(y) < oo, 1.25
J‘H (1 + |y|)n+l—a—[5+3 ( ) ( )
such that
lim sup x;ﬁ|x|_l+2ﬂ_2h(|x|)Ra,1,l(x) = oo, (1.26)
|x| = o0,x€E

where dA(y) = yndp(y)(y € H) and dA(y') = dv(y')(y' € 0H).

2. Some Lemmas

Throughout this paper, let M denote various constants independent of the variables in
questions, which may be different from line to line.

Lemma 2.1. There exists a positive constant M such that G (x,y) < M(x,y,/|x — y[***?), where
O<as<nx=(x1,x2,...,%), and y = (Y1, Y2,...,Yn) in H.
This can be proved by simple calculation.

Lemma 2.2. Gegenbauer polynomials have the following properties:

1) 1CYHI < CY(1) =TQRw + k) /TRw)I'(k+1), [t <1;
(i) (d/dt)C¥(t) = 20C1(t), k> 1;
SieoCork = (1-1)7;

(iv) [CI Y2 () = D2 (1) < (- ) CU PP -1, <1, 1] < 1

(iii

)
)
)
)
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Proof. (i) and (ii) can be derived from [3]. (iii) follows by taking t = 1 in (1.10); (iv) follows
by (i), (ii) and the Mean Value Theorem for Derivatives. O

Lemma 2.3. Let | be a nonnegative integer and x, y € R™*(a = n = 2), then one has the following
properties:

(i) 19 S (/¥ )] < Sy @l /1y 2);
(i) |3 T (x* 1 /yR)| < 2M oy |x

Gt (%, ) = G, )| € M Sy (ktnymlad* /1y 1),
(1v) [Gui(x, v)| € M 32,1 (kxnyalx|<1 /[y,

)
)
(iii)
)
Lemma 2.4 (see [14]). Let m be a nonnegative integer and M > 0.

(i) If 1 < |y'| < [x]/2, then |Pam(x, y')] < M (o |x|™ 1 /[y ["541).

(if) If |y'| > 2lxx| and |y'| > 1, then | Pam (2, )| < M (tulx|™ /[y [*7-542).
The following lemma can be proved by using Fuglede ([6, Théorem 7.8]).
(E) = Cx,, (E) and

Lemma 2.5. For any Borel set E in H, we have Cy

ap1 a1

Cro s (E) = inf A(H) (resp. inf A(ﬁ)) if6 <1 (resp., 6=1), (2.1)

where the infimum is taken over all nonnegative measures X on H (resp., H) such that kaps(d, x) > 1
for every x € E.

3. Proof of Theorem 1.1

For any e; > 0, there exists R, > 2 such that

f yah(ly])

e dn () < e (3.1)
{yeH,lylzRel} (1 X |y|)n+l a—p+6+2

For fixed x € H and |x| > 2R,,, we write

Gure) = [ Gule)an(n) + [ Gulx,)an(n) + [ [Gurly) = Gl 1))

o[ Gutean) + [ Gulrnduw)+ | [6uilew) - Galrn)ld(y)

6

+ fH Gai(x,y)du(y)

= Vi(x) + Va(x) + Va(x) + Vi(x) + Vs (x) + Ve(x) + Vr(x),
(3.2)
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where

x—y|§|zﬁ}, Hz={y€H:IyIZRel,%<|x—y|S3IXI},

H;={yeH:|y| >R,

le{yeH:|y|2Rel,

x —y| <3lx[}, Hy={yeH:|y| >R,

x—y| > 3|x[},

Hs=He={yeH:1<|y|<R,}, Hy={yeH:|y|<1}.
(3.3)

We distinguish the following two cases.
Case 1 (0 < a < n). Note that V;(x) = xﬁ le kaps(y, x)ySdu(y). In view of (1.18), we can find

a sequence {a;} of positive numbers such that lim;_, ,a; = o0 and >.7%; a;b; < oo, where

6
yuh(lv])
bi = f{ n+l-a—p+6+2 d[/l(y) (34)

yeH 21 <|y|<2+2} |y|
Consider the sets

. . _ . . -1
E) = {x € H:2 < |x| <2, x, Vi (x) > a;lzl<’-2ﬂ+2>h(2l+1> } (3.5)

fori=1,2,....If wis a nonnegative measure on H such that S, C E; and kg p5(y, w) <1 for
y € H, then we have

J-dw
H

< a,-z-i<’-2ﬂ+2>h(2i+1) fx;ﬁvl(x)dw(x)

— aiz—i(l—2ﬂ+2)h<2i+1> f . . ka,ﬂ,(g (y,w)yfd#(y)
{yeH 211 <|y|<272}

< MaiZ‘i(l‘2ﬂ+2)h<2i+1>J yodu(y)

{yeH 21 <|y|<2+2}

] ) 2-p n+l-a+2 51
:Mai2—1(1—2ﬂ+2)h<21+1>‘[ |y| |y| Yn (|y|) d}l(]/)

(yeH 21 <|y|<2i%2) h(|y|) (1 4 |y|)2—5 (1 L |y|)n+l—a—ﬂ+5+2

< Mz—i(l—2ﬁ+2)2(i+2)(Z—ﬂ)2(i+2)(n+l—rx+2)2—i(2—6)f . . hn(l::{_llzﬂ% dﬂ(y)
{yeH 21" <|y|<2+2) |y’|
< Mzi(n—a+ﬂ+5) aibi-
(3.6)
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So that

(E}) < M2imaP0) g1, (3.7)

aﬂﬁ

which yields

Zz—i(n—a+ﬂ+6)cka,ﬁ,6 (E;) < 0. (38)
i1

Setting E' = JZ, E;, we see that Theorem 1.1 (ii) is satisfied and

lim sup x;ﬂ|x|_l+2ﬁ_2h(|x|)V1(x) < limsupa;' = 0. (3.9)

|x] = c0,xe H-E' i—oo
Moreover by Lemma 2.1,

Yn

Va(x)] < Mxnf ————du(y)
H |x -y
2-p 19)
a—n— ]/ n+l-a ynh ]/ (310)
< Mxn|x| 2’[ | | |]/| . Sz|+l—|vc)—ﬂ+6+2 ( )
H, h(lyl) 1+|y|)

< Meorxu|x|" P h(4|x)) .

Note that Ci'(t) = 1. By (iii) and (iv) in Lemma 2.2, we take t = (x - y)/[x|ly|, t* =
(x-y*)/|x|ly*| in Lemma 2.2 (iv) and obtain

l |x|k (n—-a+2)/2 XnYn
Vo) < j 2= ) S ()
= 1| x|y
< Mx |x|l 12 (n zx+2)/2(1) |y|27ﬁ ysh(lyD d,ll(]/) (3'11)
4k 1 k 1 Hs h(lyl) (1+ |y|)n+l—u—ﬂ+6+2
< Mey x| P h(4]x]) 7"
Similarly, we have by (iii) and (iv) in Lemma 2.2
k
|V4(x)| <f |J:l.|7a+k2(n a)c(ﬂ Dc+2)/2(1) nyrl
Hy = l+1| | |x || |
f S 3.12
< Mxn|x|l Z = 1C(n a+2) /2( ) |y| Yn Sllll/_!x)_ﬁ+6+2d‘l/l(y) ( )
2 m h(ly]) (1+ |y))

< Merxp|x| P h(2)x])
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By Lemma 2.1, we have

Yn

Vsl < Mx, [ au(y)
s |x —y|
2-p oy,
SMxn|x|a—n—2I |y| |y|n+l—a+1 Yn (lfl/,'), +5+2d ( ) (313)
us h(|y|) 1+|y])" ap

< Moxulx| ' REPh(Re,) ™

Similarly as V3(x), we obtain

1 k
X n—o XnYn
Vel < [ 3 am- mc ) S duy)

H 1 |y | Ixl|y |
1= s 3.14
< ManC(n a+2)/2(1)|x|k71Ré;k+1f |y| yn El[ly_lp!)_ﬂ+6+2dﬂ(y) ( )

() (1+y))
< MR x,|x|""h(1)7".
Finally, by Lemma 2.1, we have

[V (x)| < Maxy|x|th(1)7L. (3.15)

Combining (3.9)-(3.15), we prove Case 1.

Case 2 (a« = n = 2). In this case, the growth estimates of Vi(x), Vo(x), V5(x) and V7 (x) can be
proved similarly as in Case 1. Inequations (3.9), (3.10), (3.13) and (3.15) still hold.
Moreover we have by Lemma 2.3 (iii)

kxnynlxlk%l |l+1 |y|2_ﬂ ygh(lyb

1
V3(x)| < M - ——du(y)
w2 i R ey
L&k v yen(ly|) (3.16)
SMxnlxll 1Z4k_—1f | | (|l—|ﬂ+6+2dﬂ(y)
S s k() (14 |y)

< Meyx,|x| P h(4|x]) .
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By Lemma 2.3 (iv), we have

i kxnyn|x|k_1| |l+2 |y|1_ﬁ ]/Sh(lyl)

Vi) < M : ez ()
mlh |y h(lyl) (1 + Jy])
1-p 5
. 5h (3.17)
< Mx,x Y W_[ 2 (|zy-|p>+5+2 du(y)
P m, h(|yl) (1+1y|)

< Merxp|x| P h(2)x]) 7.
Similarly as V3(x), we have
[Ve(x)| < MRL x,|x| " h(1)7". (3.18)

Combining (3.9), (3.10), (3.13), (3.15), and (3.16)—(3.18), we prove Case 2.

Hence we complete the proof of Theorem 1.1.

4. Proof of Theorem 1.3

For any €, > 0, there exists R, > 2 such that

dv(y') < e (4.1)

f h(ly'])

(yeoHly>Re) (14 |y'|)" """
For fixed x € H and |x| > 2R,,, we write
U (x,v) = f P (2, y')dv(y') + f Pam (%, ') (y')
G1 GZ

[ [Puno) =P v () + [ Pan v ()

(4.2)
+f Pom(x,y)dv(y')
Gs
= U1 (x) + Uz (x) + Us(x) + Ug(x) + Us(x),
where
Gi={y €dH:|y| <1}, Gzz{y'eaH:1§|y'|<|2ﬂ},
(4.3)

G; =Gy = {y’ € 0H : |21| <|v| <2|x|}, Gs ={y €0H : |vy'| > 2|x|}.



12 Journal of Inequalities and Applications

First note that

U, ()] < Mxn<%>“_"_2 fcl iv(y)

j|nrm-a+l h( |y,|) / (4.4)
| n+m—-a—f+3 v (]/ )
(1+1]y])

2 |y'|27ﬁ
< M ” a—n—.
S W

< Mx,|x|™ h(1)™

Write
U (x) = Uz (x) + Un(x), (4.5)
where
Un (x) = f Pan (2, y")dv(y'),
G2 N Byt (0,Rey)
(4.6)
Uxn(x) = f P (x,y)dv(y').
G-By1 (0,Re)
We obtain by Lemma 2.4 (i)
m-1 1 !
|U2(X)| < Mxn|x| J md\?(y)
G |y'| wn
4.7
112-p h /
SMxn|x|m_]I |y| , (|]{l+|_317u7ﬁ+3v(yl)-
e h(ly'D) (1+1y))
For |x| > 2R.,, by (4.7) we have
U1 (x)] < Mo x| REPh(Re,) . (4.8)
On the other hand, (4.7) yields that
-1
)] < Mexw ™+ 51) (49)
Combining (4.8) and (4.9), we have
p =P\ .|-m+2p-2 _
A X 1] h(|x)Uz(x) = 0. (4.10)
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We have by Lemma 2.2 (iii)

— xn|x|k c -a+2/2
W)l M| 3 —Smmm G Wdv(y)
Gs k=0 | |
m-1 p h !
< Mxn|x|m 21_kc(n a+2)/2( ) |y | , n(Jrf_lzﬁ+3dv(yl) (4_1])
P a h(|y']) |y|

< Mex,|x| _ﬂ”h( |32C|>
By Lemma 2.4 (ii), we obtain

m 1 !
IUs(x)] < Moxyx] f — L vy

G |y

1™ k(yD
2 h(|y/|) (1 n |y,|)n+m—a—ﬁ+3

< Mexx,|x|" P h(2|x|) ™"

(4.12)

v(y')

< Mxn|x|mj
G

Note that U4 (x) = xﬁ fG4 kap1(y', x)dv(y'). By the lower semicontinuity of ks 1(y, x),
we can prove the following fact in the same way as V;(x) in the proof of Theorem 1.1:

limsup x,”|x[ ™2 2h(|x)Us(x) = 0, (4.13)

|x] — c0,xe H-F

where F = J?, F;, F; = {x € F: 2 < |x| <2*!},and 37, 2‘i<"‘“+ﬁ+1)Ckwll(Fi) < o0.
Combining (4.4) and (4.10)-(4.13), we complete the proof of Theorem 1.1.
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