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We use an inequality given by Matić and Pečarić (2000) and obtain improvement and reverse of
Slater’s and related inequalities.

1. Introduction

In 1981 Slater has proved an interesting companion inequality to Jensen’s inequality [1].

Theorem 1.1. Suppose that φ : I ⊆ R → R is increasing convex function on interval I, for
x1, x2, . . . , xn ∈ I◦ (where I◦ is the interior of the interval I) and for p1, p2, . . . , pn ≥ 0 with
Pn =

∑n
i=1 pi > 0, if

∑n
i=1 piφ

′
+(xi) > 0, then

1
Pn

n∑

i=1

piφ(xi) ≤ φ

(∑n
i=1 piφ

′
+(xi)xi

∑n
i=1 piφ

′
+(xi)

)

. (1.1)

When φ is strictly convex on I, inequality (1.1) becomes equality if and only if xi = c for some c ∈ I◦

and for all i with pi > 0.

It was noted in [2] that by using the same proof the following generalization of Slater’s
inequality (1981) can be given.
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Theorem 1.2. Suppose that φ : I ⊆ R → R is convex function on interval I, for x1, x2, . . . , xn ∈ I◦

(where I◦ is the interior of the interval I) and for p1, p2, . . . , pn ≥ 0 with Pn =
∑n

i=1 pi > 0. Let

n∑

i=1

piφ
′
+(xi)/= 0,

∑n
i=1 piφ

′
+(xi)xi

∑n
i=1 piφ

′
+(xi)

∈ I◦, (1.2)

then inequality (1.1) holds.
When φ is strictly convex on I, inequality (1.1) becomes equality if and only if xi = c for some

c ∈ I◦ and for all i with pi > 0.

Remark 1.3. For multidimensional version of Theorem 1.2 see [3].

Another companion inequality to Jensen’s inequality is a converse proved by
Dragomir and Goh in [4].

Theorem 1.4. Let φ : I ⊆ R → R be differentiable convex function defined on interval I. If xi ∈
I, i = 1, 2, . . . , n (n ≥ 2) are arbitrary members and pi ≥ 0 (i = 1, 2, . . . , n) with Pn =

∑n
i=1 pi > 0,

and let

x =
1
Pn

n∑

i=1

pixi, y =
1
Pn

n∑

i=1

piφ(xi). (1.3)

Then the inequalities

0 ≤ y − φ(x) ≤ 1
Pn

n∑

i=1

piφ
′(xi)(xi − x) (1.4)

hold.
In the case when φ is strictly convex, one has equalities in (1.4) if and only if there is some

c ∈ I such that xi = c holds for all i with pi > 0.

Matić and Pečarić in [5] proved more general inequality from which (1.1) and (1.4)
can be obtained as special cases.

Theorem 1.5. Let φ : I ⊆ R → R be differentiable convex function defined on interval I and let
xi, pi, Pn, x, and y be stated as in Theorem 1.4. If d ∈ I is arbitrary chosen number, then one has

y ≤ φ(d) +
1
Pn

n∑

i=1

pi(xi − d)φ′(xi). (1.5)

Also, when φ is strictly convex, one has equality in (1.5) if and only if xi = d holds for all i with
pi > 0.

Remark 1.6. If φ, xi, pi, Pn, and x are stated as in Theorem 1.4 and we let
∑n

i=1 piφ
′(xi)/= 0,

also if x =
∑n

i=1 pixiφ
′(xi)/

∑n
i=1 piφ

′(xi) ∈ I, then by setting d = x in (1.5), we get Slater’s
inequality (1.1) and similarly by setting d = x in (1.5), we get (1.4).
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The following refinement of (1.4) is also valid [5].

Theorem 1.7. Let φ : I ⊆ R → R be strictly convex differentiable function defined on interval I and
let xi, pi, Pn, x, and y be stated as in Theorem 1.4 and d = (φ′)−1((1/Pn)

∑n
i=1 piφ

′(xi)), then the
inequalities

y ≤ φ
(
d
)
+

1
Pn

n∑

i=1

piφ
′(xi)

(
xi − d

)
, (1.6)

0 ≤ y − φ(x) ≤ φ
(
d
)
+

1
Pn

n∑

i=1

piφ
′(xi)

(
xi − d

)
− φ(x) ≤ 1

Pn

n∑

i=1

piφ
′(xi)(xi − x) (1.7)

hold.
The equalities hold in (1.6) and in (1.7) if and only if x1 = x2 = · · · = xn.

Remark 1.8. In [6] Dragomir has also proved Theorem 1.7.

In this paper, we use an inequality given in [5] and derive two mean value
theorems, exponential convexity, log-convexity, and Cauchy means. As applications, such
results are also deduce for related inequality. We use some log-convexity criterion and
prove improvement and reverse of Slater’s and related inequalities. We also prove some
determinantal inequalities.

2. Mean Value Theorems

Theorem 2.1. Let φ ∈ C2(I), where I is closed interval in R, and let Pn =
∑n

i=1 pi, pi > 0, xi, d ∈ I
with xi /=d (i = 1, 2, . . . , n) and y = (1/Pn)

∑n
i=1 piφ(xi). Then there exists ξ ∈ I such that

φ(d) +
1
Pn

n∑

i=1

pi(xi − d)φ′(xi) − y =
φ′′(ξ)
2Pn

n∑

i=1

pi(xi − d)2. (2.1)

Proof. Since φ′′(x) is continuous on I, m ≤ φ′′(x) ≤ M for x ∈ I, where m = minx∈Iφ′′(x) and
M = maxx∈Iφ′′(x).

Consider the functions φ1, φ2 defined as

φ1(x) =
Mx2

2
− φ(x),

φ2(x) = φ(x) − mx2

2
.

(2.2)

Since

φ′′
1(x) = M − φ′′(x) ≥ 0,

φ′′
2(x) = φ′′(x) −m ≥ 0,

(2.3)

φi(x) for i = 1, 2 are convex.
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Now by applying φ1 for φ in inequality (1.5), we have

Md2

2
− φ(d) +

1
Pn

n∑

i=1

pi(xi − d)
(
Mxi − φ′(xi)

) − 1
Pn

n∑

i=1

pi

(
Mx2

i

2
− φ(xi)

)

≥ 0. (2.4)

From (2.4)we get

φ(d) +
1
Pn

n∑

i=1

pi(xi − d)φ′(xi) − y ≤ M

2Pn

n∑

i=1

pi(xi − d)2, (2.5)

and similarly by applying φ2 for φ in (1.5), we get

φ(d) +
1
Pn

n∑

i=1

pi(xi − d)φ′(xi) − y ≥ m

2Pn

n∑

i=1

pi(xi − d)2. (2.6)

Since

n∑

i=1

pi(xi − d)2 > 0 as xi /=d, pi > 0 (i = 1, 2, . . . , n), (2.7)

by combining (2.5) and (2.6), we have

m ≤ 2Pn

[
φ(d) + (1/Pn)

∑n
i=1 pi(xi − d)φ′(xi) − y

]

∑n
i=1 pi(xi − d)2

≤ M. (2.8)

Now using the fact that form ≤ ρ ≤ M there exists ξ ∈ I such that φ′′(ξ) = ρ, we get (2.1).

Corollary 2.2. Let φ ∈ C2(I), where I is closed interval in R, and let xi, x, y, and Pn be stated as
in Theorem 1.4 with pi > 0 and xi /=x (i = 1, 2, . . . , n). Then there exists ξ ∈ I such that

φ(x) +
1
Pn

n∑

i=1

pi(xi − x)φ′(xi) − y =
φ′′(ξ)
2Pn

n∑

i=1

pi(xi − x)2. (2.9)

Proof. By setting d = x in Theorem 2.1, we get (2.9).

Theorem 2.3. Let φ, ψ ∈ C2(I), where I is closed interval in R, and let Pn =
∑n

i=1 pi, pi > 0 and
xi, d ∈ I with xi /=d (i = 1, 2, . . . , n). Then there exists ξ ∈ I such that

φ′′(ξ)
ψ ′′(ξ)

=
φ(d) + (1/Pn)

∑n
i=1 pi(xi − d)φ′(xi) − (1/Pn)

∑n
i=1 piφ(xi)

ψ(d) + (1/Pn)
∑n

i=1 pi(xi − d)ψ ′(xi) − (1/Pn)
∑n

i=1 piψ(xi)
, (2.10)

provided that the denominators are nonzero.
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Proof. Let the function k ∈ C2(I) be defined by

k = c1φ − c2ψ, (2.11)

where c1 and c2 are defined as

c1 = ψ(d) +
1
Pn

n∑

i=1

pi(xi − d)ψ ′(xi) − 1
Pn

n∑

i=1

piψ(xi),

c2 = φ(d) +
1
Pn

n∑

i=1

pi(xi − d)φ′(xi) − 1
Pn

n∑

i=1

piφ(xi).

(2.12)

Then, using Theorem 2.1 with φ = k, we have

0 =
(
c1φ

′′(ξ)
2Pn

− c2ψ
′′(ξ)

2Pn

) n∑

i=1

pi(xi − d)2, (2.13)

because k(d) + (1/Pn)
∑n

i=1 pi(xi − d)k′(d) − (1/Pn)
∑n

i=1 pik(xi) = 0.
Since (1/Pn)

∑n
i=1 pi(xi − d)2 > 0 as xi /=d and pi > 0 (i = 1, 2, . . . , n), therefore, (2.13)

gives us

c2
c1

=
φ′′(ξ)
ψ ′′(ξ)

. (2.14)

After putting the values of c1 and c2, we get (2.10).

Corollary 2.4. Let φ, ψ ∈ C2(I), where I is closed interval in R, and Pn =
∑n

i=1 pi, pi > 0 and let
xi ∈ I, x = (1/Pn)

∑n
i=1 pixi with xi /=x (i = 1, 2, . . . , n). Then there exists ξ ∈ I such that

φ′′(ξ)
ψ ′′(ξ)

=
φ(x) + (1/Pn)

∑n
i=1 pi(xi − x)φ′(xi) − (1/Pn)

∑n
i=1 piφ(xi)

ψ(x) + (1/Pn)
∑n

i=1 pi(xi − x)ψ ′(xi) − (1/Pn)
∑n

i=1 piψ(xi)
, (2.15)

provided that the denominators are nonzero.

Proof. By setting d = x in Theorem 2.3, we get (2.15).

Corollary 2.5. Let xi, d ∈ I with xi /=d and Pn =
∑n

i=1 pi, pi > 0 (i = 1, 2, . . . , n). Then for u, v ∈
R \ {0, 1}, u/=v, there exists ξ ∈ I, where I is positive closed interval, such that

ξu−v =
v(v − 1)

[
du + (u/Pn)

∑n
i=1 pi(xi − d)xu−1

i − (1/Pn)
∑n

i=1 pix
u
i

]

u(u − 1)
[
dv + (v/Pn)

∑n
i=1 pi(xi − d)xv−1

i − (1/Pn)
∑n

i=1 pix
v
i

] . (2.16)

Proof. By setting φ(x) = xu and ψ(x) = xv, x ∈ I, in Theorem 2.3, we get (2.16).
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Corollary 2.6. Let xi ∈ I, Pn =
∑n

i=1 pi, pi > 0 (i = 1, 2, . . . , n), and x = (1/Pn)
∑n

i=1 pixi with
xi /=x. Then for u, v ∈ R \ {0, 1}, u/=v, there exists ξ ∈ I, where I is positive closed interval, such
that

ξu−v =
v(v − 1)

[
xu + (u/Pn)

∑n
i=1 pi(xi − x)xu−1

i − (1/Pn)
∑n

i=1 pix
u
i

]

u(u − 1)
[
xv + (v/Pn)

∑n
i=1 pi(xi − x)xv−1

i − (1/Pn)
∑n

i=1 pix
v
i

] . (2.17)

Proof. By setting φ(x) = xu and ψ(x) = xv, x ∈ I, in (2.15), we get (2.17).

Remark 2.7. Note that we can consider the interval I = [mx,Mx], where mx = mini{xi, d},
Mx = maxi{xi, d}.

Since the function ξ → ξu−v with u/=v is invertible, then from (2.16)we have

mx ≤
{
v(v − 1)

[
du + (u/Pn)

∑n
i=1 pi(xi − d)xu−1

i − (1/Pn)
∑n

i=1 pix
u
i

]

u(u − 1)
[
dv + (v/Pn)

∑n
i=1 pi(xi − d)xv−1

i − (1/Pn)
∑n

i=1 pix
v
i

]

}1/(u−v)
≤ Mx. (2.18)

We will say that the expression in the middle is a mean of xi, d.
From (2.17)we have

min
i
{xi} ≤

{
v(v − 1)

[
xu + (u/Pn)

∑n
i=1(xi − x)xu−1

i − (1/Pn)
∑n

i=1 pix
u
i

]

u(u − 1)
[
xv + (v/Pn)

∑n
i=1 pi(xi − x)xv−1

i − (1/Pn)
∑n

i=1 pix
v
i

]

}1/(u−v)
≤ max

i
{xi}.

(2.19)

The expression in the middle of (2.19) is a mean of xi.
In fact similar results can also be given for (2.10) and (2.15). Namely, suppose that

φ′′/ψ ′′ has inverse function, then from (2.10) and (2.15) we have

ξ =
(
φ′′

ψ ′′

)−1( φ(d) + (1/Pn)
∑n

i=1 pi(xi − d)φ′(xi) − (1/Pn)
∑n

i=1 piφ(xi)
ψ(d) + (1/Pn)

∑n
i=1 pi(xi − d)ψ′(xi) − (1/Pn)

∑n
i=1 piψ(xi)

)

.

ξ =
(
φ′′

ψ ′′

)−1( φ(x) + (1/Pn)
∑n

i=1 pi(xi − x)φ′(xi) − (1/Pn)
∑n

i=1 piφ(xi)
ψ(x) + (1/Pn)

∑n
i=1 pi(xi − x)ψ ′(xi) − (1/Pn)

∑n
i=1 piψ(xi)

)

.

(2.20)

So, we have that the expression on the right-hand side of (2.20) is also means.

3. Improvements and Related Results

Definition 3.1 (see [7, page 2]). A function φ : I → R is convex if

φ(s1)(s3 − s2) + φ(s2)(s1 − s3) + φ(s3)(s2 − s1) ≥ 0 (3.1)

holds for every s1 < s2 < s3, s1, s2, s3 ∈ I.
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Lemma 3.2 (see [8]). Let one define the function

ϕt(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xt

t(t − 1)
, t /= 0, 1,

− logx, t = 0,

x logx, t = 1.

(3.2)

Then ϕ′′
t (x) = xt−2, that is, ϕt is convex for x > 0.

Definition 3.3 (see [9]). A function φ : I → R is exponentially convex if it is continuous and

n∑

k,l=1

akalφ(xk + xl) ≥ 0, (3.3)

for all n ∈ N, ak ∈ R, and xk ∈ I, k = 1, 2, . . . , n such that xk+xl ∈ I, 1 ≤ k, l ≤ n, or equivalently

n∑

k,l=1

akalφ
(xk + xl

2

)
≥ 0. (3.4)

Corollary 3.4 (see [9]). If φ is exponentially convex function, then

det
[
φ
(xk + xl

2

)]n

k,l=1
≥ 0 (3.5)

for every n ∈ N xk ∈ I, k = 1, 2, . . . , n.

Corollary 3.5 (see [9]). If φ : I → (0,∞) is exponentially convex function, then φ is a log-convex
function that is

φ
(
λx + (1 − λ)y

) ≤ φλ(x)φ1−λ(y
)
, ∀x, y ∈ I, λ ∈ [0, 1]. (3.6)

Theorem 3.6. Let xi, pi, d ∈ R
+ (i = 1, 2, . . . , n), Pn =

∑n
i=1 pi. Consider Γt to be defined by

Γt = ϕt(d) +
1
Pn

n∑

i=1

pi(xi − d)ϕ′
t(xi) − 1

Pn

n∑

i=1

piϕt(xi). (3.7)

Then

(i) for every m ∈ N and for every sk ∈ R, k ∈ {1, 2, 3, . . . , m}, the matrix [Γ(sk+sl)/2]
m
k,l=1 is a

positive semidefinite matrix; particularly

det
[
Γ(sk+sl)/2

]m
k,l=1 ≥ 0; (3.8)

(ii) the function t → Γt is exponentially convex;
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(iii) if Γt > 0, then the function t → Γt is log-convex, that is, for −∞ < r < s < t < ∞, one has

(Γs)t−r ≤ (Γr)t−s(Γt)s−r . (3.9)

Proof. (i) Let us consider the function defined by

μ(x) =
m∑

k,l=1

akalϕskl(x), (3.10)

where skl = (sk + sl)/2, ak ∈ R for all k ∈ {1, 2, 3, . . . , m}, x > 0
Then we have

μ′′(x) =
m∑

k,l=1

akalx
skl−2 =

(
m∑

k=1

akx
(sk−2)/2

)2

≥ 0. (3.11)

Therefore, μ(x) is convex function for x > 0. Using μ(x) in inequality (1.5), we get

m∑

k,l=1

akalΓskl ≥ 0, (3.12)

so the matrix [Γ(sk+sl)/2]
m
k,l=1 is positive semi-definite.

(ii) Since limt→ 0Γt = Γ0 and limt→ 1Γt = Γ1, so Γt is continuous for all t ∈ R, x > 0, and
we have exponentially convexity of the function t → Γt.

(iii) Let Γt > 0, then by Corollary 3.5 we have that Γt is log-convex, that is, t → log Γt
is convex, and by (3.1) for −∞ < r < s < t < ∞ and taking φ(t) = log Γt, we get

(t − s) log Γr + (r − t) log Γs + (s − r) log Γt ≥ 0, (3.13)

which is equivalent to (3.9).

Corollary 3.7. Let xi, pi ∈ R
+ (i = 1, 2, . . . , n), Pn =

∑n
i=1 pi and x = (1/Pn)

∑n
i=1 pixi. Consider Γ̃t

to be defined by

Γ̃t = ϕt(x) +
1
Pn

n∑

i=1

pi(xi − x)ϕ′
t(xi) − 1

Pn

n∑

i=1

piϕt(xi). (3.14)

Then

(i) for every m ∈ N and for every sk ∈ R, k ∈ {1, 2, 3, . . . , m}, the matrix [Γ̃(sk+sl)/2]
m
k,l=1 is a

positive semi-definite matrix. Particularly

det
[
Γ̃(sk+sl)/2

]m

k,l=1
≥ 0, (3.15)
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(ii) the function t → Γ̃t is exponentially convex;

(iii) if Γ̃t > 0, then the function t → Γ̃t is log-convex, that is, for −∞ < r < s < t < ∞, one has

(
Γ̃s
)t−r ≤

(
Γ̃r
)t−s(

Γ̃t
)s−r

. (3.16)

Proof. To get the required results, set d = x in Theorem 3.6.

Let x = (x1, x2, . . . , xn) be positive n-tuple and p1, p2, . . . , pn positive real numbers, and
let Pn =

∑n
i=1 pi. Let Mt(x) denote the power mean of order t (t ∈ R), defined by

Mt(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1
Pn

n∑

i=1

pix
t
i

)1/t

, t /= 0,

(
n∏

i=1

x
pi
i

)1/Pn

, t = 0.

(3.17)

Let us note that M1(x) = x.
By (2.18) we can give the following definition of Cauchy means.
Let xi, d ∈ I with xi /=d, I is positive closed interval, and Pn =

∑n
i=1 pi, pi > 0 (i =

1, 2, . . . , n),

Mu,v =
(
Γu
Γv

)1/(u−v)
(3.18)

for −∞ < u/=v < +∞ are means of xi, d. Moreover we can extend these means to the other
cases.

So by limit we have

Mu,u

= exp

(
Pnd

u logd + (u − 1)
∑n

i=1 pix
u
i logxi + PnM

u
u(x) − d

(
u
∑n

i=1 pix
u−1
i logxi + PnM

u−1
u−1(x)

)

Pn

[
du + (u − 1)Mu

u(x) − duMu−1
u−1(x)

]

− 2u − 1
u(u − 1)

)

, u /= 0, 1,

M0,0 = exp

(
Pnlog

2d − PnM
2
2

(
log x

)
+ 2Pn logM0(x) − 2d

∑n
i=1 pix

−1
i logxi

2Pn

[
logd − logM0(x) + 1 − dM−1

−1(x)
] + 1

)

,

M1,1 = exp

(
Pnd log2d + 2

∑n
i=1 pixi logxi − dPn

(
M2

2

(
log x

) − 2 logM0(x)
)

2
[
Pnd

(
logd − 1

)
+ Pnx − dPn logM0(x)

] − 1

)

,

(3.19)

where log x = (logx1, logx2, . . . , logxn).
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Theorem 3.8. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following inequality is valid:

Mt,s ≤ Mu,v. (3.20)

Proof. For convex function φ it holds that ([7, page 2])

φ(x2) − φ(x1)
x2 − x1

≤ φ
(
y2
) − φ

(
y1
)

y2 − y1
(3.21)

with x1 ≤ y1, x2 ≤ y2, x1 /=x2, y1 /=y2. Since by Theorem 3.6, Γt is log-convex, we can set in
(3.21): φ(x) = log Γx, x1 = t, x2 = s, y1 = u, and y2 = v, then we get

log Γs − log Γt
s − t

≤ logΓv − log Γu
v − u

. (3.22)

From (3.22) we get (3.20) for s /= t and u/=v.
For s = t and u = v we have limiting case.

Similarly by (2.19)we can give the following definition of Cauchy type means.
Let xi ∈ I with xi /=x, I is positive closed interval, and Pn =

∑n
i=1 pi, pi > 0 (i =

1, 2, . . . , n),

M̃u,v =

(
Γ̃u
Γ̃v

)1/(u−v)
(3.23)

for −∞ < u/=v < +∞ are means of xi. Moreover we can extend these means to the other cases.
So by limit we have

M̃u,u

= exp

(
Pnx

u logx + (u − 1)
∑n

i=1 pix
u
i logxi + PnM

u
u(x) − x

(
u
∑n

i=1 pix
u−1
i logxi + PnM

u−1
u−1(x)

)

Pn

[
xu + (u − 1)Mu

u(x) − xuMu−1
u−1(x)

]

− 2u − 1
u(u − 1)

)

, u /= 0, 1,

M̃0,0 = exp

(
Pnlog

2x − PnM
2
2

(
log x

)
+ 2Pn logM0(x) − 2x

∑n
i=1 pix

−1
i logxi

2Pn

[
logx − logM0(x) + 1 − xM−1

−1(x)
] + 1

)

,

M̃1,1 = exp

(
Pnx log2x + 2

∑n
i=1 pixi logxi − xPn

(
M2

2

(
log x

)
+ 2 logM0(x)

)

2
[
Pnx

(
logx − 1

)
+ Pnx − xPn logM0(x)

] − 1

)

,

(3.24)

where log x = (logx1, logx2, . . . , logxn).
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Theorem 3.9. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following inequality is valid:

M̃t,s ≤ M̃u,v. (3.25)

Proof. The proof is similar to the proof of Theorem 3.8.

Let Mt(x) be stated as above, define dt as

dt =
∑n

i=1 pixiϕ
′
t(xi)

∑n
i=1 piϕ

′
t(xi)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mt
t(x)

Mt−1
t−1(x)

, t /= 0, 1,

M−1(x), t = 0,

Pnx +
∑n

i=1 pixi logxi

Pn

(
1 + logM0(x)

) , t = 1.

(3.26)

The following improvement and reverse of Slater’s inequality are valid.

Theorem 3.10. Let xi, pi, dt ∈ R
+ (i = 1, 2, . . . , n), Pn =

∑n
i=1 pi. Let Ft be defined by

Ft = ϕt(dt) − 1
Pn

n∑

i=1

piϕt(xi). (3.27)

Then

(i)

Ft ≥ [H(s; t)](t−r)/(s−r)[H(r; t)](s−t)/(s−r), (3.28)

for −∞ < r < s < t < ∞ and −∞ < t < r < s < ∞.

(ii)

Ft ≤ [H(s; t)](t−r)/(s−r)[H(r; t)](s−t)/(s−r), (3.29)

for −∞ < r < t < s < ∞.

where,

H(s; t) = ϕs(dt) +
1
Pn

n∑

i=1

pi(xi − dt)ϕ′
s(xi) − 1

Pn

n∑

i=1

piϕs(xi). (3.30)
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Proof. (i) By setting d = dt in (3.7), Γt becomes Ft, and for −∞ < r < s < t < ∞, setting d = dt

in (3.9), we get

(

ϕs(dt) +
1
Pn

n∑

i=1

pi(xi − dt)ϕ′
s(xi) − 1

Pn

n∑

i=1

piϕs(xi)

)t−r

≤
(

ϕr(dt) +
1
Pn

n∑

i=1

pi(xi − dt)ϕ′
r(xi) − 1

Pn

n∑

i=1

piϕr(xi)

)t−s
(Ft)s−r ,

(3.31)

that is,

(Ft)s−r ≥
(

ϕs(dt) +
1
Pn

n∑

i=1

pi(xi − dt)ϕ′
s(xi) − 1

Pn

n∑

i=1

piϕs(xi)

)t−r

×
(

ϕr(dt) +
1
Pn

n∑

i=1

pi(xi − dt)ϕ′
r(xi) − 1

Pn

n∑

i=1

piϕr(xi)

)s−t
.

(3.32)

From (3.32) we get (3.28), and similarly for −∞ < t < r < s < ∞ (3.9) becomes

(Γr)s−t ≤ (Γt)s−r(Γs)r−t; (3.33)

by the same process we can get (3.28).
(ii) For −∞ < r < t < s < ∞ (3.9) becomes

(Γs)t−r ≤ (Γr)t−s(Γt)s−r ; (3.34)

setting d = dt in (3.34), we get (3.29).

Theorem 3.11. Let xi, pi, dt ∈ R
+ (i = 1, 2, . . . , n), Pn =

∑n
i=1 pi.

Then for every m ∈ N and for every sk ∈ R, k ∈ {1, 2, 3, . . . , m}, the matrices [H((sk +
sl)/2, s1)]

m
k,l=1, [H((sk + sl)/2, (s1 + s2)/2)]

m
k,l=1 are positive semi-definite matrices. Particularly

det
[
H
(sk + sl

2
, s1

)]m

k,l=1
≥ 0, (3.35)

det
[
H
(sk + sl

2
,
s1 + s2

2

)]m

k,l=1
≥ 0, (3.36)

whereH(s, t) is defined by (3.30).

Proof. By setting d = ds1 and d = d(s1+s2)/2 in Theorem 3.6(i), we get the required results.

Remark 3.12. We note that H(t, t) = Ft. So by setting m = 2 in (3.35), we have special case of
(3.28) for t = s1, s = s2, and r = (s1 + s2)/2 if s1 < s2 and for t = s1, r = s2, and s = (s1 + s2)/2
if s2 < s1. Similarly by setting m = 2 in (3.36), we have special case of (3.29) for r = s1, s =
s2, t = (s1 + s2)/2 if s1 < s2 and for r = s2, s = s1, t = (s1 + s2)/2 if s2 < s1.
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Let Mt(x) be stated as above, define dt as

dt =
(
ϕ′
t

)−1
(

1
Pn

n∑

i=1

piϕ
′
t(xi)

)

= Mt−1(x), t ∈ R. (3.37)

The following improvement and reverse of inequality (1.6) are also valid.

Theorem 3.13. Let xi, pi, dt ∈ R
+ for all i = 1, 2, . . . , n, Pn =

∑n
i=1 pi. Let Gt be defined by

Gt = ϕt

(
dt

)
+

1
Pn

n∑

i=1

pi
(
xi − dt

)
ϕ′
t(xi) − 1

Pn

n∑

i=1

piϕt(xi). (3.38)

Then

(i)

Gt ≥ [K(s; t)](t−r)/(s−r)[K(r; t)](s−t)/(s−r), (3.39)

for −∞ < r < s < t < ∞ and −∞ < t < r < s < ∞.

(ii)

Gt ≤ [K(s; t)](t−r)/(s−r)[K(r; t)](s−t)/(s−r), (3.40)

for −∞ < r < t < s < ∞,

where

K(s; t) = ϕs

(
dt

)
+

1
Pn

n∑

i=1

pi
(
xi − dt

)
ϕ′
s(xi) − 1

Pn

n∑

i=1

piϕs(xi). (3.41)

Proof. (i) By setting d = dt in (3.9), we get (3.39) for −∞ < r < s < t < ∞, and similarly we can
get (3.39) for the case −∞ < t < r < s < ∞.

(ii) For −∞ < r < t < s < ∞ (3.9) becomes

(Γs)t−r ≤ (Γr)t−s(Γt)s−r ; (3.42)

setting d = dt in (3.42), we get (3.40).
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Theorem 3.14. Let xi, pi, dt ∈ R
+ (i = 1, 2, . . . , n), Pn =

∑n
i=1 pi.

Then for every m ∈ N and for every sk ∈ R, k ∈ {1, 2, 3, . . . , m}, the matrices [K((sk +
sl)/2, s1)]

m
k,l=1, [K((sk + sl)/2, (s1 + s2)/2)]

m
k,l=1 are positive semi-definite matrices. Particularly

det
[
K
(sk + sl

2
, s1

)]m

k,l=1
≥ 0, (3.43)

det
[
K
(sk + sl

2
,
s1 + s2

2

)]m

k,l=1
≥ 0, (3.44)

where K(s, t) is defined by (3.41).

Proof. By setting d = ds1 and d = d(s1+s2)/2 in Theorem 3.6(i), we get the required results.

Remark 3.15. We note that K(t, t) = Gt. So by setting m = 2 in (3.43), we have special case of
(3.39) for t = s1, s = s2, r = (s1 + s2)/2 if s1 < s2 and for t = s1, r = s2, and s = (s1 + s2)/2 if
s2 < s1. Similarly by setting m = 2 in (3.44), we have special case of (3.40) for r = s1, s = s2,
and t = (s1 + s2)/2 if s1 < s2 and for r = s2, s = s1, and t = (s1 + s2)/2 if s2 < s1.
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Fakulteta. Serija Matematika, vol. 12, pp. 48–51, 2001.
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