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Cădariu and Radu applied the fixed point theorem to prove the stability theorem of Cauchy and
Jensen functional equations. In this paper, we prove the generalized Hyers-Ulam stability via the
fixed point method and investigate new theorems via direct method concerning the stability of a
general quadratic functional equation.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin
in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

Let G be a group and let G′ be a metric group with metric ρ(·, ·). Given ε > 0, does there
exist a δ > 0 such that if f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a
homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

The concept of stability for functional equations arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. Thus we say that
a functional equation E1(f) = E2(f) is stable if any mapping g approximately satisfying
the equation d(E1(g), E2(g)) ≤ ϕ(x) is near to a true solution f such that E1(f) = E2(f) and
d(f(x), g(x)) ≤ Φ(x) for some functionΦ depending on the given function ϕ. In 1941, the first
result concerning the stability of functional equations for the case whereG1 andG2 are Banach
spaces was presented by Hyers [2]. In fact, he proved that each solution f of the inequality
‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ G1 can be approximated by a unique additive
function L : G1 → G2 defined by L(x) = limn→∞(f(2nx)/2n) such that ‖f(x) − L(x)‖ ≤ ε
for every x ∈ G1. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ G1, then
the function L is linear. And then Aoki [3], Bourgin [4], and Forti [5] have investigated the
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stability theorems of functional equations which generalize the Hyers’ result. In 1978, Rassias
[6] attempted to weaken the condition for the bound of Cauchy difference controlled by a
sum of unbounded function ε(‖x‖p + ‖y‖p), 0 < p < 1, and provided a generalization of
Hyers’ theorem. In 1991, Gajda [7] gave an affirmative solution to this question for p > 1
by following the same approach as in [6]. Rassias [8] established a similar stability theorem
for the unbounded Cauchy difference controlled by a product of unbounded function ε(‖x‖p ·
‖y‖q), p+q /= 1. Găvruţa [9] provided a further generalization of Rassias’ theorem by replacing
the bound of Cauchy difference by a general control function. During the last two decades a
number of papers and research monographs have been published on various generalizations
and applications of the generalized Hyers-Ulam stability to a number of functional equations
and mappings (see [10–15]).

Let E1 and E2 be real vector spaces. A function f : E1 → E2 is called a quadratic
function if and only if f is a solution function of the quadratic functional equation

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(1.1)

for all x, y ∈ E1. It is well known that a function f between real vector spaces is quadratic if
and only if there exists a unique symmetric biadditive function B such that f(x) = B(x, x) for
all x, where the mapping B is given by B(x, y) = (1/4)(f(x + y) − f(x − y)). See [16, 17] for
the details.

The Hyers-Ulam stability of the quadratic functional equation (1.1) was first proved
by Skof [18] for functions f : E1 → E2, where E1 is a normed space and E2 is a Banach
space. Cholewa noticed that Skof’s theorem is also valid if E1 is replaced by an Abelian
group. Czerwik [19] proved the generalized Hyers-Ulam stability of quadratic functional
equation (1.1) in the spirit of Rassias approach. On the other hand, according to the theorem
of Borelli and Forti [20], we know the following generalization of stability theorem for
quadratic functional equation. Let G be a 2-divisible Abelian group and E a Banach space,
and let f : G → E be a mapping with f(0) = 0 satisfying the inequality

∥∥f
(
x + y

)
+ f

(
x − y

) − 2f(x) − 2f
(
y
)∥∥ ≤ ϕ

(
x, y

)
(1.2)

for all x, y ∈ G. Assume that one of the series

Φ
(
x, y

)
:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞∑

k=0

1
22(k+1)

ϕ
(
2kx, 2ky

)
< ∞,

∞∑

k=0

22kϕ
(

x

2(k+1)
,

y

2(k+1)

)
< ∞

(1.3)

holds for all x, y ∈ G, then there exists a unique quadratic function Q : G → E such that

∥∥f(x) −Q(x)
∥∥ ≤ Φ(x, x) (1.4)

for all x ∈ G. The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem [21–27].
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In 1996, Isac and Rassias [28] applied the stability theory of functional equa-
tions to prove fixed point theorems and study some new applications in nonlinear
analysis.Radu [29], Cãdariu and Radu [30, 31] applied the fixed point theorem of alternative
to the investigation of Cauchy and Jensen functional equations. Recently, Jung et al. [32],
Jung [33, 34], Jung and Lee [35], Jung and Min [36], Jung and Rassias [37] have obtained the
generalized Hyers-Ulam stability of functional equations via the fixed point method.

Now, we see that the norm defined by a real inner product space satisfies the following
equality:

2

∥
∥
∥
∥
∥

n∑

i=1

xi

∥
∥
∥
∥
∥

2

+
∑

i /= j

∥
∥xi − xj

∥
∥2 = 2n

n∑

i=1

‖xi‖2 (1.5)

for all vectors x1, . . . , xn. Thus employing the last equality, we introduce to consider the
following functional equation

2f

(
n∑

i=1

xi

)

+
∑

i /= j

f
(
xi − xj

)
= 2n

n∑

i=1

f(xi) (1.6)

with several variables for any fixed n ∈ N with n ≥ 2. It is obvious that if n = 2 in (1.6),
then the solution function is even and thus it reduces to (1.1). Conversely, we observe that
the general solution of (1.6) in the class of all functions between vector spaces is exactly a
quadratic function. In this paper, we are going to investigate the general solution of (1.6)
and then we are to prove the generalized Hyers-Ulam stability of (1.6) for a large class of
functions from vector spaces into complete β-normed spaces by using fixed point method,
and direct method.

2. Stability of (1.6) by Fixed Point Method

For notational convenience, given a mapping f : X → Y , we define the difference operator
Df : Xn → Y of (1.6) by

Df(x1, . . . , xn) := 2f

(
n∑

i=1

xi

)

+
∑

i /= j

f
(
xi − xj

) − 2n
n∑

i=1

f(xi), n ≥ 2 (2.1)

for all x1, . . . , xn ∈ X, which is called the approximate remainder of the functional equation
(1.6) and acts as a perturbation of the equation.

We now introduce a fundamental result of fixed point theory. We refer to [38] for the
proof of it. For an extensive theory of fixed point theorems and other nonlinear methods, the
reader is referred to the book of Hyers et al. [39].

Theorem 2.1. Let (Ω, d) be a generalized complete metric space (i.e., d may assume infinite values).
Assume that Λ : Ω → Ω is a strictly contractive operator, that is, there exists a Lipschitz constant L
with 0 < L < 1 such that d(Λ(x),Λ(y)) ≤ Ld(x, y) for all x, y ∈ Ω. Then for a given element x ∈ Ω
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one of the following assertions is true:

(A1) d(Λk+1x,Λkx) = ∞ for all k ≥ 0;

(A2) there exists a nonnegative integer n0 such that

(A2.1) d(Λn+1x,Λnx) < ∞ for all n ≥ n0;
(A2.2) the sequence {Λnx} converges to a fixed point x∗ of Λ;
(A2.3) x∗ is the unique fixed point of Λ in Δ = {y ∈ Ω : d(Λn0x, y) < ∞};
(A2.4) d(y, x∗) ≤ (1/1 − L)d(y,Λy) for all y ∈ Δ.

Throughout this paper, we consider a β-Banach space. Let β be a real number with
0 < β ≤ 1 and let K denote either real field R or complex field C. Suppose E is a vector space
over K. A function ‖ · ‖β : E → [0,∞) is called a β-norm if and only if it satisfies

(N1) ‖x‖β = 0, if and only if x = 0;

(N2) ‖λx‖β = |λ|β‖x‖β, for all λ ∈ K and all x ∈ E;

(N3) ‖x + y‖β ≤ ‖x‖β + ‖y‖β, for all x, y ∈ E.

A β-Banach space is a β-normed space which is complete with respect to the β-
norm. Now we are ready to investigate the generalized Hyers-Ulam stability problem for
the functional equation (1.6) using the fixed point method. From now on, let X be a linear
space and let Y be a β-Banach space over K unless we give any specific reference where β is a
fixed real number with 0 < β ≤ 1.

Theorem 2.2. Let f : X → Y be a function with f(0) = 0 for which there exists a function ϕ :
Xn → [0,∞) such that there exists a constant L, 0 < L < 1, satisfying the inequalities

∥∥Df(x1, . . . , xn)
∥∥
β ≤ ϕ(x1, . . . , xn), (2.2)

ϕ(nx1, . . . , nxn) ≤ n2βLϕ(x1, . . . , xn) (2.3)

for all x1, . . . , xn ∈ X. Then there exists a unique quadratic function Q : X → Y defined by
limk→∞(f(nkx)/n2k) = Q(x) such that

∥∥f(x) −Q(x)
∥∥
β ≤

1
2βn2β(1 − L)

ϕ(x, . . . , x) (2.4)

for all x ∈ X.

Proof. Let us define Ω to be the set of all functions g : X → Y and introduce a generalized
metric d on Ω as follows:

d
(
g, h

)
= inf

{
C ∈ [0,∞] :

∥∥g(x) − h(x)
∥∥
β ≤ Cϕ(x, . . . , x), ∀x ∈ X

}
. (2.5)

Then it is easy to show that (Ω, d) is complete (see the proof of Theorem 3.1 of [35]). Now we
define an operator Λ : Ω → Ω by

Λg(x) =
g(nx)
n2

, g ∈ Ω (2.6)
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for all x ∈ X. First, we assert thatΛ is strictly contractive with constant L onΩ. Given g, h ∈ Ω,
let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C, that is, ‖g(x) − h(x)‖β ≤ Cϕ(x, . . . , x).
Then it follows from (2.3) that

∥
∥Λg(x) −Λh(x)

∥
∥
β =

1
n2β

∥
∥g(nx) − h(nx)

∥
∥
β ≤

1
n2β

Cϕ(nx, . . . , nx)

≤ LCϕ(x, . . . , x)

(2.7)

for all x ∈ X, that is, d(Λg,Λh) ≤ LC. Thus we see that d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ Ω
and so Λ is strictly contractive with constant L on Ω.

Next, if we put (x1, . . . , xn) := (x, . . . , x) in (2.2) and we divide both sides by (2n2)β,
then we get

∥∥∥∥
f(nx)
n2

− f(x)
∥∥∥∥
β

=
1

(2n2)β

∥∥∥2f(nx) − 2n2f(x)
∥∥∥
β

≤ 1

(2n2)β
ϕ(x, . . . , x)

(2.8)

for all x ∈ X,which implies d(Λf, f) ≤ 1/(2n2)β < ∞.
Thus applying Theorem 2.1 to the complete generalized metric space (Ω, d) with

contractive constant L, we see from Theorem 2.1(A2.2) that there exists a functionQ : X → Y
which is a fixed point of Λ, that is, Q(x) = ΛQ(x) = Q(nx)/n2, such that d(Λkf,Q) → 0 as
k → ∞. By mathematical induction we know that

ΛkQ(x) =
Q
(
nkx

)

n2k
= Q(x) (2.9)

for all k ∈ N. Since d(Λkf,Q) → 0 as k → ∞, there exists a sequence {Ck} such that Ck → 0
as k → ∞, and d(Λkf,Q) ≤ Ck for every k ∈ N.Hence, it follows from the definition of d that

∥∥∥Λkf(x) −Q(x)
∥∥∥
β
≤ Ckϕ(x, . . . , x) (2.10)

for all x ∈ X. This implies

lim
k→∞

∥∥∥Λkf(x) −Q(x)
∥∥∥
β
= 0, that is, lim

k→∞
f
(
nkx

)

n2k
= Q(x) (2.11)

for all x ∈ X. By Theorem 2.1(A2.4), we obtain

d
(
f,Q

) ≤ 1
1 − L

d
(
Λf, f

) ≤ 1

(2n2)β(1 − L)
, (2.12)

which yields inequality (2.4).
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In turn, it follows from (2.2) and (2.3) that

‖DQ(x1, . . . , xn)‖β = lim
k→∞

1
n2kβ

∥
∥
∥Df

(
nkx1, . . . , n

kxn

)∥∥
∥
β

≤ lim
k→∞

1
n2kβ

ϕ
(
nkx1, . . . , n

kxn

)
≤ lim

k→∞
Lkϕ(x1, . . . , xn)

= 0

(2.13)

for all x1, . . . , xn ∈ X, which implies that Q is a solution of (1.6) and so the mapping Q is
quadratic.

To prove the uniqueness of Q, assume now that Q1 : X → Y is another quadratic
mapping satisfying inequality (2.4). Then Q1 is a fixed point of Λ and Q1 ∈ Δ = {g ∈ Ω :
d(f, g) < ∞}. Since the mapping Q is a unique fixed point of Λ in the set Δ = {g ∈ Ω :
d(f, g) < ∞},we see that Q = Q1 by Theorem 2.1(A2.3). The proof is complete.

The following theorem is an alternative result of Theorem 2.2.

Theorem 2.3. Let f : X → Y be a function with f(0) = 0 for which there exists a function ϕ :
Xn → [0,∞) such that there exists a constant L, 0 < L < 1, satisfying the inequalities

∥∥Df(x1, . . . , xn)
∥∥
β ≤ ϕ(x1, . . . , xn), (2.14)

ϕ

(
x1

n
, . . . ,

xn

n

)
≤ L

n2β
ϕ(x1, . . . , xn) (2.15)

for all x1, . . . , xn ∈ X. Then there exists a unique quadratic function Q : X → Y defined by
limk→∞n2kf(x/nk) = Q(x) such that

∥∥f(x) −Q(x)
∥∥
β ≤

L

2βn2β(1 − L)
ϕ(x, . . . , x) (2.16)

for all x ∈ X.

Proof. We use the same notations for Ω and d as in the proof of Theorem 2.2. Thus (Ω, d) is a
complete generalized metric space. Let us define an operator Λ : Ω → Ω by

Λg(x) = n2g

(
x

n

)
, g ∈ Ω (2.17)

for all x ∈ X.
Then it follows from (2.15) that

∥∥Λg(x) −Λh(x)
∥∥
β = n2β

∥∥∥∥g
(
x

n

)
− h

(
x

n

)∥∥∥∥
β

≤ n2βCϕ

(
x

n
, . . . ,

x

n

)

≤ LCϕ(x, . . . , x)

(2.18)
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for all x ∈ X, that is, d(Λg,Λh) ≤ LC. Thus we see that d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ Ω
and so Λ is strictly contractive with constant L on Ω.

Next, if we put (x1, . . . , xn) := (x/n, . . . , x/n) in (2.14) and we multiply both sides by
1/2β, then we get by virtue of (2.15)

∥
∥
∥
∥f(x) − n2f

(
x

n

)∥
∥
∥
∥
β

=
1
2β

ϕ

(
x

n
, . . . ,

x

n

)

≤ L

2βn2β
ϕ(x, . . . , x)

(2.19)

for all x ∈ X,which implies d(f,Λf) ≤ L/2βn2β < ∞.
Thus according to (A2.2) of Theorem 2.1, there exists a function Q : X → Y which is a

fixed point of Λ, that is, Q(x) = ΛQ(x) = n2Q(x/n), such that

lim
k→∞

d
(
Λkf,Q

)
= 0, that is, lim

k→∞
n2kf

(
x

nk

)
= Q(x), x ∈ X. (2.20)

By Theorem 2.1(A2.4),we obtain

d
(
f,Q

) ≤ 1
1 − L

d
(
Λf, f

) ≤ L

2βn2β(1 − L)
, (2.21)

which yields the inequality (2.16).
Replacing x/nk instead of nkx in the last part of Theorem 2.2, we can prove that Q :

X → Y is a unique quadratic function satisfying (2.16) for all x ∈ X.

As applications, one has the following corollaries concerning the stability of (1.6).

Corollary 2.4. Let ε be a real number with ε ≥ 0. Assume that a function f : X → Y with f(0) = 0
satisfies the inequality

∥∥Df(x1, . . . , xn)
∥∥
β ≤ ε (2.22)

for all x1, . . . , xn ∈ X. Then there exists a unique quadratic function Q : X → Y given by Q(x) =
limk→∞(f(nkx)/n2k), which satisfies the inequality

∥∥f(x) −Q(x)
∥∥
β ≤

ε

2β
(
n2β − 1

) (2.23)

for all x ∈ X.

Proof. Letting ϕ(x1, . . . , xn) := ε and then applying Theorem 2.2 with contractive constant
1/n2β, we obtain easily the result.

Corollary 2.5. Let X be an α-normed space with 0 < α ≤ 1 and Y a β-Banach space, respectively. Let
{θi}ni=1 be real numbers such that θi ≥ 0 for all i = 1, . . . , n and let {pi}ni=1 be real numbers such that
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either α(max{pi}) < 2β, or α(min{pi}) > 2β. Assume that a function f : X → Y with f(0) = 0
satisfies the inequality

∥
∥Df(x1, . . . , xn)

∥
∥
β ≤

n∑

i=1

θi‖xi‖piα (2.24)

for all x1, . . . , xn ∈ X andX \{0} if pi < 0. Then there exists a unique quadratic functionQ : X → Y
which satisfies the inequality

∥
∥f(x) −Q(x)

∥
∥
β ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n
i=1 θi‖x‖

pi
α

2β
(
n2β − nα(max{pi})) if α

(
max

{
pi
})

< 2β,

∑n
i=1 θi‖x‖

pi
α

2β
(
nα(min{pi}) − n2β

) if α
(
min

{
pi
})

> 2β,

(2.25)

for all x ∈ X and X \ {0} if p < 0. The function Q is given by

Q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
k→∞

f
(
nkx

)

n2k
if α

(
max

{
pi
})

< 2β,

lim
k→∞

n2kf

(
x

nk

)
if α

(
min

{
pi
})

> 2β,

(2.26)

for all x ∈ X.

Proof. Letting ϕ(x1, . . . , xn) :=
∑n

i=1 θi‖xi‖piα for all x1, . . . , xn ∈ X and then applying
Theorem 2.2 with contractive constant nα(max{pi})/n2β and Theorem 2.3 with contractive
constant n2β/nα(min{pi}), we obtain easily the results.

3. Stability of (1.6) by Direct Method

In the next two theorems, let ϕ : Xn → [0,∞) be a mapping satisfying one of the conditions

Φ1(x1, . . . , xn) :=
∞∑

l=0

1
2βn2β(l+1)

ϕ
(
nlx1, . . . , n

lxn

)
< ∞, (3.1)

Φ2(x1, . . . , xn) :=
∞∑

l=0

1
2β

n2βlϕ

(
x1

nl+1
, . . . ,

xn

nl+1

)
< ∞ (3.2)

for all x1, . . . , xn ∈ X.

Theorem 3.1. Assume that a function f : X → Y satisfies

∥∥Df(x1, . . . , xn)
∥∥
β ≤ ϕ(x1, . . . , xn) (3.3)
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for all x1, . . . , xn ∈ X and ϕ satisfies the condition (3.1). Then there exists a unique quadratic function
Q : X → Y satisfying

∥
∥
∥
∥f(x) −

nf(0)
2(n + 1)

−Q(x)
∥
∥
∥
∥
β

≤ Φ1(x, . . . , x) (3.4)

for all x ∈ X, where ‖f(0)‖β ≤ ϕ(0, . . . , 0)/(n − 1)β(n + 2)β. The function Q is given by

Q(x) = lim
k→∞

f
(
nkx

)

n2k
(3.5)

for all x ∈ X.

Proof. Putting x1 =, . . . ,= xn = 0 in (3.3), we get ‖f(0)‖β ≤ ϕ(0, . . . , 0)/(n − 1)β(n + 2)β. Putting
x1 =, . . . ,= xn = x in (3.3), we obtain

∥∥∥2f(nx) + n(n − 1)f(0) − 2n2f(x)
∥∥∥
β
≤ ϕ(x, . . . , x) (3.6)

for x ∈ X. Dividing (3.6) by 2βn2β, we get

∥∥∥∥
1
n2

f(nx) − f(x)
∥∥∥∥
β

≤ 1
2βn2β

ϕ(x, . . . , x), (3.7)

where f(x) = f(x) − (n/2(n + 1))f(0) for any x ∈ X. Thus it follows from formula (3.7) and
triangle inequality that

∥∥∥∥
1
n2k

f(nkx) − f(x)
∥∥∥∥
β

≤
k−1∑

l=0

1
2βn2β(l+1)

ϕ
(
nlx, . . . nlx

)
(3.8)

for all x ∈ X and all k ∈ N,which is verified by induction. Therefore we prove from inequality
(3.8) that for any integers m, k with m > k ≥ 0

∥∥∥∥
1

n2m
f(nmx) − 1

n2k
f
(
nkx

)∥∥∥∥
β

≤ 1
n2βk

∥∥∥∥
1

n2(m−k) f
(
nm−knkx

)
− f

(
nkx

)∥∥∥∥
β

=
m−k−1∑

l=0

1
2βn2β(l+k+1)

ϕ
(
nl+kx, . . . , nl+kx

)

=
m−1∑

l=k

1
2βn2β(l+1)

ϕ
(
nlx, . . . , nlx

)

(3.9)
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for all x ∈ X. Since the right-hand side of (3.9) tends to zero as k → ∞, the sequence
{(1/n2k)f(nkx)} is a Cauchy sequence for all x ∈ X and thus converges by the completeness
of Y . Define Q : X → Y by

Q(x) = lim
k→∞

1
n2k

(
f
(
nkx

)
− n

2(n + 1)
f(0)

)

= lim
k→∞

f
(
nkx

)

n2k
, x ∈ X.

(3.10)

Taking the limit in (3.8) as k → ∞, we obtain that

∥
∥
∥
∥f(x) −

n

2(n + 1)
f(0) −Q(x)

∥
∥
∥
∥
β

≤ Φ1(x, . . . , x) (3.11)

for all x ∈ X. Letting xi := nkxi for all i = 1, . . . , n in (3.3), respectively, and dividing both
sides by n2βk and after then taking the limit in the resulting inequality, we have

∥∥∥∥∥∥
2Q

(
n∑

i=1

xi

)

+
∑

i /= j

Q
(
xi − xj

) − 2n
n∑

i=1

Q(xi)

∥∥∥∥∥∥
β

= lim
k→∞

1
n2βk

∥∥∥Df
(
nkx1, . . . , n

kxn

)∥∥∥
β

≤ lim
k→∞

1
n2βk

ϕ
(
nkx1, . . . , n

kxn

)
= 0,

(3.12)

so the function Q is quadratic.
To prove the uniqueness of the quadratic function Q subject to (3.4), let us assume

that there exists a quadratic function Q′ : X → Y which satisfies (1.6) and inequality (3.4).
Obviously, we obtain that

Q(x) = n−2kQ
(
nkx

)
, Q′(x) = n−2kQ′

(
nkx

)
(3.13)

for all x ∈ X. Hence it follows from (3.4) that

∥∥Q(x) −Q′(x)
∥∥
β =

1
n2βk

∥∥∥Q
(
nkx

)
−Q′

(
nkx

)∥∥∥
β

≤ 2
n2βk

∞∑

l=0

1
n2β(l+1)

ϕ
(
nl+kx, . . . , nl+kx

)

= 2
∞∑

l=k

1
n2β(l+1)

ϕ
(
nlx, . . . , nlx

)
, x ∈ X

(3.14)

for all k ∈ N. Therefore letting k → ∞, one hasQ(x)−Q′(x) = 0 for all x ∈ X, completing the
proof of uniqueness.
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Theorem 3.2. Assume that a function f : X → Y satisfies

∥
∥Df(x1, . . . , xn)

∥
∥
β ≤ ϕ(x1, . . . , xn) (3.15)

for all x1, . . . , xn ∈ X and ϕ satisfies condition (3.2). Then there exists a unique quadratic function
Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥
β ≤ Φ2(x, . . . , x) (3.16)

for all x ∈ X. The function Q is given by

Q(x) = lim
k→∞

n2kf

(
x

nk

)
(3.17)

for all x ∈ X.

Proof. In this case, f(0) = 0 since
∑∞

l=0 1/2
βn2βlϕ(0, . . . , 0) < ∞ and so ϕ(0, . . . , 0) = 0 by

assumption. Replacing x by x/n in (3.6), we obtain

∥∥∥∥f(x) − n2f

(
x

n

)∥∥∥∥
β

≤ 1
2β

ϕ

(
x

n
, . . . ,

x

n

)

(3.18)

for x ∈ X.
Therefore we prove from inequality (3.18) that for any integers m, k withm > k ≥ 0

∥∥∥∥n
2mf

(
x

nm

)
− n2kf

(
x

nk

)∥∥∥∥
β

= n2βk
∥∥∥∥n

2(m−k)f
(

x

nm

)
− f

(
x

nk

)∥∥∥∥
β

≤ n2βk
m−k−1∑

l=0

1
2β

n2βlϕ

(
x

nl+k+1
, . . . ,

x

nl+k+1

)

=
m−1∑

l=k

1
2β

n2βlϕ

(
x

nl+1
, . . . ,

x

nl+1

)

(3.19)

for all x ∈ X. Since the right-hand side of (3.19) tends to zero as k → ∞, the sequence
{n2kf(x/nk)} is a Cauchy sequence for all x ∈ X, and thus converges by the completeness of
Y . Define Q : X → Y by

Q(x) = lim
k→∞

n2kf

(
x

nk

)
(3.20)

for all x ∈ X. Taking the limit in (3.19) with k = 0 as m → ∞, we obtain that

∥∥f(x) −Q(x)
∥∥
β ≤ Φ2(x, . . . , x), x ∈ X. (3.21)
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Replacing (x1, . . . , xn) in (3.3) by (x1/n
k, . . . , xn/n

k), multiplying both sides by n2βk,
and then taking the limit as k → ∞ in the resulting inequality, we have

2Q

(
n∑

i=1

xi

)

+
∑

i /= j

Q
(
xi − xj

) − 2n
n∑

i=1

Q(xi) = 0 (3.22)

for all x1, . . . , xn ∈ X. Therefore the function Q is quadratic.
To prove the uniqueness, letQ′ be another quadratic function satisfying (3.16). Then it

is easy to see that the following identities Q(x) = n2kQ(x/nk) and Q′(x) = n2kQ′(x/nk) hold
for all x ∈ X. Thus we have

∥
∥Q(x) −Q′(x)

∥
∥
β = n2βk

∥
∥
∥
∥Q

(
x

nk

)
−Q′

(
x

nk

)∥
∥
∥
∥
β

≤ 2
2β

∞∑

l=0

n2β(l+k)ϕ

(
x

nl+k+1
, . . . ,

x

nl+k+1

)

≤ 2
2β

∞∑

l=k

n2βlϕ

(
x

nl+1
, . . . ,

x

nl+1

)

(3.23)

for all x ∈ X and all k ∈ N. Therefore letting k → ∞, one has Q(x) −Q′(x) = 0 for all x ∈ X.
This completes the proof.

In the following corollary, we have a stability result of (1.6) with difference operator
Df bounded by the sum of powers of α-norms.

Corollary 3.3. Let X be an α-normed space with 0 < α ≤ 1 and Y a β-Banach space, respectively.
Let {θi}ni=1 be real numbers with θi ≥ 0 for all i, and let ε, {pi}ni=1 be real numbers such that either
α(max{pi}) < 2β, ε ≥ 0 or α(min{pi}) > 2β, ε = 0. Assume that a function f : X → Y satisfies the
inequality

∥∥Df(x1, . . . , xn)
∥
∥
β ≤ ε +

n∑

i=1

θi‖xi‖piα (3.24)

for all x1, . . . , xn ∈ X andX \{0} if pi < 0. Then there exists a unique quadratic functionQ : X → Y
which satisfies the inequality

∥∥∥∥f(x) −
nf(0)
2(n + 1)

−Q(x)
∥∥∥∥
β

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε

2β
(
n2β − 1

) +
n∑

i=1

θi‖x‖piα
2β
(
n2β − nαpi

)

if α
(
max

{
pi
})

< 2β, ε ≥ 0,
n∑

i=1

θi‖x‖piα
2β
(
nαpi − n2β

)

if α
(
min

{
pi
})

> 2β, ε = 0
(3.25)
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for all x ∈ X and X \ {0} if pi < 0. The function Q is given by

Q(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
k→∞

f
(
nkx

)

n2k
, if α

(
max

{
pi
})

< 2β, ε ≥ 0

lim
k→∞

n2kf

(
x

nk

)
, if α

(
min

{
pi
})

> 2β, ε = 0.

(3.26)

for all x ∈ X.

Proof. Letting ϕ(x1, . . . , xn) := ε +
∑n

i=1 θi‖xi‖piα for all x1, . . . , xn ∈ X and then applying
Theorems 3.1 and 3.2, we obtain easily the results.

We observe that if f(0) = 0 and ε = 0 in Corollary 3.3, then the stability result obtained
by the fixed point method in Corollary 2.5 is somewhat different from the stability result
obtained by direct method in Corollary 3.3. The stability result in Corollary 3.3 is sharper
than that of Corollary 2.5.

In the next corollary, we get a stability result of (1.6) with difference operator Df
bounded by the product of powers of α-norms.

Corollary 3.4. Let X be an α-normed space with 0 < α ≤ 1 and Y a β-Banach space, respectively,
and let θ, {pi}ni=1 be real numbers such that θ ≥ 0 and αp /= 2β, where p :=

∑n
i=1 pi. Suppose that a

function f : X → Y satisfies

∥∥Df(x1, . . . , xn)
∥∥
β ≤ θ

n∏

i=1

‖xi‖piα (3.27)

for all x1, . . . , xn ∈ X andX \{0} if pi < 0. Then there exists a unique quadratic functionQ : X → Y
which satisfies the inequality

∥∥∥∥f(x) −
n

2(n + 1)
f(0) −Q(x)

∥∥∥∥
β

≤ θ‖x‖p
2β
(∣∣n2β − nαp

∣∣) (3.28)

for all x ∈ X, and for all X \ {0} if p < 0, where f(0) = 0 if p > 0.

Proof. We remark that ϕ(x1, . . . , xn) := θ
∏n

i=1‖xi‖piα satisfies condition (3.1) for the case αp < 2β
or condition (3.2) for the case αp > 2β. By Theorems 3.1 and 3.2, we get the results.

We observe that if f(0) = 0 in Corollary 3.4, then the stability result obtained by
the fixed point method with contractive constants nαp/n2β(αp < 2β), n2β/nαp(αp > 2β),
respectively, coincides with the stability result (3.28) obtained by direct method.
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