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The purpose of this paper is to derive an interested subordination relation which contains the
Srivastava-Attiya integral operator Js,b(f) in the open unit disc U = {z ∈ C : |z| < 1}. Some
applications of the main result are also considered.

1. Introduction and Definitions

Let A denote the class of functions f(z) normalized by

f(z) = z +
∞∑

k=2

akz
k (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}.
A function f(z) in the class A is said to be in the class S∗(α) of starlike functions of

order α if it satisfies

Re
{
zf ′(z)
f(z)

}
> α (z ∈ U), (1.2)

for some α (0 ≤ α < 1). Also, we write S(0) = S∗, the class of starlike functions in U.
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For f(z) ∈ A and z ∈ U, let the integral operators A(f), L(f), and Lγ(f) be defined as

A
(
f
)
(z) =

∫z

0

f(t)
t

dt,

L
(
f
)
(z) =

2
z

∫z

0
f(t)dt,

Lγ

(
f
)
(z) =

1 + γ

zγ

∫z

0
f(t)tγ−1dt

(
γ > −1).

(1.3)

The operators A(f) and L(f) are Alexander operator and Libera operator which were
introduced earlier by Alexander [1] and Libera [2]. Lγ(f) is called generalized Bernardi
operator; the operator Lγ(f)when γ ∈ N = {1, 2, . . .}was introduced by Bernardi [3].

Jung et al. [4] introduced the following integral operator:

Iσ
(
f
)
(z) =

2σ

zΓ(σ)

∫z

0

(
log

(z
t

))σ−1
f(t)dt

(
σ > 0, f(z) ∈ A

)
. (1.4)

The operator Iσ(f) is closely related to multiplier transformations studied earlier by Flett [5],
see also [6–8].

A general Hurwitz-Lerch Zeta function ϕ(z, s, b) defined by (cf., e.g., [9, page 121 et
seq.])

ϕ(z, s, b) =
∞∑

k=0

zk

(k + b)s
, (1.5)

(b ∈ C \ Z
−
0 ,Z

−
0 = Z

− ∪ {0} = {0,−1,−2, . . .}, s ∈ C when z ∈ U, Re(s) > 1 when |z| =
1). Recently, several properties of ϕ(z, s, b) have been studied by Choi and Srivastava [10],
Ferreira and López [11], Lin and Srivastava [12], Luo and Srivastava [13], and others.

For f(z) ∈ A, s ∈ C, and b ∈ C \ Z−
0 , let

Gs,b(z) = (1 + b)s
[
ϕ(z, s, b) − b−s

]
(z ∈ U). (1.6)

Srivastava and Attiya [14] defined the operator Js,b (f) as

Js,b
(
f
)
(z) = Gs,b(z) ∗ f(z)

(
z ∈ U; f(z) ∈ A

)
, (1.7)

where the symbol (∗) denotes the Hadamard product (or convolution).
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They showed that if f(z) ∈ A and z ∈ U, then,

J0,b
(
f
)
(z) = f(z),

J1,0
(
f
)
(z) =

∫z

0

f(t)
t

dt = A
(
f
)
(z),

J1,1
(
f
)
(z) =

2
z

∫z

0
f(t)dt = L

(
f
)
(z),

J1,γ
(
f
)
(z) =

1 + γ

zγ

∫z

0
f(t)tγ−1dt = Lγ

(
f
)
(z)

(
γ real; γ > −1),

Jσ,1
(
f
)
(z) = z +

∞∑

k=2

(
2

k + 1

)σ

akz
k = Iσ

(
f
)
(z) (σ real;σ > 0 ).

(1.8)

Also, for f(z) ∈ A, t1; t2; . . . ; tn; z ∈ U, n ∈ N, and b ∈ C \ Z−,we have

J2,0
(
f
)
(z) =

∫z

0

1
t1

∫ t1

0

f(t2)
t2

dt2 dt1,

Jn,0
(
f
)
(z) =

∫z

0

1
t1

∫ t1

0

1
t2

∫ t2

0
· · · 1

tn−1

∫ tn−1

0

f(tn)
tn

dtn dtn−1 · · ·dt1,

J2,b
(
f
)
(z) =

(1 + b)2

zb

∫z

0

1
t1

∫ t1

0
tb−12 f(t2)dt2 dt1,

Jn,b
(
f
)
(z) =

(1 + b)n

zb

∫z

0

1
t1

∫ t1

0

1
t2

∫ t2

0
· · · 1

tn−1

∫ tn−1

0
tb−1n f(tn)dtn dtn−1 · · ·dt1.

(1.9)

Now we introduce the following definition.

Definition 1.1. For f(z) ∈ A, s ∈ C and b ∈ C \ Z
−
0 . Then the function f(z) is said to be a

member of the class Hs,b,α(A,B) if it satisfies

1
1 − α

{
z
(
Js,b(f)(z)

)′

Js,b
(
f
)
(z)

− α

}
≺ 1 +Az

1 + Bz
(z ∈ U), (1.10)

for some α,A, B(0 ≤ α < 1; −1 ≤ B < A ≤ 1). We note that H0,b,α(1,−1) is the class of starlike
functions of order α.

We will also need the following definitions.

Definition 1.2. Let f(z) and F(z) be analytic functions. The function f(z) is said to be
subordinate to F(z), written f(z) ≺ F(z), if there exists a function w(z) analytic in U,
with w(0) = 0 and |w(z)| ≤ 1, and such that f(z) = F(w(z)). If F(z) is univalent, then
f(z) ≺ F(z) if and only if f(0) = F(0) and f(U) ⊂ F(U).
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Definition 1.3. Let Ψ : C2 × U → C be analytic in domain D, and let h(z) be univalent in U.
If p(z) is analytic in U with (p(z), zp′(z); z) ∈ D when z ∈ U, then we say that p(z) satisfies a
first order differential subordination if:

Ψ
(
p(z), zp′(z); z

) ≺ h(z) (z ∈ U). (1.11)

The univalent function q(z) is called dominant of the differential subordination (1.11), if
p(z) ≺ q(z) for all p(z) satisfies (1.11), if q̃(z) ≺ q(z) for all dominant of (1.11), then we
say that q̃(z) is the best dominant of (1.11).

2. Some Preliminary Lemmas

To prove our main results, we need the following lemmas.

Lemma 2.1 (Srivastava and Attiya [14]). If the function f(z) belongs to A, then

zJ ′s+1,b
(
f
)
(z) = (1 + b)Js,b

(
f
)
(z) − bJs+1,b

(
f
)
(z), (2.1)

for s ∈ C, b ∈ C \ Z−
0 and z ∈ U.

Lemma 2.2 (Wilken and Feng [15], see also [16]). Let μ be a positive measure on [0, 1] and let g
be a complex-valued function defined on U × [0, 1] such that g(·, t) is analytic in U for each t ∈ [0, 1],
and g(z, ·) is μ-integrable on [0, 1] for all z ∈ U. In addition, suppose that Re{g(z, t)} > 0, g(−r, t)
is real and

Re
{

1
g(z, t)

}
≥ 1

g(−r, t) , (2.2)

for |z| ≤ r < 1 and t ∈ [0, 1]. If

g(z) =
∫1

0
g(z, t)dμ(t), (2.3)

then

Re
{

1
g(z)

}
≥ 1

g(−r) . (2.4)

Lemma 2.3. For real or complex parameters a, b, and c (c /∈Z
−
0 ),

∫1

0
tb−1(1−t)c−b−1(1−zt)−adt= Γ(b)Γ(c−b)

Γ(c) 2F1

(
a, b; c;

z

z−1
)

(Re(c)>Re(b)>0), (2.5)

2F1(a, b; c; z) = (1 − z)−a 2F1

(
a, c − b; c;

z

z − 1

)
, (2.6)

where 2F1(a, b; c; z) is the Gauss hypergeometric function.
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Each of the identities (2.5) and (2.6) asserted by Lemma 2.3 is well known in the
literature (cf., e.g., [17, Chapter 9]).

Lemma 2.4 (Miller and Mocanu [18]). If −1 ≤ B < A ≤ 1, β > 0, and the complex number γ is
constrained by Re γ ≥ (−β(1 −A))/(1 − B), then the differential equation

q(z) +
zq′(z)

βq(z) + γ
=

1 +Az

1 + Bz
(z ∈ U) (2.7)

has a univalent solution in U given by

q(z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zβ+γ(1+Bz)
β(A−B)/B

β
∫z
0 t

β+γ−1(1 + Bt)β(A−B)/Bdt
− γ

β
, B /= 0,

zβ+γ exp
(
βAz

)

β
∫z
0 t

β+γ−1 exp
(
βAt

)
dt

− γ

β
, B = 0.

(2.8)

If the function φ(z) given by

φ(z) = 1 + c1z + c2z
2 + · · · (2.9)

is analytic in U and satisfies

φ(z) +
zφ′(z)

βφ(z) + γ
≺ 1 +Az

1 + Bz
(z ∈ U), (2.10)

then

φ(z) ≺ q(z) ≺ 1 +Az

1 + Bz
(z ∈ U) (2.11)

and q(z) is the best dominant of (2.10).

3. Subordination Result and Starlikeness of Js,b(f)

Theorem 3.1. For s ∈ C, b ∈ C \ Z−
0 , 0 ≤ α < 1, and −1 ≤ B < A ≤ 1. If the function f(z) belongs

to the classHs,b,α(A,B) which satisfies Js+1,b(f)(z)/z/= 0. Also, let

Re b ≥ − [(1 −A) + α(A − B)]
(1 − B)

, (3.1)

then

1
1 − α

{
z
(
Js+1,b(f)(z)

)′

Js+1,b
(
f
)
(z)

− α

}
≺ q(z) =

1
1 − α

{
1

M(z)
− α − b

}
≺ 1 +Az

1 + Bz
(z ∈ U), (3.2)
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where

M(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫1

0
tb
(
1 + Btz

1 + Bz

)(1−α)(A−B)/B
dt, B /= 0

∫1

0
tb exp((1 − α)(t − 1)Az)dt, B = 0,

(3.3)

and q(z) is the best dominant of (3.2).
Moreover, if b is real number with −1 ≤ B < 0, then

Js+1,b
(
f
)
(z) ∈ S∗(μ

)
, (3.4)

where

μ =
b + 1

2F1(1, (1 − α)(B −A)/B; b + 2, B/(B − 1))
− b. (3.5)

The constant factor μ cannot be replaced by a larger one.

Proof. Let f(z) ∈ Hs,b,α(A,B), also let

φ(z) =
1

1 − α

{
z
(
Js+1,b(f)(z)

)′

Js+1,b
(
f
)
(z)

− α

}
(z ∈ U). (3.6)

Then φ(z) is analytic in Uwith φ(0) = 1. Using the identity in Lemma 2.1 in (3.6), we have

(1 + b)
Js,b

(
f
)
(z)

Js+1,b
(
f
)
(z)

= (1 − α)φ(z) + α + b. (3.7)

Carrying out logarithmic differentiation in (3.7), we deduce that

1
1 − α

{
z
(
Js,b(f)(z)

)′

Js,b
(
f
)
(z)

− α

}
= φ(z) +

zφ′(z)
(1 − α)φ(z) + α + b

≺ 1 +Az

1 + Bz
(z ∈ U). (3.8)

Hence, by using (3.1) and Lemma 2.4, we find that

φ(z) ≺ q(z) ≺ 1 +Az

1 + Bz
(z ∈ U), (3.9)

where q(z) given in (3.2) is the best dominant of (3.8). This proves the assertion (3.2) of the
theorem.
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Next, in order to prove (3.4), it suffices to show that

inf
z∈U

{
Re q(z)

}
= q(−1). (3.10)

Putting

a =
(1 − α)(B −A)

B
, (3.11)

since B ≥ −1, then from (3.3), by using (2.5) and (2.6), we see that, for B /= 0

M(z) =
∫1

0
tb
(
1 + Btz

1 + Bz

)(1−α)(A−B)/B
dt

= (1 + Bz)a
∫1

0
tb(1 + Btz)−adt

=
Γ(b + 1)
Γ(b + 2) 2F1

(
1, a; b + 2;

Bz

Bz + 1

)
.

(3.12)

To prove (3.10), we need to show that

Re
{

1
M(z)

}
≥ 1

M(−1) (z ∈ U). (3.13)

By using (2.5) and (3.12), we have

M(z) =
∫1

0
h(z, t)dν(t), (3.14)

where

h(z, t) =
1 + Bz

1 + (1 − t)Bz
(0 ≤ t ≤ 1),

dν(t) =
Γ(b + 1)

Γ(a)Γ(b + 2 − a)
ta−1(1 − t)b−a+1,

(3.15)

which is a positive measure on [0, 1].
We note that

Reh(z, t) > 0, h(−r, t) is real (r ∈ [0, 1)), (3.16)

also, for −1 ≤ B < 0, it implies that

Re
{

1
h(z, t)

}
= Re

{
1 + (1 − t)Bz

1 + Bz

}
≥ 1 + (1 − t)Br

1 + Br
=

1
h(−r, t) . (3.17)
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Therefore by using Lemma 2.4, we have

Re
{

1
M(z)

}
≥ 1

M(−1) (|z| ≤ r < 1), (3.18)

which, upon letting r → 1−, yields

Re
{

1
M(z)

}
≥ 1

M(−1) (z ∈ U). (3.19)

Since q(z) is the best dominant of (3.2), therefore the constant factor μ cannot be
replaced by a larger one.

Corollary 3.2. Let s be a complex number, 0 ≤ α < 1,−1 ≤ B < A ≤ 1 with −1 ≤ B < 0 and the real
number b is constrained by

b ≥ −[(1 −A) + α(A − B)]
(1 − B)

. (3.20)

Then

Hs,b,α(A,B) ⊂ Hs+1,b,α(1 − 2δ,−1), (3.21)

where

δ =
1

1 − α

{
b + 1

2F1(1, (1 − α)(B −A)/B; b + 2, B/(B − 1))
− α − b

}
. (3.22)

The constant factor δ is the best possible.

4. Applications

Putting s = 0, in Theorem 3.1, we have the following result for the operator Lb(f).

Corollary 4.1. For 0 ≤ α < 1, −1 ≤ B < A ≤ 1 and b constrained by (3.20). If the function f(z)
belongs to the classH0,b,α(A,B) which satisfies Lb(f)(z)/z/= 0, then

1
1 − α

{
z
(
Lb

(
f
)
(z)

)′

Lb

(
f
)
(z)

− α

}
≺ q(z) =

1
1 − α

{
1

M(z)
− α − b

}
≺ 1 +Az

1 + Bz
(z ∈ U), (4.1)

whereM(z) defined by (3.3) and q(z) is the best dominant of (4.1).
Moreover, if −1 ≤ B < 0, then

Lb

(
f
)
(z) ∈ S∗(μ

)
, (4.2)

where μ defined by (3.5). The constant factor μ cannot be replaced by a larger one.
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Setting b = 1, in Theorem 3.1 and s ≥ 0; real, we obtain the following property for the
operator Is(f).

Corollary 4.2. Let s ≥ 0; real, 0 ≤ α < 1 and −1 ≤ B < A ≤ 1. If the function f(z) belongs to the
classHs,1,α(A,B) which satisfies Is+1(f)(z)/z/= 0. Then

1
1 − α

{
z
(
Is+1

(
f
)
(z)

)′

Is+1
(
f
)
(z)

− α

}
≺ q(z) =

1
1 − α

{
1

M(z)
− α − 1

}
≺ 1 +Az

1 + Bz
(z ∈ U), (4.3)

where

M(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫1

0
t

(
1 + Btz

1 + Bz

)(1−α)(A−B)/B
dt, B /= 0

(1 − α)Az + exp(−(1 − α)Az) − 1

(1 − α)2A2z2
B = 0,

(4.4)

and q(z) is the best dominant of (4.3).
Moreover, if −1 ≤ B < 0, then

Is+1
(
f
)
(z) ∈ S∗(μ

)
, (4.5)

where

μ =
2

2F1(1, (1 − α)(B −A)/B; 3, B/(B − 1))
− 1. (4.6)

The constant factor μ cannot be replaced by a larger one.

By taking f(z) = f0(z) = z/(1 − z), in Theorem 3.1, we readily obtain the following
Hurwitz-Lerch Zeta function property.

Corollary 4.3. Let s be a complex number, 0 ≤ α < 1, −1 ≤ B < A ≤ 1, and b constrained by (3.20),
also, let Gs+1,b(z)/z/= 0. If

1
1 − α

{
z(Gs,b(z))

′

Gs,b(z)
− α

}
≺ 1 +Az

1 + Bz
(z ∈ U), (4.7)

then

1
1 − α

{
z(Gs+1,b(z))

′

Gs+1,b(z)
− α

}
≺ q(z) =

1
1 − α

{
1

M(z)
− α − b

}
≺ 1 +Az

1 + Bz
(z ∈ U), (4.8)

whereM(z) defined by (3.3) and q(z) is the best dominant of (4.7).
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Moreover, if −1 ≤ B < 0, then

Gs+1,b(z) ∈ S∗(μ
)
, (4.9)

where μ is given by (3.5). The constant factor μ cannot be replaced by a larger one.
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