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The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series
of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic
maps from the two-sphere to the complex projective plane and to the three- and four-dimensional
spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of
the holomorphic data describing them. In order to advance this programme, we prove a series
of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we
prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first
order of its lift into the twistor space, relatively to the standard almost complex structures J1 and
J2. This is done by obtaining first-order analogues of classical twistorial constructions.

1. Introduction

Harmonic maps are mappings ϕ between Riemannian manifolds M and N which extremize
the energy functional

E
(
ϕ
)
=

1
2

∫

M

∥∥dϕ
∥∥2

ωg. (1.1)

Letting TM denote the tangent bundle of M, one can (locally) characterize harmonic maps
as solutions of the nonlinear second-order differential equation

τ
(
ϕ
)
= 0, (1.2)
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where τ(ϕ) denotes the tension field of ϕ,

τ
(
ϕ
)
= trace∇dϕ =

∑

i

∇dϕ(Xi,Xi), {Xi} orthonormal (local) frame of TM. (1.3)

A bibliography can be found in [1] and for some useful summaries on this topic, see [2, 3].
The infinitesimal deformations of a harmonic map are called Jacobi fields. More

precisely, let ϕ : M → N be a smooth map and denote by Γ(ϕ−1TN) the set of smooth
sections of the pull-back bundle ϕ−1TN. If ϕ is harmonic and v ∈ Γ(ϕ−1TN) is a vector field
along it, v is said to be a Jacobi field (along ϕ) if it satisfies the linear Jacobi equation Jϕ(v) = 0,
where the Jacobi operator Jϕ is defined by

Jϕ(v) = Δv − traceRN(
dϕ, v

)
dϕ. (1.4)

Here, Δ is the Laplacian on ϕ−1TN,

Δv = −
∑

i

(
∇Xi∇Xiv − ∇∇Xi

Xiv
)

(1.5)

and, letting RN denote the curvature tensor of N,

traceRN(
dϕ, v

)
dϕ =

∑

i

RN(
dϕXi, v

)(
dϕXi

)
. (1.6)

Jacobi fields are characterized as lying in the kernel of the second variation of the energy
functional. Indeed, if ϕt,s is a two-parameter variation of a harmonic map ϕ(0,0), then, writing
v = ∂ϕ/∂t|(0,0) and w = ∂ϕ/∂s|(0,0), the Hessian Hϕ of ϕ is the bilinear operator on Γ(ϕ−1TN)
given by

Hϕ(v,w) :=
∂2E(ϕt,s)
∂t∂s

∣∣∣∣∣
(0,0)

=
∫

M

〈
Jϕ(v), w

〉
ωg (1.7)

so that a Jacobi field v (along ϕ) is characterized by the condition

Hϕ(v,w) = 0, ∀w. (1.8)

A Jacobi field is called integrable if it is tangent to a deformation through harmonicmaps. In [4,
5], the question of whether all Jacobi fields are integrable is answered for the case where the
domain is the two-sphere and the codomain the two-dimensional complex projective space
or the three- and four-dimensional sphere. This was done by relating the deformations of the
map associated with the Jacobi field and those of the twistor lift of the map. More precisely,
given an oriented even-dimensional manifold N2n, we can construct its (positive) twistor
space Σ+N. This manifold admits two natural almost complex structures J1 and J2. Given
a map ϕ : M2 → N2n from a Riemann surface M2, harmonicity is intimately related with
the existence of a J2-holomorphic lift ψ : M2 → Σ+N, whereas isotropy is related with
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the existence of a J1-holomorphic lift ψ (see [6]). On the other hand, Jacobi vector fields
induce families of maps which are harmonic to first-order and, in some cases, isotropic to
first order. The translation of these first order properties in terms of twistor lifts plays an
important role on the study of the Jacobi fields and we shall exhibit how this translation can
be established in general.

This work is divided as follows: in the next two sections, we recall some well-known
results concerning twistor lifts of harmonic and isotropic maps. In Section 4, we show how
this constructions generalize to their parametric versions and examine more closely the
construction when the codomain is a four-dimensional manifold. We leave to the last section
some technical proofs.

2. The Setup

2.1. Twistor Spaces

Let E2k be an oriented even-dimensional Euclidean space, equipped with a metric 〈, 〉. A
Hermitian structure J on E is J ∈ gl(E) with J2 = −Id and 〈JX, JY〉 = 〈X,Y〉 for all X,Y ∈ E.
We say that J is positive if there is a positive basis of E of the form {e1, Je1, . . . , ek, Jek} and
negative otherwise. The set of all positive Hermitian structures (resp., all negative Hermitian
structures) on E is denoted by Σ+E (resp., Σ−E). The Lie group SO(E) acts transitively on
Σ+E by the formula S · J = SJS−1 and the isotropy subgroup at J is given by

UJ(E) = {S ∈ SO(E) : SJ = JS}. (2.1)

Letting uJ(E) = {λ ∈ so(E) : λJ = Jλ} andmJ(E) = {λ ∈ so(E) : λJ = −Jλ}, we easily conclude
that

so(E) = uJ(E) ⊕mJ(E). (2.2)

In particular, the tangent space of Σ+E = SO(E)/U(E) at J is given by mJ(E). In this vector
space, we can introduce a complex structure JV defining

JVλ := Jλ. (2.3)

When equipped with JV, the manifold Σ+E is a complex manifold.
Given E with a Hermitian structure J , we can consider on EC = E ⊗ C its (1, 0) and

(0, 1)-parts given as usual by

E10 = {X − iJX,X ∈ E} , E01 = {X + iJX,X ∈ E}. (2.4)

These are isotropic subspaces, in the sense that 〈X,Y〉 = 0 for all X,Y in E10 (or in E01).
Associating an Hermitian structure J on E with its (1, 0)-space s gives a 1–1 correspondence
between Hermitian structures and maximal isotropic subspaces. We say that a maximal
isotropic subspace is positive if the corresponding orthogonal complex structure is positive
and we denote the set of all such subspaces by Gr+iso(E

C).
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Let (V 2k, g,∇) be an oriented even-dimensional vector bundle over a manifold M
equipped with a connection ∇ and a parallel metric g. Then, we may take the bundle

Σ+V = SO(V )×SO(2k)Σ+
R

2k 
 Gr+iso
(
V C

)
(2.5)

whose fibre at x ∈ M is precisely Σ+Vx. If M2 is Riemann surface, the vector bundle V C

has vanishing (2, 0)-part of its curvature tensor and therefore admits a unique structure as a
holomorphic bundle over M2, by a well-known theorem of Koszul and Malgrange [7]. This
induces a holomorphic structure JKM on the bundle Gr+iso(V

C) 
 Σ+V for which a section s of
Gr+iso(V

C) is holomorphic if and only if [6] (see [8]).

∇Xs ⊆ s ∀X ∈ T01M. (2.6)

LetN be an oriented Riemannian manifold with dimension 2n. We call (positive) twistor space
ofN the bundle whose fibre at y ∈ N is precisely Σ+TyN; that is,

Σ+N = SO(N)×SO(2n)Σ+
R

2n =
SO(N)×SO(2n)SO(2n)

U(2n)
. (2.7)

The Riemannian connection onN induces a splitting of the tangent space to Σ+N into vertical
and horizontal parts, TΣ+N = V ⊕ H. Namely, if π : Σ+N → N denotes the canonical
projection defined by π(y, Jy) = y, then

Vy,Jy = ker dπy,Jy 
 TJyΣ
+TyN,

Hy,Jy =
{
dσy

(
Xy

)
: Xy ∈ TyN, σ section of Σ+N with ∇Xyσ = 0 and σ

(
y
)
=
(
y, Jy

)}
.

(2.8)

With respect to this decomposition, dπy,Jy mapsHy,Jy isomorphically into TyN and allows to
define an almost complex structure JH on H as the pull-back of Jy on TyN. Together with
(2.3), this allows to define two almost complex structures J1 and J2 on Σ+N by the formulae

J1 =

⎧
⎨

⎩

JH on H,

JV on V,
J2 =

⎧
⎨

⎩

JH on H,

−JV on V.
(2.9)

When equipped withJ2, Σ+ is never a complex manifold; as forJ1, it is integrable if and only
if N2n is conformally flat (n ≥ 3) or anti-self-dual (n = 2) (for more details, see [6, 9, 10]; a
discussion on this topic can also be found in [11] and references therein).

Notice that π is a holomorphic map for any of these complex structures; that is, for
a = 1 or a = 2, one has that

dπy,Jy(JaX) = Jydπy,Jy(X), ∀X ∈ Ty,JyΣ
+N. (2.10)
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Definition 2.1. Let (M,J) and (Z,J) be two almost complex manifolds. Let TZ = H ⊕ V be
a decomposition of TZ into J-stable subbundles; that is, JH ⊆ H and JV ⊆ V. We shall call
such a decomposition a J-stable decomposition. Let ψ : M → Z be a smooth map. We shall say
that ψ isH-holomorphic if

(
dψ(JX)

)H = J(
dψX

)H
, ∀X ∈ TM. (2.11)

Analogously we define V-holomorphic maps.

A smooth map ψ : M → Z is holomorphic if and only if it is both H and V-
holomorphic for some, and so any, stable decomposition TZ = H ⊕ V. Taking Z = Σ+N,
the decomposition TΣ+N = H⊕V is clearly stable for both the almost complex structures J1

and J2 on Σ+N.

Remark 2.2. We can easily introduce a metric on the twistor space Σ+N: let (y, Jy) ∈ Σ+N
and consider the tangent space at this point, T(y,Jy)Σ

+N = H ⊕ V. We know that we have
the identifications H 
 TyN and V 
 mJ(TyN). To get a metric on H, transport the metric
from that on TyN; that is, h(X,Y ) = 〈dπX, dπY〉, for all X,Y ∈ H, where 〈, 〉 denotes the
metric on N at y = π(y, Jy). For the vertical space V 
 mJy(TyN) ⊆ gl(TyN), we can
consider the restriction of the metric on the space gl(TyN). Finally, we declare H and V to
be orthogonal under the metric h; that is, h(X,V ) = 0, for all X ∈ H, V ∈ V. With this metric,
the decomposition H ⊕ V is orthogonal and Ja-stable (a = 1, 2), (Σ+N,h,Ja) (a = 1, 2) are
almost Hermitian manifolds and the projection map π is a Riemannian submersion.

2.2. Conformal and Isotropic Maps

Given a smooth map ϕ : M2 → N, ϕ is said to be weakly conformal at x ∈ M if there is Λx ∈ R

with

〈
dϕxX, dϕxY

〉
= Λx〈X,Y〉, ∀X,Y ∈ TxM. (2.12)

If Λx /= 0, then x is said to be a regular point (of ϕ) and the map ϕ is called conformal at x.
Moreover, a map which is conformal (resp., weakly conformal) at all points x ∈ M is said to
be a conformal map (resp., a weakly conformal map).

If (N; 〈, 〉, J) is an almost Hermitian manifold, any holomorphic (resp., antiholomor-
phic) map ϕ : M2 → N is (weakly) conformal as it maps T10M to T10N (resp., to T01N).
A stronger property than conformality is isotropy: if ϕ : M2 → N is a smooth map from a
Riemann surface, ϕ is isotropic if [12]

〈
∂rzϕ, ∂

s
zϕ

〉
= 0, ∀r, s ≥ 1, (2.13)

where ∂rzϕ = ∇∂z(∂
r−1
z ϕ). Actually, the condition (2.13) can be weakened to

〈
∂rzϕ, ∂

r
zϕ

〉
= 0, ∀r ≥ 1. (2.14)



6 Journal of Inequalities and Applications

To check this, establish an induction on j = |r − s|: if j = 0 the result is trivial. Assuming now
that (2.14) implies (2.13) for all j ≤ n and taking r, s ≥ 1 with |r − s| = n + 1, we may assume
without loss of generality that r ≥ s, r = s + n + 1 and we get

〈
∂s+n+1z ϕ, ∂szϕ

〉
= ∂z

〈
∂s+nz ϕ, ∂szϕ

〉 −
〈
∂s+nz ϕ, ∂s+1z ϕ

〉
. (2.15)

Since |s + n − s| = n and |s + n − s − 1| = |n − 1| ≤ n, both terms in the above expression vanish.
Moreover, letting r = s = 1 in (2.13), it is easy to check that an isotropic map from a

Riemann surface is a (weakly) conformal map.
Let ϕ : M2 → N be a smooth map from a Riemann surface M2. We shall say that z ∈

M2 is an umbilic point (of ϕ) if {∂zϕ(z), ∂2zϕ(z)} is a C-linearly dependent set. If ϕ : M2 → N
is such that all points z ∈ M2 are umbilic, we shall say that ϕ is totally umbilic (see [6]).

3. Nonparametric Twistorial Constructions

The following are well-known twistorial constructions [13] (see also [6]).

Theorem 3.1. If ψ : M2 → (Σ+N,J1) is holomorphic, the projection map ϕ = π ◦ ψ is isotropic.
Conversely, if ϕ : M2 → N is a conformal totally umbilic immersion, there is (locally) a holomorphic
map ψ : M2 → (Σ+N,J1) such that ϕ = π ◦ ψ.

If ψ : M2 → (Σ+N,J2) is holomorphic, the projection map ϕ = π ◦ ψ is harmonic.
Conversely, if ϕ : M2 → N is a conformal harmonic map, there is (locally) a holomorphic map
ψ : M2 → (Σ+N,J2) such that ϕ = π ◦ ψ.

We shall sketch the proof of this result. We start by noticing that given a smooth map
ϕ : M → N obtained as the projection of ψ : M2 → Σ+N, ϕ = π ◦ ψ, without requiring
further conditions à priori on ψ, nothing guarantees that ϕ is holomorphic relatively to the
induced almost Hermitian structure Jψ on TN; if it is, we shall say that the structure Jψ is
strictly compatible with ϕ (or that the map ψ is a strictly compatible twistor lift of ϕ). Such a
structure Jψ can exist if and only if dϕ(T10M) ⊆ T10

Jψ
N is isotropic: in other words, if and

only if ϕ is (weakly) conformal. If Jψ preserves dϕ(TM) but does not necessarily render ϕ
holomorphic, we shall say that Jψ (or the map ψ) is compatiblewith ϕ.

If ϕ is given as the projection ϕ = π ◦ ψ of an H-holomorphic map ψ : (M,JM) →
(Σ+N,Ja) (a = 1 or 2), then ϕ is holomorphic with respect to the induced almost Hermitian
structure Jψ on TN:

JψdϕX

= dϕJMX ⇐⇒ dπ
(
JH(

dψX
)H)

= dπ
((

dψ
(
JMX

))H)
⇐⇒ JH(

dψX
)H =

(
dψ

(
JMX

))H
.

(3.1)

In particular, ϕ is (weakly) conformal. Moreover, the above equivalence shows that any
strictly compatible lift of ϕ is H-holomorphic. On the opposite direction, let ϕ : M2 → N be
a conformal map. Let V := TM⊥ ⊆ ϕ−1TN denote the normal bundle of TM in TN. We may
decompose the connection on ϕ−1TN into its tangent and normal parts, ∇ = ∇� +∇⊥. Hence,
on TM⊥ we have a metric 〈, 〉 and connection ∇⊥ inherited from those on ϕ−1TN. Moreover,
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we may take the bundle Σ+V over M which has the JKM-holomorphic structure. Since ϕ is
conformal, we may transfer the Hermitian structure JM ofM2 into dϕ(TM). Hence, we have
a natural map

η : Σ+V −→ Σ+N,

Ĵ −→ J =

⎧
⎨

⎩

Ĵ on TM⊥,

JM on dϕ(TM).

(3.2)

Taking any holomorphic section of (Σ+V,JKM) and composing with η, we obtain a strictly
compatible twistor lift ψ of ϕ. Since any such lift is H-holomorphic, we have just proved the
following result.

Proposition 3.2. Given ϕ : M2 → N, ϕ is conformal if and only if ϕ is (locally) the projection of an
H-holomorphic map ψ : M2 → Σ+N.

To proceed, we need the following result [13].

Proposition 3.3. Let ψ : M → Σ+N and let ϕ = π ◦ ψ. Take s the section of Gr+iso(TN
C)

corresponding to ψ. Then, the map ψ is J1-holomorphic if and only if ϕ is holomorphic with respect to
Jψ and

∇Xs ⊂ s for any X ∈ T10M. (3.3)

The map ψ is J2-holomorphic if and only if ϕ is holomorphic with respect to Jψ and

∇Xs ⊂ s for any X ∈ T10M. (3.4)

Let ψ : M2 → Σ+N be a J1-holomorphic map and let s be the corresponding section
of Gr+iso(TN

C). If ϕ = π ◦ ψ is the projection map, we have that ϕ is Jψ-holomorphic. In
particular, ∂zϕ ∈ s. Since ψ is J1-holomorphic, we can write

∇∂z∂zϕ ⊆ s (3.5)

and, inductively, it follows that ∂rzϕ ⊆ s for all r ≥ 1 so that ϕ is isotropic. Conversely, let
ϕ : M2 → N be a conformal totally umbilic map. In this case, we consider the manifold M2

equipped with the opposite holomorphic structure-JM and again construct the holomorphic
bundle (Σ+V,JKM). For this structure, a section ŝ is holomorphic if and only if ∇⊥

∂z
ŝ ⊆ ŝ.

Since ϕ is conformal, we may define the map η as in (3.2). On the other hand, because ϕ is
totally umbilic, we know that ∂2zϕ lies in the span of ∂zϕ; in other words, if J is any almost
Hermitian structure on TN strictly compatible with ϕ, ∂2zϕ lies in T10

J N. We may therefore
conclude that η is J1-holomorphic. As a matter of fact, given a holomorphic section ŝ of Σ+V
and considering s = η ◦ ŝ, we have that s = ŝ ⊕ dϕ(T10M). We may write

〈
∇�

∂z
ŝ, dϕ

(
T10M

)〉
= −

〈
ŝ,∇∂zdϕ

(
T10M

)〉
= 0, (3.6)
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since ŝ and ∂2zϕ lie in s. In particular,∇�
∂z
ŝ ⊆ s and so

∇∂zs ⊆
(
∇�

∂z
+∇⊥

∂z

)
ŝ +∇∂zdϕ

(
T10M

)
⊆ s + ŝ + span

{
∂zϕ, ∂

2
zϕ

}
⊆ s (3.7)

and therefore we conclude that η is J1-holomorphic.
With a similar argument, let ψ : M2 → Σ+N be a J2-holomorphic map and let s be

the section of Gr+iso(TN
C) corresponding to ψ. Then, taking the projection map ϕ = π ◦ ψ, we

get

(
τ
(
ϕ
))01 =

(
Jψtraceg∇Jψ

)01 =
(
4∇∂zdϕ(∂z)

)01
. (3.8)

Since ϕ is Jψ-holomorphic, dϕ(∂z) lies in s. From (iv) in Proposition 3.3, we conclude that
∇∂zdϕ(∂z) lies in s and therefore has vanishing (0, 1)-part. From the reality of τ(ϕ), we have
that τ(ϕ) = 0 and so ϕ is harmonic. Conversely, if ϕ : M2 → N is conformal and harmonic, we
may take the bundle (Σ+V,JKM) and the map η in (3.2). Since ϕ is harmonic, η is holomorphic
with respect to theJKM andJ2 structures [6, 8]: letting ŝ denote a holomorphic section ofΣ+V
and s the composition η ◦ ŝ, then, s = dϕ(T10M) ⊕ ŝ and

∇∂zs =
(
∇⊥

∂z
+∇�

∂z

)
ŝ +∇∂zdϕ

(
T10M

)
. (3.9)

Since ϕ is harmonic, ∇∂zdϕ(T
10M) ⊆ dϕ(T10M) ⊆ s. On the other hand, since ŝ is

holomorphic, ∇⊥
∂z
ŝ ⊆ ŝ ⊆ s. Finally,

〈
∇�

∂z
ŝ, dϕ(∂z)

〉
= −〈ŝ,∇∂zdϕ(∂z)

〉
= 0 (3.10)

shows that ∇∂zs ⊆ s and so that η is holomorphic. Therefore, taking any holomorphic section
of Σ+V and composing with η give a J2-holomorphic lift of ϕ.

Remark 3.4. Notice that to guarantee the existence of the J1-holomorphic lift for ϕ, the
important fact was that ∂2zϕ belongs to the (1, 0)-part of TN for any almost Hermitian
structure strictly compatible with ϕ. This is guaranteed if ϕ is a totally umbilic map, but it
is not strictly necessary. For instance, if ϕ : M2 → N4 is an isotropic map, the vectors ∂zϕ,
∂2zϕ span an isotropic subspace. If this vectors are linearly independent, taking this space as
the (1, 0)-space of ψ, then ψ is a J1-holomorphic lift of ϕ, although ψ may be a map into Σ−N;
on the other hand, if ϕ is totally umbilic, then we may take ψ either as the unique strictly
compatible map into Σ+N or into Σ−N and both these maps are J1-holomorphic.



Journal of Inequalities and Applications 9

4. First-Order Twistorial Constructions

4.1. Harmonicity and Isotropy to First Order

Let I denote an interval of the real line containing 0. Given a (family of)map(s) ϕ : I ×M →
N, (t, x) → ϕt(x), we say that ϕ is harmonic to first order if

ϕ0 is harmonic and ∂t|0τ
(
ϕt

)
= 0, (4.1)

where ∂t|0τ(ϕt) = ∇ϕ−1TN
∂t|0 τ(ϕt) and τ(ϕt) = trace∇dϕt ∈ ϕ−1TN.

Let ϕ0 : M → N be a harmonic map, v ∈ Γ(ϕ−1
0 TN) a vector field along ϕ0, and

ϕ : I ×M → N a one-parameter variation of ϕ0. We say that ϕ is tangent to v if v = ∂t|0ϕt. The
following result is a key ingredient in what follows [4]:

Proposition 4.1. Let ϕ0 : M → N be a harmonic map between compact manifolds M and N. Let
v ∈ Γ(ϕ−1

0 TN) be a vector field along ϕ0 and ϕ : I×M → N a one-parameter variation of ϕ0 tangent
to v. Then,

∂t|0τ
(
ϕt

)
= −Jϕ(v). (4.2)

In particular, v is Jacobi if and only if any tangent one-parameter variation is harmonic to first order.

We have seen in Theorem 3.1 that harmonicity was not enough to establish a relation
with possible twistor lifts of a map conformality and was also a key ingredient, as maps
obtained as projections of twistorial maps must be holomorphic with respect to some almost
Hermitian structure along the map. On the other hand, when the domain is the 2-sphere,
harmonicity implies (weak) conformality or even isotropy, the last case occurring if the target
manifold is itself also a sphere or the complex projective space [12, 14].

LetM2 be a Riemann surface and ϕ : I ×M → N a smooth map. The map ϕ is said to
be conformal to first order if [15]

ϕ0 is conformal and ∂t|0
〈
∂zφt, ∂zφt

〉
= 0. (4.3)

Analogously, ϕ is said to be isotropic to first order,

φ0 is real isotropic and ∂t|0
〈
∂rzφt, ∂

s
zφt

〉
= 0, ∀r, s ≥ 1. (4.4)

As for the nonparametric case, one can prove [16] that condition (4.4) can be weakened to
the following

φ0 is real isotropic and ∂t|0
〈
∂rzφt, ∂

r
zφt

〉
= 0, ∀r ≥ 1. (4.5)

As in the nonparametric case, harmonicity to first order implies conformality to first order
for maps defined on the two-sphere and even isotropy when the codomain is itself a real or
complex space form [15].
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4.2. Twistorial Constructions

As we have seen, Jacobi fields induce variations that are harmonic (and, in some cases,
conformal or even isotropic) to first order. On the other hand, in Section 2 we have seen
that conformality, harmonicity, and isotropy of the map ϕ correspond to H, J2 and J1-
holomorphicity of the twistor lift ψ. As we shall see, these results do have a first-order version
as follows. We start with a definition.

Definition 4.2. Let (M,J) be an almost complex manifold and (Z, h,J) an almost Hermitian
manifold. Given a smooth map ψ : I × M → Z, we say that ψ is holomorphic to first order if
ψ0 : M → Z is holomorphic and

∇∂t|0
(
dψtJX − JdψtX

)
= 0 ∀X ∈ TM, (4.6)

where∇ is the Levi-Civita connection on Z induced by the metric h. Moreover, if TZ = H⊕V
is a J-stable decomposition of TZ, orthogonal with respect to h, we shall say that ψ is H-
holomorphic to first order if ψ0 isH-holomorphic and

∇∂t|0
((

dψt(JX)
)H − JH(

dψtX
)H)

= 0 ∀X ∈ TM, (4.7)

where JH is the restriction of J to H. Changing H to V gives the definition of V-
holomorphicity to first order.

In contrast with the nonparametric case, it is not obvious thatJ-holomorphicity to first
order implies H-holomorphicity to first order. As a matter of fact, from (4.6), it only follows
that (∇∂t|0(dψt(JX) − JdψtX))H = 0. However, we do have the following.

Lemma 4.3. Let ψ : (M,J) → (Z, h,J) be a smooth map and let TZ = H ⊕ V be a J-stable
decomposition of Z, orthogonal with respect to h. Then, ψ is holomorphic to first order if and only if ψ
is bothH and V-holomorphic to first order.

Proof. Assume that ψ is holomorphic to first order. Then, ψ0 is H-holomorphic. As for (4.7),
letting Y denote an arbitrary section of TZ and YH its projection into H, we have

(4.7) ⇐⇒
〈
∇∂t|0

((
dψtJX

)H − JH(
dψtX

)H)
, Y

〉
= 0

⇐⇒ ∂t|0
〈(

dψtJX
)H − JH(

dψtX
)H

, Y
〉
−
〈(

dψ0JX
)H − JH(

dψ0X
)H

,∇∂t|0Y
〉
= 0

⇐⇒ (
since ψ0 is H-holomorphic

)
∂t|0

〈
dψtJX − JdψtX, YH

〉
= 0

⇐⇒ (
ψ0 is holomorphic

)(∇∂t|0
(
dψtJX − JdψtX

))H = 0,
(4.8)

which is true since ψ isJ-holomorphic to first order. Hence, ψ isH-holomorphic to first order.
Changing H to V shows that ψ is V-holomorphic to first order. The converse also follows
using analogous arguments.
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Remark 4.4. The importance of choosing the Levi-Civita connection on Z is illusory. In
particular, we can define the concept of holomorphicity to first order (or H, V-holomorphicity
to first order) for maps defined between almost complex manifolds, not necessarily equipped
with any metric.

Indeed, let ψ : I × (M,J) → (Z, h,J) be a holomorphic to first-order map with respect
to ∇, so that (4.6) holds. Let {Yj} denote a (local) frame for TZ. Then,

∇∂t|0
(
dψtJX − JdψtX

)
= 0

⇐⇒
∑

j

∂t|0
((

dψtJX − JdψtX
)
jYj

)
= 0

⇐⇒
∑

j

(
∂t|0

((
dψtJX − JdψtX

)
j

)
· Yj +

(
dψ0JX − Jdψ0X

)
j · ∇

ψ−1

∂t|0Yj

)
= 0.

(4.9)

Since ψ is holomorphic to first order, ψ0 is holomorphic, the above equation is equivalent to

∂t|0
((

dψtJX − JdψtX
)
j

)
= 0, ∀j. (4.10)

Now, since ψ0 holomorphicity does not depend on the chosen connection, we can deduce
that holomorphicity with respect to ∇̃ reduces to the same condition (4.10). Thus, ψ being
holomorphic to first order does not depend on the chosen connection. For H (resp., V)
holomorphicity to first order, we use similar arguments, replacing {Yj} for a horizontal (resp.,
vertical) frame.

4.3. The H-Holomorphic Case

In the nonparametric case, given a conformal map ϕ : M2 → N, we can always find a lift ψ :
M2 → Σ+N such that ϕ is holomorphic with respect to Jψ . In other words, (locally defined)
strictly compatible lifts always exist. In general, this lift may not beJ1 orJ2-holomorphic but
it isH-holomorphic. Let ϕt be a variation of ϕ, conformal to first order. Then, if a lift ψt to the
twistor space that makes ϕt holomorphic for all small t exists, ϕt is necessarily conformal for
all small t, which may not be the case. So, even if conformality is preserved to first order, there
might be no strictly compatible twistor lift for all t; hence, we should relax the condition on
conformality. We shall say that a twistor lift ψ of a conformal to first order map ϕ is compatible
to first order (with ϕ) if

ψ0 is strictly compatible with ϕ0, ψt is compatible with ϕt, ∀t. (4.11)

We start with a technical lemma, whose proof the reader can find in Section 5.

Lemma 4.5. Let ϕ : I ×M2 → N be a conformal to first-order map. Let ψ be a twistor lift compatible
to first order with ϕ. Then for all X ∈ Γ(TM) there is a function aX

t and a vector field vX
t ∈ ϕ−1

t (TN)
with aX

0 = 1, vX
0 = 0 and ∂t|0aX

t = 0, ∇∂t|0v
X
t = 0 such that

JψtdϕtX = aX
t dϕtJX + vX

t . (4.12)
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In particular, ϕ is Jψ-holomorphic to first order in the sense that

ϕ0 is holomorphic with respect to Jψ0 , ∇∂t|0
(
dϕtJX − JψtdϕtX

)
= 0. (4.13)

Lemma 4.6. Let ψ : I × M2 → Σ+N be H-holomorphic to first order. Then, ϕ = π ◦ ψ is Jψ-
holomorphic to first order.

Proof. Since ψ is H-holomorphic to first order, ∇∂t|0((dψtJX)H − JH(dψtX)H) = 0. Therefore,
for all YH ∈ H, since ψ0 isH-holomorphic,

0 =
〈
∇∂t|0

{(
dψtJX

)H − JH(
dψtX

)H}
, YH

〉
= ∂t|0

〈
(dψtJX)H − JH(

dψtX
)H

, YH
〉
.

(4.14)

Since π is a Jψ-holomorphic Riemannian submersion, the above equation can be written as

0 = ∂t|0
〈
dπ

(
dψtJX

) − Jψtdπ
(
dψtX

)
, dπ

(
YH

)〉
. (4.15)

Hence, for all Y ∈ TN, using the fact that ϕ0 is Jψ0 holomorphic,

0 = ∂t|0
〈
dϕtJX − JψtdϕtX, Y

〉
=
〈∇∂t|0

(
dϕtJX − JψtdϕtX

)
, Y

〉
, (4.16)

showing that ∇∂t|0dϕtJX = ∇∂t|0JψtdϕX and concluding our proof.

Proposition 4.7. Let ψ : I ×M2 → Σ+N be H-holomorphic to first order map. Then, the projected
map ϕ = π ◦ ψ : I × M2 → N is conformal to first order. Conversely, let ϕ : I × M2 → N be a
conformal to first order map. Then there is a (local) H-holomorphic to first order map ψ : I ×M2 →
Σ+N which is compatible to first order with ϕ.

Proof. Take ψ : I × M2 → Σ+N an H-holomorphic to first order map and let ϕ = π ◦ ψ.
We know that ϕ0 is conformal (Proposition 3.2). As for the first-order variation, using the
preceding Lemma 4.6,

∂t|0
∥∥dϕtJX

∥∥2 = 2
〈∇∂t|0dϕtJX, dϕ0JX

〉
= 2

〈∇∂t|0JψtdϕtX, Jψ0dϕ0X
〉

= ∂t|0
〈
JψtdϕtX, JψtdϕtX

〉
= ∂t|0

〈
dϕtX, dϕtX

〉
.

(4.17)

Using similar arguments, we can show that

∂t|0
〈
dϕtJX, dϕtX

〉
= 0, (4.18)

concluding the first part of the proof.
Conversely, let ψ be any twistor lift of ϕ compatible to first order. Then, there is a

function aX
t and a vector field vX

t verifying the conditions on Lemma 4.5 with

JψtdϕtX = aX
t dϕtJX + vX

t . (4.19)
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Now, ψ is H-holomorphic to first order if and only if ψ0 is H-holomorphic (which follows
from Proposition 3.2) and (4.6) holds. Using the same argument as in Lemma 4.3, (4.6) is
equivalent to

∂t|0
〈
dϕtJX − JψtdϕtX, Y

〉
= 0, ∀Y ∈ TN. (4.20)

But

∂t|0
〈
dϕtJX − JψtdϕtX, Y

〉

=
〈
∇∂t|0

(
dϕtJX − aX

t dϕtJX − vX
t

)
, Y

〉
−
〈
dϕ0JX − aX

0 dϕ0JX − vX
0 ,∇∂t|0Y

〉
= 0,

(4.21)

from the given conditions on aX
t and vX

t and thus concluding the proof.

4.4. The J1-Holomorphic Case

Next, we give a useful characterization for maps to be Ja-holomorphic to first order (a = 1
or 2), whose proof is in Section 5 (compare with Proposition 3.3).

Lemma 4.8. Let ψ : I ×M2 → Σ+N be a smooth map and let ϕ = π ◦ ψ be its projection. Then, ψ
is Ja-holomorphic to first order (a = 1 or 2) if and only if

ϕ is Jψ-holomorphic to first order, (4.22)

∀Y 10
t ∈ ϕ−1

t

(
T10
Jψt
N
)

∃Z10
t ∈ ϕ−1

t

(
T10
Jψt
N
)
such that

∇∂t|0∇∂zY
10
t = ∇∂t|0Z

10
t , ∇∂zY

10
0 = Z10

0 ,

(a = 1) (4.23)

or

∀Y 10
t ∈ ϕ−1

t

(
T10
Jψt
N
)

∃Z10
t ∈ ϕ−1

t

(
T10
Jψt
N
)
such that

∇∂t|0∇∂zY
10
t = ∇∂t|0Z

10
t , ∇∂zY

10
0 = Z10

0 .

(a = 2) (4.24)

From the preceding lemma, we can also deduce the following.

Lemma 4.9. Let ψ : I × M2 → Σ+N be a map J1-holomorphic to first order and consider the
projected map ϕ = π ◦ ψ. Then for all r ≥ 1 there is Z10

t ∈ ϕ−1
t (T10

Jψt
N) with

∂rzϕ0 = Z10
0 , ∇∂t|0∂

r
zϕt = ∇∂t|0Z

10
t . (4.25)

Proof. For r = 1, we have ∂zϕt = dϕtX − idϕtJX so that using (4.22) we have

∇∂t|0∂zϕt = ∇∂t|0
{
dϕtX − idϕtJX

}
= ∇∂t|0

{
dϕtX − iJψtdϕtX

}
. (4.26)
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Taking Z10
t = dϕtX − iJψtdϕtX ∈ ϕ−1

t (T10
Jψt
N), we obtain the result. To establish an induction,

assume now that the result is valid for r = k; that is, there is Z10,k
t such that

∇∂t|0∂
k
zϕt = ∇∂t|0Z

10,k
t , ∂kzϕ0 = Z10,k

0 . (4.27)

Taking r = k + 1 and noticing that [∂t|0ϕt, ∂zϕt] = dϕt[∂z, ∂t|0] = 0,

∇∂t|0∂
k+1
z ϕ = ∇∂t|0∇∂z∂

k
zϕt = RN(

∂t|0ϕt, ∂zϕt

)
∂kzϕt +∇∂z∇∂t|0∂

k
zϕt +∇[∂t|0ϕt,∂zϕt]∂

k
zϕt

= RN(
∂t|0ϕt, ∂zϕ0

)
Z10,k

0 +∇∂z∇∂t|0Z
10,k
t

= RN(
∂t|0ϕt, ∂zϕ0

)
Z10,k

0 +∇∂t|0∇∂zZ
10,k
t + RN(

∂zϕ0, ∂t|0ϕt

)
Z10,k

0 = ∇∂t|0∇∂zZ
10,k
t ,

(4.28)

as RN is antisymmetric on the first two arguments. Now, since ψ is J1-holomorphic, (4.23)
holds so that there is Z10, k+1

t such that

∇∂t|0∇∂zZ
10, k
t = ∇∂t|0Z

10, k+1
t , ∇∂zZ

10, k
0 = Z10, k+1

0 . (4.29)

But the second condition gives ∂k+1z ϕ0 = ∂z∂
k
zϕ0 = ∇∂zZ

10, k
0 = Z10, k+1

0 , whereas the first holds
precisely that ∇∂t|0∂

k+1
z ϕt = ∇∂t|0∇∂zZ

10, k
t = ∇∂t|0Z

10, k+1
t , as we wanted to show.

Proposition 4.10 (projections of maps J1-holomorphic to first order). Let ψ : I ×M2 → Σ+N
be a map J1-holomorphic to first order, where M2 is any Riemann surface. Then, the projection map
ϕ = π ◦ ψ is isotropic to first order.

Notice that we could replace Σ+N with Σ−N, as real isotropy (to first order) does not
depend on the fixed orientation on N.

Proof. That ϕ0 is isotropic follows from the nonparametric case. Therefore, we are left with
proving that

∂t|0
〈
∂rzϕ, ∂

r
zϕ

〉
= 0, ∀r ≥ 1. (4.30)

Using Lemma 4.9, for fixed r ≥ 1, choose Z10
t ∈ ϕ−1

t (T10
Jψt
N) with ∂rzϕ0 = Z10

0 and ∇∂t|0∂
r
zϕt =

∇∂t|0Z
10
t . Then, the conclusion follows from

∂t|0
〈
∂rzϕ, ∂

r
zϕ

〉
= 2

〈∇∂t|0∂
r
zϕt, ∂

r
zϕ0

〉
= 2

〈
∇∂t|0Z

10
t , Z10

0

〉
= ∂t|0

〈
Z10

t , Z10
t

〉
= 0. (4.31)

We now turn our attention to the existence of lifts J1-holomorphic to first order for a
given isotropic to first-order map ϕ : I × M2 → N4. Recall that in the nonparametric case
such lift exists (see Remark 3.4).
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Theorem 4.11. Let ϕ : I × M2 → N4 be an isotropic to first order with ∂zϕ0 and ∂2zϕ0 linearly
independent. Then, there is either a (local) map ψ+ : I×M2 → Σ+N4 or a map ψ− : I×M2 → Σ−N4

which is J1-holomorphic to first order and compatible to first order with ϕ.

Before proving Theorem 4.11, we give the following lemma, which we prove in
Section 5

Lemma 4.12. Let ϕ be as in the preceding Theorem 4.11.

(i) Suppose that the J1-holomorphic lift of ϕ0 is ψ+
0 ∈ Σ+N (resp., ψ−

0 ∈ Σ−N). Take Jψt the
unique positive (resp., negative) almost Hermitian structure on TϕtN compatible with ϕt.
Then, taking

uX
t = ∇XdϕtX − ∇JXdϕtJX, vX

t = −∇XdϕtJX − ∇JXdϕtX, (4.32)

we have that

∇∂t|0Jψtu
X
t = −∇∂t|0v

X
t . (4.33)

(ii) There are at, bt such that

∇∂t|0∂
3
zϕt = ∇∂t|0

(
at∂zϕt + bt∂

2
zϕt

)
. (4.34)

We are now ready to prove Theorem 4.11.

Proof of Theorem 4.11. As before, take ψ+
0 or ψ−

0 theJ1-holomorphic lift of ϕ0. Assume, without
loss of generality, that it is ψ+

0 . Then, at each t take Jψt the unique positive almost Hermitian
structure compatible with ϕt and let us prove that this map ψ isJ1-holomorphic to first order.
Using Lemma 4.5, ϕ is Jψ-holomorphic to first order and we are left with proving that (4.23)
holds. It is enough to prove that there is a basis {Y 10

1t
, Y 10

2t
} of ϕ−1

t (T10
Jψt
N) for which (4.23)

holds. Now, take Y 10
1t

= dϕtX − iJψtdϕtX and Y10
2t = uX

t − iJψtu
X
t where uX

t is as in (4.32). Then,

∇∂t|0∇∂zY
10
1t = R

(
∂t|0ϕt, ∂zϕt

)
Y 10
10 +∇∂z∇∂t|0

(
dϕtX − iJψtdϕtX

)

= ∇∂t|0∇∂z

(
dϕtX − idϕJX

)
= ∇∂t|0

(
uX
t + ivX

t

)
= ∇∂t|0

(
uX
t − iJψtu

X
t

)
= ∇∂t|0Y

10
2t .

(4.35)
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Analogously,

∇∂t|0∇∂zY
10
2t = R

(
∂t|0ϕt, ∂zϕ0

)
Y 10
20 +∇∂z∇∂t|0

(
uX
t − iJψtu

X
t

)

= R
(
∂t|0ϕt, ∂zϕ0

)
∂2zϕ0 + R

(
∂zϕ0, ∂t|0ϕt

)(
uX
0 + ivX

0

)
+∇∂t|0∇∂z

(
uX
t + ivX

t

)

= ∇∂t|0
(
a∂zϕ + b∂2zϕt

)
= ∂t|0aY 10

10 + ∂t|0bY 10
20 + a∇∂t|0∂zϕt +∇∂t|0∂

2
zϕt

= ∂t|0aY 10
10 + ∂t|0bY 10

20 + a∇∂t|0Y
10
1t +∇∂t|0Y

10
2t = ∇∂t|0

(
aY 10

1t + bY 10
2t

)
,

(4.36)

where we have used Y 10
20

= ∂2zϕ0, ∇∂t|0Jψtu
X
t = ∇∂t|0v

X
t , u

X
0 + ivX

0 = ∂2zϕ0, and ∇∂z(u
X
t + ivX

t ) =
∂3zϕt. Hence, Y 10

1t
and Y 10

2t
satisfy equation (4.23), concluding our proof.

4.5. The J2 Holomorphic Case

We prove the following.

Theorem 4.13. Let ψ : I × M2 → Σ+N be a map J2-holomorphic to first order. Then, ϕ = π ◦
ψ : I × M2 → N is harmonic to first order (and conformal to first order from Lemma 4.3 and
Proposition 4.7).

We first give the following characterization of V-holomorphic to first order maps.

Lemma 4.14. Let ψ : I × M2 → (Σ+N,Ja) (a = 1 or a = 2) be a smooth map. Then, ψ is a
V-holomorphic to first order map if and only if ψ0 is V-holomorphic and

∇∂t|0
(∇JXJψt + (−1)aJψt∇XJψt

)
= 0. (4.37)

Proof. If ψ : M → Σ+N is any smooth map, then [17] (dψX)V = ∇XJψ . Hence, from (2.9),

Ja(dψX
)V = (−1)a+1Jψ∇XJψ (a = 1, 2). (4.38)

Thus, we can rephrase equation (4.37) as

∇∂t|0
(
dψt(JX) − JadψtX

)V = 0, (4.39)

which is the condition for V-holomorphicity.
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Proof of Theorem 4.13. That ϕ0 is harmonic follows from Theorem 3.1. Hence, we are left with
proving that ∂t|0τ(ϕt) = 0. Since ψ is J2-holomorphic to first order, we deduce that ψ is both
H and V-holomorphic to first order (Lemma 4.3). From V-holomorphicity (4.37), we have

∇∂t|0
(∇JXJψt + Jψt∇XJψt

)
= 0

=⇒ (∇∂t|0
(∇JXJψt + Jψt∇XJψt

))(
dϕ0X

)
= 0

=⇒ ∇∂t|0
(∇JXdϕtJX +∇XdϕtX

)
= ∇∂t|0

(
Jψt

(∇JXdϕtX − ∇X

(
JψtdϕtX

)))

=⇒ ∇∂t|0τ
(
ϕt

)
= ∇∂t|0

(
Jψt

(∇JXdϕtX − ∇X

(
JψtdϕtX

)))
.

(4.40)

Using Lemma 4.6 and (4.13) together with symmetry of the second fundamental form of ϕ0,
the right-hand side of the above identity becomes

(∇∂t|0Jψt

)(∇JXdϕ0X − ∇XJψ0dϕ0X
)
+ Jψ0

(∇∂t|0
(∇JXdϕtX − ∇XJψtdϕtX

))

= ∇∂t|0Jψt

(∇dϕ0(JX,X) − ∇dϕ0(X, JX) + dϕ0
(∇JXX − ∇XJX

))

+ Jψ0

(∇∂t|0
(∇JXdϕtX − ∇XdϕtJX

))

= Jψ0

(∇∂t|0
(∇dϕt(JX,X) − ∇dϕt(X, JX) + dϕt

(∇JXX − ∇XJX
)))

= 0,

(4.41)

so that ∂t|0τ(ϕt) = 0, concluding the proof.

Theorem 4.15. Let ϕ : I ×M2 → N be a harmonic and conformal to first order map. Then, there is
(locally) a map ψ : I ×M2 → Σ+N which is J2-holomorphic to first order and with ϕ = π ◦ ψ.

Since harmonicity (to first order) does not depend on the orientation on N, we could
have replaced Σ+N by Σ−N in both Theorems 4.13 and 4.15

Proof. For each t consider Vt = dϕt(TM)⊥ ⊆ ϕ−1
t (TN), bundle overM2. SinceM2 is a Riemann

surface, R20
Vt

= 0 and we can conclude that for each t there is a Koszul-Malgrange holomorphic
structure on Σ+Vt. Hence ([16, Theorem I.5.1.]), there is a smooth section ŝ with ŝt a Koszul-
Malgrange holomorphic section of Σ+Vt: ∇⊥

∂z
st ⊆ st. So,

Jψt

(
∇⊥

X+iJX

(
vt − iJψtvt

))
= i∇⊥

X+iJX

(
vt − iJψtvt

)
, ∀vt ∈ dϕt(TM)⊥, (4.42)

equivalently,

Jψt

(
∇⊥

Xvt +∇⊥
JXJψtvt

)
= −∇⊥

JXvt +∇⊥
XJψtvt,

Jψt

(
∇⊥

JXvt − ∇⊥
XJψtvt

)
= ∇⊥

Xvt +∇⊥
JXJψtvt.

(4.43)

Take s = ŝ⊕T10 where T10
t is the (1, 0)-part on dϕt(TM)C determined by J�t = rotation by +π/2

on dϕt(TM). (Notice that as ϕt is not conformal we might not get a Hermitian structure by
setting T10

t = dϕt(T10M); on the other hand, positive rotation by π/2 comes from the natural
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orientation on dϕt(TM) imported from TM via dϕt.) Then s defines a compatible twistor lift
of ϕ. Let us check that ψ isJ2-holomorphic to first order. That ψ0 is holomorphic is immediate.
From the proof of Proposition 4.7, we deduce that ψ is H-holomorphic to first order as it is
compatible to first order with ϕ and the latter is conformal to first order. Hence, we are left
with proving that (4.37)

∇∂t|0∇JXJψt = −∇∂t|0Jψt∇XJψt (4.44)

holds. We shall establish this equation by showing that both sides agree when applied to
any vector v ∈ TN. For that, we consider, in turn, the three cases v = dϕ0X, dϕ0JX, and
v ∈ dϕ0(TM)⊥. The first two have similar arguments so that we prove only the first.

(i) v = dϕ0X. From ψ0 holomorphicity, we have ∇JXJψ0 = −Jψ0∇XJψ0 . On the other
hand, as ψ isH-holomorphic to first order, (4.13) is satisfied. Finally, for all t,

∇JXdϕtX − ∇XdϕtJX = ∇dϕt(JX,X) − ∇dϕt(X, JX) + dϕt

(∇JXX − ∇XJX
)
= 0. (4.45)

Since ϕ is harmonic to first order, our condition follows from

(∇∂t|0∇JXJψt

)
dϕ0X = −(∇∂t|0Jψt∇XJψt

)
dϕ0X

⇐⇒ ∇∂t|0∇JX

(
JψtdϕtX

) − ∇∂t|0
(
Jψt∇JXdϕtX

)

⇐⇒ ∇∂t|0
(∇JXdϕtJX +∇XdϕtX

)

=
(∇∂t|0Jψt

)(∇JXdϕ0X − ∇Xdϕ0JX
)

= −∇∂t|0
(
Jψt∇X

(
JψtdϕtX

)) − ∇∂t|0∇XdϕtX

+ Jψ0∇∂t|0
(∇JXdϕtX − ∇XdϕtJX

)

⇐⇒ ∂t|0τ
(
ϕt

)
= 0.

(4.46)

(ii) v ∈ dϕ0(TM)⊥. We now have

(∇∂t|0∇JXJψt

)
v = −(∇∂t|0Jψt∇XJψt

)
v

⇐⇒ ∇∂t|0∇JX

(
Jψtv

) − ∇∂t|0
(
Jψt∇JXv

)
= −∇∂t|0

(
Jψt∇X

(
Jψtv

)) − ∇∂t|0∇Xv

⇐⇒

⎧
⎪⎨

⎪⎩

∇∂t|0∇⊥
JX

(
Jψtv

) − ∇∂t|0
(
Jψt∇⊥

JXv
)
+∇∂t|0

(
Jψt∇⊥

X

(
Jψtv

))
+∇∂t|0∇⊥

Xv = 0,

∇∂t|0∇�
JX

(
Jψtv

) − ∇∂t|0
(
Jψt∇�

JXv
)
+∇∂t|0

(
Jψt∇�

X

(
Jψtv

))
+∇∂t|0∇�

Xv = 0.

(4.47)

Now, the first condition follows from (4.43) since s is Koszul-Malgrange holomorphic for
each t. As for the second, letting L denote its left-hand side, we shall prove that 〈L,w〉 = 0
for all w ∈ TN. We do this by establishing the three cases w = dϕ0X, w = dϕ0JX and
w ∈ dϕ0(TM)⊥ (since the first two cases have similar arguments, we prove only the first).
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(iia) When w = dϕ0X we have

〈
L, dϕ0X

〉
= −∂t|0

(〈
Jψtvt,∇JXdϕtX

〉
+
〈
vt,∇XdϕtX

〉)

+ ∂t|0
(−〈vt,∇JXdϕtJX

〉
+
〈
Jψtvt,∇XdϕtJX

〉)

= −∂t|0
〈
vt,∇XdϕtX +∇JXdϕtJX

〉
+ ∂t|0

〈
Jψtvt,∇XdϕtJX − ∇JXdϕtX

〉

= −〈∇∂t|0vt, τ
(
ϕ0

)〉 − 〈
v0,∇∂t|0τ

(
ϕt

)〉
= 0.

(4.48)

(iib) Let wt ∈ dϕt(TM)⊥. Then,

〈L,w〉 = ∂t|0
〈
∇�

JX

(
Jψtv

) − Jψt∇�
JXv + Jψt∇�

X

(
Jψtv

)
+∇�

Xv,w
〉

−
〈
∇�

JX

(
Jψ0v

) − Jψ0∇�
JXv + Jψ0∇�

X

(
Jψ0v

)
+∇�

Xv,∇∂t|0w
〉
.

(4.49)

The first term on the right side of the above equation vanishes aswt lies in dϕt(TM)⊥, whereas
the second is zero from ψ0-holomorphicity, concluding our proof.

4.6. The 4-Dimensional Case

Theorem 4.16. Let ϕ : I ×M2 → N4 be harmonic and isotropic to first-order map and with ∂zϕ0

and ∂2zϕ0 being linearly independent. Then, (locally) there is either a map ψ+ : I ×M2 → Σ+N or a
map ψ− : I × M2 → Σ−N which is simultaneously J1 and J2-holomorphic to first order and with
ϕ = π ◦ ψ. Conversely, if ψ : I ×M2 → Σ+N4 (or ψ : I ×M2 → Σ−N4) is J1 and J2-holomorphic
to first order, the projected map ϕ = π ◦ ψ : I ×M2 → N4 is harmonic and isotropic to first order.

Proof. The converse is obvious from Proposition 4.10 and Theorem 4.13. As for the first part,
in Theorem 4.11 we saw that we can lift the map ϕ to a map J1-holomorphic to first order.
Moreover, this lift could be defined as the unique positive or negative almost complex
structure compatible with ϕ. On the other hand, in Theorem 4.15 we have seen that there
is a map J2-holomorphic to first order with ϕ = π ◦ ψ and for which ϕ is compatible. From
the comment after Theorem 4.15, there is also a twistor lift of ϕ into Σ−N. Therefore, from the
dimension ofN, we conclude that the lifts constructed in both cited results are the same and,
therefore, simultaneously J1 and J2-holomorphic to first order.

We would now like to guarantee the uniqueness to first order of our twistor lift. Before
stating such a result, we start with a lemma, proved in Section 5.

Lemma 4.17. Let ψ : I ×M2 → Σ+N be a map J1-holomorphic to first order. Consider the twistor
projection ϕt = π ◦ ψ and the vectors ut and vt defined by

∂2zϕt = ut + ivt (4.50)
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so that

ut = ∇XdϕtX − ∇JXdϕtJX, vt = −∇XdϕtJX − ∇JXdϕtX. (4.51)

Then, for all z0 for which ∂zϕ0(z0) and ∂2zϕ0(z0) are linearly independent

∇∂t|0dϕtJX = ∇∂t|0JψtdϕtX, ∇∂t|0Jψtut = −∇∂t|0vt, ∇∂t|0Jψtvt = ∇∂t|0ut. (4.52)

Notice that in Lemma 4.12, we were given ϕ and defined the twistor lift as the unique
lift compatible with ϕ. Now, we are given the twistor map ψ but nothing guarantees that
projecting the map to ϕt makes ϕ compatible; that is, Jψt may not preserve dϕt(TM).

Proposition 4.18. Let ψ1, ψ2 : I × M2 → Σ+N4 be two J1-holomorphic to first-order maps such
that ψ1

0 = ψ2
0 and the variational vector fields induced on N4 are the same; that is, writing ai :=

∂t|0(π ◦ ψi), i = 1, 2, we have a1 = a2. Then, at all points z0 for which ∂zϕ0(z0) and ∂2zϕ0(z0) are
linearly independent, writing wi = ∂t|0ψi

t , i = 1, 2, we have w1 = w2.

Proof. Let ϕi = π ◦ψi (i = 1, 2) denote the projectionmaps. From our hypothesis, it follows that
wH

1 = wH
2 . Hence, the only thing left is to prove that the vertical parts coincide. Now, from

the proof of Lemma 4.14, (∂t|0ψi
t)

V = ∇∂t|0Jψi
t
so that our result follows if ∇∂t|0Jψ1

t
= ∇∂t|0Jψ2

t
.

We prove this identity showing that Q(Y ) = 0 for all Y , where

Q(Y ) =
(
∇∂t|0Jψ1

t

)
Y −

(
∇∂t|0Jψ2

t

)
Y. (4.53)

We consider the four possible cases for Y ; namely, when Y is equal to dϕ0X, dϕ0JX, u0 or v0,
where u0 and v0 are as in the preceding lemma (notice that, since ψ1

0 = ψ2
0 , then u1

0 = u2
0 and

v1
0 = v2

0).

(i) When Y = dϕ0X (Y = dϕ0JX uses similar arguments), we have

Q
(
dϕ0X

)
= ∇∂t|0

(
Jψ1

t
dϕ1

t

)
− Jψ1

0

(∇∂t|0dϕtX
) − ∇∂t|0

(
Jψ2

t
dϕ2

t

)
+ Jψ2

0

(
∇∂t|0dϕ

2
t X

)

= ∇∂t|0dϕ
1
t JX − ∇∂t|0dϕ

2
t JX − Jψ0(∇Xa1 − ∇Xa2) = ∇JXa1 − ∇JXa2 = 0,

(4.54)

where we have used Lemma 4.17, as well as the fact that Jψ2
0
= Jψ1

0
and ∇∂t|0dϕ

i
tX = ∇Xai.

(ii) Taking Y = u0 (Y = v0 uses similar arguments), we have

Q(u0) = ∇∂t|0
(
Jψ1

t
u1
t

)
− Jψ1

0

(
∇∂t|0u

1
t

)
− ∇∂t|0

(
Jψ2

t
u2
t

)
+ Jψ2

0

(
∇∂t|0u

2
t

)

= −∇∂t|0v
1
t +∇∂t|0v

2
t − Jψ0

(
∇∂t|0u

1
t − ∇∂t|0u

2
t

)
.

(4.55)



Journal of Inequalities and Applications 21

But

∇∂t|0v
1
t = −∇∂t|0∇Xdϕ

1
t JX − ∇∂t|0∇JXdϕ

1
t X

= −RN
(
∂t|0ϕ1

t , dϕ
1
t X

)
dϕ1

t JX +∇X∇∂t|0dϕ
1
t JX

+ RN
(
∂t|0ϕ1

t , dϕ
1
t JX

)
dϕ1

t X +∇JX∇∂t|0dϕ
1
t X

= −RN(
a1, dϕ0X

)
dϕ0JX +∇X∇JXa1 + RN(

a1, dϕ0JX
)
dϕ0X +∇JX∇Xa1.

(4.56)

As a1 = a2, we deduce ∇∂t|0v
1
t = ∇∂t|0v

2
t ; analogously, ∇∂t|0u

1
t = ∇∂t|0u

2
t so that Q(u0) = 0.

Hence, the twistor lifts constructed in Theorem 4.16 are unique to first order, in the sense
that the vector field w induced on Σ+N4 (or Σ−N4) by the map ψ, w = ∂t|0ψt depends
only on the initial projected map ϕ0 and on the Jacobi field v along ϕ0. Moreover, taking
N4 the 4-sphere or the complex projective plane, letting ϕ : M2 → N4 be a harmonic
map, and v ∈ ϕ−1(TN) a Jacobi field, isotropy to first order is immediately guaranteed.
Hence, the previous construction allows a (local) unified proof of the twistor correspondence
between Jacobi fields and twistor vector fields that are tangent to variations on Σ+N4 which
are simultaneously J1 andJ2-holomorphic (infinitesimal horizontal holomorphic deformations in
[5]). We can also conclude which different properties (namely, conformality, real isotropy or
harmonicity) are related with those of the twistor lift (resp., H, J1 or J2-holomorphicity).

5. Additional Proofs

Proof of Lemma 4.5. Since ψ is compatible to first order, Jψt preserves dϕt(TM) for all t. Hence,
there are aX

t and bXt such that

JψtdϕtX = aX
t dϕtJX + bXt dϕtX. (5.1)

Take vX
t = bXt dϕtX. Since, at t = 0, Jψ0dϕ0X = dϕ0JX we deduce vX

0 = 0 and aX
0 = 1. Now,

since dϕtX and JψtdϕtX form an orthogonal basis for dϕt(TM), we have

dϕtJX =

〈
dϕtJX, dϕtX

〉

∥∥dϕtX
∥∥2

dϕtX +

〈
dϕtJX, JψtdϕtX

〉

∥∥JψtdϕtX
∥∥2

JψtdϕtX

=⇒ 〈
JψtdϕtX, dϕtJX

〉2 =
∥∥dϕtJX

∥∥2∥∥dϕtX
∥∥2 − 〈

dϕtJX, dϕtX
〉2
.

(5.2)

Differentiating with respect to t at the point t = 0, the above identity yields

∂t|0
〈
JψtdϕtX, dϕtJX

〉
= ∂t|0

〈
dϕtX, dϕtX

〉
. (5.3)
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Computing the inner product of (5.1) with JψtdϕtX and using the fact that 〈dϕtX, JψtdϕtX〉
vanishes for all t, we get 〈dϕtX, dϕtX〉 = aX

t 〈dϕtJX, JψtdϕtX〉. Hence,

∂t|0
〈
dϕtX, dϕtX

〉
= ∂t|0aX

t

〈
dϕ0JX, Jψ0dϕ0X

〉
+ aX

0 ∂t|0
〈
dϕtJX, JψtdϕtX

〉
(5.4)

and we deduce ∂t|0aX
t = 0, as aX

0 = 1 and (5.3) hold. Using (5.1) again, we can now write

∇∂t|0v
X
t = ∇∂t|0JψtdϕtX − ∂t|0aX

t dϕ0JX − ∇∂t|0dϕtJX

=⇒
〈
∇∂t|0v

X
t , dϕ0X

〉
= ∂t|0

〈
JψtdϕtX, dϕtX

〉 − 〈
Jψ0dϕ0X,∇∂t|0dϕtX

〉

− ∂t|0
〈
dϕtJX, dϕtX

〉
+
〈
dϕ0JX,∇∂t|0dϕtX

〉
,

(5.5)

which vanishes since 〈JψtdϕtX, dϕtX〉 = 0 for all t, the second and last terms cancelling as ϕ0

is Jψ0 -holomorphic and ϕ is conformal to first order. Analogously, 〈∇∂t|0v
X
t , Jψ0dϕ0X〉 vanishes

so that 〈∇∂t|0v
X
t , dϕ0(TM)〉 = 0. For the orthogonal part, taking rt ∈ (dϕtTM)⊥,

〈
∇∂t|0v

X
t , r0

〉
= ∂t|0

〈
vX
t , rt

〉
−
〈
vX
0 ,∇∂t|0rt

〉
= 0, (5.6)

showing that ∇∂t|0v
X
t = 0 and concluding the proof.

Proof of Lemma 4.8. We shall do the proof only for the J1 case, with the J2 case being similar.
Assume that ψ is J1-holomorphic to first order. Then, using Lemmas 4.3 and 4.6, ϕ is Jψ-
holomorphic to first order. On the other hand, ψ satisfies equation (4.37), which implies that
for all Yt

∇∂t|0
(∇JX

(
JψtYt

) − ∇XYt

)
= ∇∂t|0

(
Jψt

(∇JXYt +∇X

(
JψtYt

)))
. (5.7)

Take Y 10
t in T10

Jψt
N. Let Yt be such that Y 10

t = (1/2)(Yt − iJψtYt) and write 2iZt = ∇JXYt +
∇X(JψtYt). Then,

∇∂t|0∇∂zY
10
t =

1
4
∇∂t|0

(−Jψt

(∇JXYt +∇X

(
JψtYt

)) − i
(∇X

(
JψtYt

)
+∇JXYt

))

=
1
4
∇∂t|0

(−2iJψtZt + 2Zt

)
= ∇∂t|0

1
2
(
Zt − iJψtZt

)
= ∇∂t|0Z

10
t .

(5.8)

Moreover, since ψ0 is holomorphic, ∇XY0 − ∇JX(Jψ0Y0) = −Jψ0(∇JXY0 +∇X(Jψ0Y0)) and

∇∂zY
10
0 =

1
4
(∇XY0 − ∇JX

(
Jψ0Y0

) − i
(∇X

(
Jψ0Y0

)
+∇JXY0

))
=

1
4
(−2iJψ0Z0 + 2Z0

)
= Z10

0 ,

(5.9)

finishing the first part of our proof.
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Conversely, suppose that (4.22) and (4.23) hold. Take Y 10
t ∈ T10

Jψt
N and Z10

t with

∇∂zY
10
0 = Z10

0 and ∇∂t|0(∇∂zY
10
t − Z10

t ) = 0. Then

1
2
∇∂t|0

(∇XYt − ∇JX

(
JψtYt

) − i
(∇X

(
JψtYt

)
+∇JXYt

) − Zt + iJψtZt

)
= 0 (5.10)

and we can now easily conclude that (5.7) holds. Together with the fact that ψ0 is J1-
holomorphic (Proposition 3.3), we can conclude that (4.37) is verified. As for the horizontal
part, we have that

∇∂t|0
(
dψtJX − JdψtX

)H = 0 ⇐⇒ ∂t|0
〈
dϕtJX − JψtdϕtX, Y

〉
= 0, ∀Y ∈ TN, (5.11)

as ψ0 is holomorphic. Since (4.22) holds, the last condition is trivially satisfied and we can
conclude that our map is J1-holomorphic to first order, as desired.

Proof of Lemma 4.12. (i) Since ϕ is isotropic to first order, ∂t|0〈∂2zϕt, ∂zϕt〉 = 0, equivalently,
∂t|0〈uX

t + ivX
t , dϕtX − idϕtJX〉. Thus, we have

∂t|0
〈
uX
t , dϕX

〉
= −∂t|0

〈
vX
t , dϕtJX

〉
,

∂t|0
〈
uX
t , dϕtJX

〉
= ∂t|0

〈
vX
t , dϕtX

〉
.

(5.12)

Similarly, ∂t|0〈∂2zϕt, ∂
2
zϕt〉 = 0 is equivalent to ∂t|0〈uX

t + ivX
t , u

X
t + ivX

t 〉 = 0 and implies

∂t|0
〈
uX
t , u

X
t

〉
= ∂t|0

〈
vX
t , v

X
t

〉
,

∂t|0
〈
uX
t , v

X
t

〉
= 0.

(5.13)

As ψ is compatible with ϕ, Lemma 4.5 guarantees that ϕ is Jψ-holomorphic to first order. On
the other hand, since ∂zϕ0 and ∂2zϕ0 are linearly independent, we deduce that dϕ0X, dϕ0JX,
uX
0 and vX

0 form a basis for Tϕ0N. Hence, (4.33)will be satisfied if and only on evaluating the
inner product of ∇∂t|0Jψtu

X
t and −∇∂t|0v

X
t with which one of these four vectors one obtains the

same result. We shall only prove for the first and fourth vectors, the other two cases being
similar.

(a) Since Jψ0u
X
0 = −vX

0 ,

〈
∇∂t|0Jψtu

X
t , dϕ0X

〉
= ∂t|0

〈
Jψtu

X
t , dϕtX

〉
−
〈
Jψ0u

X
0 ,∇∂t|0dϕtX

〉

= −∂t|0
〈
uX
t , dϕtJX

〉
+
〈
vX
0 ,∇∂t|0dϕtX

〉

=
(
using(5.12)

) − ∂t|0
〈
vX
t , dϕtX

〉
+
〈
vX
0 ,∇∂t|0dϕtX

〉
=
〈
∇∂t|0v

X
t , dϕ0X

〉
.

(5.14)
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(b) Using (5.13),

〈
∇∂t|0Jψtu

X
t , u

X
0

〉
= ∂t|0

〈
Jψtu

X
t , u

X
t

〉
−
〈
Jψ0u

X
0 ,∇∂t|0u

X
t

〉

= ∂t|0
〈
vX
t , u

X
t

〉
−
〈
∇∂t|0v

X
t , u

X
0

〉
= −

〈
∇∂t|0v

X
t , u

X
0

〉
.

(5.15)

(ii) We know that ∂zϕt, ∂2zϕt, ∂zϕt, ∂2zϕt span TCN4. Hence, there are at, bt, ct, and dt

with

∂3zϕt = at∂zϕt + bt∂
2
zϕt + ct∂zϕt + dt∂

2
zϕt, (5.16)

where c0 = d0 = 0 since ∂3zϕ0 ∈ span{∂zϕ0, ∂
2
zϕ0} = T10

Jψ0
N. Therefore,

∇∂t|0∂
3
zϕt = a0∇∂t|0∂zϕt +

∂aX
t

∂t

∣∣∣∣∣
0

∂zϕ0 + b0∇∂t|0∂
2
zϕt +

∂bXt
∂t

∣∣∣∣∣
0

∂2zϕ0 +
∂cXt
∂t

∣∣∣∣∣
0

∂zϕ0 +
∂aX

t

∂t

∣∣∣∣∣
0

∂2zϕ0.

(5.17)

Now, using the fact that ϕ is isotropic to first order, we have

〈
∇∂t|0∂

3
zϕt, ∂zϕ0

〉
= −

〈
∂3zϕ0,∇∂t|0∂zϕt

〉
. (5.18)

Together with

〈∇∂t|0∂zϕt, ∂zϕ0
〉
=
〈
∂2zϕ0, ∂zϕ0

〉
=
〈
∂zϕ0, ∂zϕ0

〉
= 0,

〈
∇∂t|0∂

2
zϕt, ∂zϕ0

〉
= −

〈
∂2zϕ0,∇∂t|0∂zϕt

〉
,

(5.19)

we deduce

∂cXt
∂t

∣∣∣∣∣
0

∥∥∂zϕ0
∥∥2 +

∂dX
t

∂t

∣∣∣∣∣
0

〈
∂2zϕ0, ∂zϕ0

〉
= 0. (5.20)

Similarly, from

〈
∇∂t|0∂

3
zϕt, ∂

2
zϕ0

〉
= −

〈
∂3zϕ0,∇∂t|0∂

2
zϕt

〉
, (5.21)

we have

∂cXt
∂t

∣∣∣∣∣
0

〈
∂zϕ0, ∂

2
zϕ0

〉
+

∂dX
t

∂t

∣∣∣∣∣
0

∥∥∥∂2zϕ0

∥∥∥
2
= 0. (5.22)
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Equations (5.20) and (5.22) imply that either ‖〈∂zϕ0, ∂
2
zϕ0〉‖ = ‖∂zϕ0‖‖∂2zϕ0‖ (which is absurd

as ∂2zϕ0 does not lie in span{∂zϕ0}) or ∂dX
t /∂t|0 = ∂cXt /∂t|0 = 0 and consequently (4.34) holds,

as wanted.

Proof of Lemma 4.17. That∇∂t|0dϕtJX = ∇∂t|0JψtdϕtX follows from the proof of Proposition 4.7.
Since ∂zϕ0(z0), and ∂2zϕ0(z0) are linearly independent vectors, we can deduce that dϕtX,
dϕtJX, ut and vt form a basis for Tϕt(z)N for (t, z) is a neighbourhood of (0, z0). On the other
hand, as ϕ is the projection of a map J1-holomorphic to first order, we know that it must be
isotropic to first order from Proposition 4.10. Hence,

∂t|0
〈
∂2zϕt, ∂zϕt

〉
= ∂t|0

〈
∂2zϕt, ∂

2
zϕt

〉
= 0. (5.23)

The argument to establish the second and third identities in (4.52), will now be similar to the
one in Lemma 4.12(i).
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