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Let G be a simple graph with n vertices, and let λn(G) be the least eigenvalue of G. The connected
graphs in which the number of edges equals the number of vertices are called unicyclic graphs. In
this paper, the first five unicyclic graphs on order n in terms of their smaller least eigenvalues are
determined.

1. Introduction

Let G be a simple graph with n vertices, and let A be the (0, 1)-adjacency matrix of G. We
call det(λI −A) the characteristic polynomial of G, denoted by P(G; λ), or abbreviated P(G).
Since A is symmetric, its eigenvalues λ1(G), λ2(G), . . . , λn(G) are real, and we assume that
λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). We call λn(G) the least eigenvalue of G. Up to now, some good
results on the least eigenvalues of simple graphs have been obtained.

(1) In [1], let G be a simple graph with n vertices, G/=Kn, then

λn(G) ≤ λn

(
K1

n−1
)
. (1.1)

The equality holds if and only if G ∼= K1
n−1, where K1

n−1 is the graph obtained from
Kn−1 by joining a vertex of Kn−1 with K1.

(2) In [2–4], let G be a simple graph with n vertices, then

λn(G) ≥ −
√[n

2

][n + 1
2

]
. (1.2)
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The equality holds if and only if G ∼= K[n/2],[(n+1)/2] .

(3) In [5], let G be a planar graph with n ≥ 3 vertices, then

λn(G) ≥ −
√
2n − 4. (1.3)

The equality holds if and only if G ∼= K2,n−2.

(4) In [6], the author surveyed the main results of the theory of graphs with least
eigenvalue −2 starting from late 1950s.

Connected graphs in which the number of edges equals the number of vertices are
called unicyclic graphs. Also, the least eigenvalues of unicyclic graphs have been studied in
the past years. We now give some related works on it.

(1) In [7], let Un denote the set of unicyclic graphs on order n. The authors
characterized the unique graph with minimum least eigenvalue (also in [8, 9])
(resp., the unique graph with maximum spread) among all graphs in Un.

(2) In [10], let G be a unicyclic graph with n vertices, and let G∗ be the graph obtained
by joining each vertex of C3 to a pendant vertex of Pk−1, Pk1−1, Pk2−1, respectively,
where k ≥ k1 ≥ k2 ≥ 1, k − k2 ≤ 1, and k + k1 + k2 = n. Then

λn(G) ≤ λn(G∗). (1.4)

The equality holds if and only if G ∼= G∗.

In this paper, the first five unicyclic graphs on order n in terms of their smaller least
eigenvalues are determined. The terminologies not defined here can be found in [11, 12].

2. Some Known Results on the Spectral Radii of Graphs

In this section, we will give some known results on the spectral radius of a forestry or an
unicyclic graph. They will be useful in the proofs of the following results.

Firstly, we write S(r, n − r − 2) (1 ≤ r ≤ n − r − 2) denotes the tree of order n obtained
from the starK1,n−r−1 by joining a pendant vertex of K1,n−r−1 with rK1.

Lemma 2.1 (see [13]). Let F be a forestry with n vertices. F /=K1,n−1, S(1, n − 3), S(2, n − 4). Then

λ1(F) < λ1(S(2, n − 4)) < λ1(S(1, n − 3)) < λ1(K1,n−1). (2.1)

Now, we consider unicyclic graphs. For convenience, we write

Un =
{
G | G is an unicyclic graph with n vertices

}
,

Un(k) =
{
G | G is an unicyclic graph in Un containing a circuit Ck

}
.

(2.2)

Also, we write Cn−k
k denotes the unicyclic graph obtained from Ck by joining a vertex

of Ck with (n − k)K1, and Ck(n − k − 1, 1) denotes the unicyclic graph obtained from Ck by
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joining two adjacent vertices of Ck with (n − k − 1)K1 andK1, respectively. Then we have the
following.

Lemma 2.2 (see [14]). λ1(Cn−k
k

) > λ1(Cn−k−1
k+1 ), 3 ≤ k ≤ n − 1.

Lemma 2.3 (see [15]). Let G ∈ Un(k), G /=Cn−k
k , Ck(n − k − 1, 1), then

λ1(G) < λ1(Ck(n − k − 1, 1)) < λ1

(
Cn−k

k

)
. (2.3)

Lemma 2.4 (see [15]). For n ≥ 8, one has

λ1(C4(n − 5, 1)) > λ1

(
Cn−5

5

)
. (2.4)

3. The Least Eigenvalues of Unicyclic Graphs

Firstly, we give the following definitions of the order “� (or ≺)” between two graphs or two
sets of graphs.

Definition 3.1. Let G,H be two simple graphs on order n, and let G, H be two sets of simple
graphs on order n.

(1) We say that “G is majorized (or strictly majorized) by H ,” denoted by G � H (or
G ≺ H) if λn(G) ≤ λn(H) (or λn(G) < λn(H)).

(2) We say that “G is majorized (or strictly majorized) by H”, denoted by G � H (or
G ≺ H) if λn(G) ≤ λn(H) (or λn(G) < λn(H)) for each G ∈ G andH ∈ H.

The following lemmas will be useful in the proofs of the main results.

Lemma 3.2 (see [16]). Let G be a simple graph with vertex set V (G) and u ∈ V (G), then

P(G) = λP(G − u) −
∑
v

P(G − u − v) − 2
∑

Z∈C(u)
P(G − V (Z)), (3.1)

where the first summation goes through all vertices v adjacent to u, and the second summation goes
through all circuits Z belonging to C(u), C(u) denotes the set of all circuits containing the vertex u.

Lemma 3.3 (see [12]). Let V1 be a subset of vertices of a graph G and |V (G)| = n, |V1| = k, then

λi(G) ≥ λi(G − V1) ≥ λi+k(G), (1 ≤ i ≤ n − k). (3.2)

Lemma 3.4 (see [2]). Let G be a bipartite graph with n vertices, then

λi(G) = −λn−i+1(G),
(
1 ≤ i ≤

[n
2

])
. (3.3)

Lemma 3.5 (see [3]). Let G be a simple graph with n vertices. Then there exist a spanning subgraph
G′ of G such that G′ is a bipartite graph and λn(G) ≥ λn(G′).
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Now, we consider the least eigenvalues of unicyclic graphs. For the graphs in Un(3),
we have the following results.

Lemma 3.6. K1,n−1 ≺ Cn−3
3 ≺ S(1, n − 3), (n ≥ 6).

Proof. By Lemma 3.2, we have

P
(
Cn−3

3

)
= λn−4

[
λ4 − nλ2 − 2λ + (n − 3)

]
, (3.4)

and by Lemma 3.5, there exist a spanning subgraph G′ of Cn−3
3 such that G′ is a bipartite

graph and λn(Cn−3
3 ) ≥ λn(G′). Obviously, G′ is a forestry. So, by Lemma 2.1, we have λn(G′) ≥

λn(K1,n−1). But P(Cn−3
3 ; λn(K1,n−1))/= 0. Thus, λn(K1,n−1) < λn(Cn−3

3 ).
Also, by Lemma 3.2, we have

P(S(1, n − 3)) = λn−4
[
λ4 − (n − 1)λ2 + (n − 3)

]
. (3.5)

Then P(Cn−3
3 )−P(S(1, n−3)) = −λn−3(λ+2). From the table of connected graphs on six

vertices in [17], we know that

λ6(S(1, 3)) < −2. (3.6)

So, by Lemma 3.3, we have

λn(S(1, n − 3)) ≤ λ6(S(1, 3)) < −2. (3.7)

Thus, P(Cn−3
3 ; λn(S(1, n − 3))) = (−1)n−1qn, where qn > 0. Also, by Lemma 3.3, we have

λn−1
(
Cn−3

3

)
≥ λn−1(K1,n−2) ≥ λn(S(1, n − 3)). (3.8)

So, λn(Cn−3
3 ) < λn(S(1, n − 3)). Hence the result holds.

Lemma 3.7. For n ≥ 9, one has

S(1, n − 3) ≺ Cn−4
3 (1) ≺ C3(n − 4, 1) ≺ S(2, n − 4), (3.9)

where Cn−4
3 (1) denotes the graph obtained from Cn−4

3 by joining a pendant vertex of Cn−4
3 withK1.

Proof. By Lemma 3.2, we have

P
(
Cn−4

3 (1)
)
= λn−6

(
λ2 − 1

)[
λ4 − (n − 1)λ2 − 2λ + (n − 5)

]
,

P(S(1, n − 3)) = λn−4
[
λ4 − (n − 1)λ2 + (n − 3)

]
.

(3.10)
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And by Lemma 3.5, there exist a spanning subgraph G′ of Cn−4
3 (1) such that G′ is a bipartite

graph and λn(Cn−4
3 (1)) ≥ λn(G′). Obviously, G′ is a forestry and G′ /=K1,n−1 for n ≥ 5. So, by

Lemma 3.6, we have λn(G′) ≥ λn(S(1, n − 3)). But P(Cn−4
3 (1); λn(S(1, n − 3)))/= 0. Thus

S(1, n − 3) ≺ Cn−4
3 (1). (3.11)

Also, by Lemma 3.2, we have

P(C3(n − 4, 1)) = λn−4
[
λ4 − nλ2 − 2λ + (2n − 7)

]
, (3.12)

So

P
(
Cn−4

3 (1)
)
− P(C3(n − 4, 1)) = λn−6

[
λ2 + 2λ − (n − 5)

]
. (3.13)

The least root of λ2 + 2λ − (n − 5) = 0 is −1 − √
n − 4. Let fn(λ) = λ4 − nλ2 − 2λ + (2n − 7), then

we have

fn
(
−1 −

√
n − 4

)
= 9n − 12 + 2(n − 5)

√
n − 4 > 0, (n ≥ 5). (3.14)

Moreover, by Lemma 3.3, we know

λn−1(C3(n − 4, 1)) ≥ λn−1(K1,n−3 ∪K1) = −
√
n − 3 > −1 −

√
n − 4, (n ≥ 5). (3.15)

So,

λn(C3(n − 4, 1)) > −1 −
√
n − 4. (3.16)

Thus,

P
(
Cn−4

3 (1); λn(C3(n − 4, 1))
)
= (−1)n+1qn, qn > 0. (3.17)

Then, Cn−4
3 (1) ≺ C3(n − 4, 1).
By Lemma 3.2, we have

P(S(2, n − 4)) = λn−4
[
λ4 − (n − 1)λ2 + 2(n − 4)

]
, (3.18)

and

λn(S(2, n − 4)) = −
[
1
2

(
n − 1 +

√
(n − 5)2 + 8

)]1/2
. (3.19)
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So,

P(C3(n − 4, 1)) − P(S(2, n − 4)) = −λn−4
(
λ2 + 2λ − 1

)
. (3.20)

Thus, when n ≥ 9, it is not difficult to know that

P(C3(n − 4, 1); λn(S(2, n − 4))) = (−1)n+1qn, qn > 0, (3.21)

then C3(n − 4, 1) ≺ S(2, n − 4).

Lemma 3.8. Let G ∈ Un(3), G/=Cn−3
3 , Cn−4

3 (1), C3(n − 4, 1), then, for n ≥ 6, one has

S(2, n − 4) � G. (3.22)

Proof. LetG/=Cn−3
3 ,Cn−4

3 (1),C3(n−4, 1). Then, by Lemma 3.5, there exist a spanning subgraph
G′ such that G′ is a bipartite graph and λn(G) ≥ λn(G′). Obviously, G′ is a forestry and
G′ /=K1,n−1, S(1, n − 3) for n ≥ 6. So, by Lemma 2.1, we have

λn

(
G′) ≥ λn(S(2, n − 4)), (n ≥ 6). (3.23)

Thus

S(2, n − 4) � G, (n ≥ 6). (3.24)

Now, we consider the graphs in Un(4), we have the following results.

Lemma 3.9. K1,n−1 ≺ Cn−4
4 ≺ S(1, n − 3), (n ≥ 4).

Proof. By Lemma 3.2, we have

P(S(1, n − 3)) = λn−4
[
λ4 − (n − 1)λ2 + (n − 3)

]
,

P
(
Cn−4

4

)
= λn−4

[
λ4 − nλ2 + 2(n − 4)

]
.

(3.25)

We can easily to know that

λn

(
Cn−4

4

)
= −

[
1
2

(
n +

√
(n − 4)2 + 16

)]1/2
,

λn(S(1, n − 3)) = −
[
1
2

(
n − 1 +

√
(n − 3)2 + 4

)]1/2
.

(3.26)
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Moreover, λn(K1,n−1) = −√n − 1. So,

λn(K1,n−1) < λn

(
Cn−4

4

)
< λn(S(1, n − 3)), (n ≥ 4). (3.27)

And then,

K1,n−1 ≺ Cn−4
4 ≺ S(1, n − 3), (n ≥ 4). (3.28)

Lemma 3.10. For n ≥ 9, one has

S(1, n − 3) ≺ C4(n − 5, 1) ≺ S(2, n − 4). (3.29)

Proof. By Lemma 3.2, we get

P(C4(n − 5, 1)) = λn−6
[
λ6 − nλ4 + (3n − 13)λ2 − (n − 5)

]
,

P(S(1, n − 3)) = λn−6
[
λ6 − (n − 1)λ4 + (n − 3)λ2

]
.

(3.30)

So,

P(C4(n − 5, 1)) − P(S(1, n − 3)) = λn−6
[
−λ4 + 2(n − 5)λ2 − (n − 5)

]
. (3.31)

Since

λn(S(1, n − 3)) = −
[
1
2

(
n − 1 +

√
(n − 3)2 + 4

)]1/2
. (3.32)

So,

P(C4(n − 5, 1); λn(S(1, n − 3))) =
1
2
[λn(S(1, n − 3))]n−6

[
(n − 5)2 + (n − 9)

√
(n − 3)2 + 4 − 12

]
.

(3.33)

It is not difficult to know that (n − 5)2 + (n − 9)
√
(n − 3)2 + 4 − 12 > 0 for n ≥ 9. Thus,

P(C4(n − 5, 1); λn(S(1, n − 3))) = (−1)nqn, qn > 0. (3.34)

Furthermore, by Lemma 3.3, we have

λn(S(1, n − 3)) ≤ λn−1(S(1, n − 4)) ≤ λn−1(C4(n − 5, 1)). (3.35)
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So λn(C4(n − 5, 1)) > λn(S(1, n − 3)) for n ≥ 9. It means that S(1, n − 3) ≺ C4(n − 5, 1) for n ≥ 9.
SinceS(2, n−4) is a spanning subgraph ofC4(n−5, 1). So λn(C4(n−5, 1)) < λn(S(2, n−4))

for n ≥ 6. It means that C4(n − 5, 1) ≺ S(2, n − 4) for n ≥ 6.

Lemma 3.11. Let G ∈ Un(k), k ≥ 4, G/=Cn−4
4 , C4(n − 5, 1). Then C4(n − 5, 1) ≺ G.

Proof. When G ∈ Un(4), G/=Cn−4
4 , C4(n − 5, 1), by Lemma 2.3, we have

λ1(G) < λ1(C4(n − 5, 1)). (3.36)

Then, by Lemma 2.2, we have

λn(G) > λn(C4(n − 5, 1)). (3.37)

When G ∈ Un(k), k ≥ 5, by Lemmas 2.2 and 2.4, we have

λ1(G) ≤ λ1

(
Cn−5

5

)
< λ1(C4(n − 5, 1)). (3.38)

So,

λn(G) ≥ −λ1(G) > λn(C4(n − 5, 1)). (3.39)

Thus the result holds.

Lemma 3.12. Cn−4
4 ≺ Cn−3

3 for 4 ≤ n ≤ 11 and Cn−3
3 ≺ Cn−4

4 for n > 11.

Proof. By the proof of Lemma 3.6, we have

P
(
Cn−3

3

)
= λn−4

[
λ4 − nλ2 − 2λ + (n − 3)

]
,

λn

(
Cn−4

4

)
= −

[
1
2

(
n +

√
(n − 4)2 + 16

)]1/2
.

(3.40)

So

P
(
Cn−3

3 ; λn

(
Cn−4

4

))
=
[
λn

(
Cn−4

4

)]n−4{
−n + 5 +

[
2
(
n +

√
(n − 4)2 + 16

)]1/2}
. (3.41)

Let fn = −n+ 5+ [2(n+
√
(n − 4)2 + 16)]1/2. It is not difficult to know that fn > 0 for 4 ≤ n ≤ 11

and fn < 0 for n > 11. Furthermore, by Lemma 3.3, we have

λn

(
Cn−4

4

)
≤ λn−1(K1,n−2) ≤ λn−1

(
Cn−3

3

)
. (3.42)
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So, by the sign of P(Cn−3
3 ; λn(Cn−4

4 )), we know that λn(Cn−3
3 ) > λn(Cn−4

4 ) for 4 ≤ n ≤ 11 and
λn(Cn−3

3 ) < λn(Cn−4
4 ) for n > 11. Thus the result holds.

Lemma 3.13. C3(n − 4, 1) ≺ C4(n − 5, 1) for n ≥ 6.

Proof. By the proofs of Lemmas 3.7 and 3.10, we have

P(C3(n − 4, 1)) = λn−4
[
λ4 − nλ2 − 2λ + (2n − 7)

]
,

P(C4(n − 5, 1)) = λn−6
[
λ6 − nλ4 + (3n − 13)λ2 − (n − 5)

]
,

(3.43)

so

P(C3(n − 4, 1)) − P(C4(n − 5, 1)) = −λn−6
[
2λ3 + (n − 6)λ2 − (n − 5)

]
, (3.44)

since

λn(C4(n − 5, 1)) > λn(K1,n−1) = −
√
n − 1 (n ≥ 8). (3.45)

And by Lemma 3.3, we know that

λn(C4(n − 5, 1)) ≤ λn−2(K1,n−3) = −
√
n − 3. (3.46)

Now, let

fn(λ) = 2λ3 + (n − 6)λ2 − (n − 5) = λ2[2λ + (n − 6)] − (n − 5), (3.47)

then

fn(λn(C4(n − 5, 1))) > (n − 3)
[
−2

√
n − 1 + (n − 6)

]
− (n − 5). (3.48)

It is easy to know that fn(λn(C4(n − 5, 1))) > 0 for n ≥ 15. Thus,

P(C3(n − 4, 1); λn(C4(n − 5, 1))) = (−1)n+1qn, qn > 0. (3.49)

Hence C3(n − 4, 1) ≺ C4(n − 5, 1) for n ≥ 15.
When 6 ≤ n ≤ 14, by immediate calculation, we know the result holds too. This

completes the proof.
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4. Main Results

Now, we give the main result of this paper.

Theorem 4.1. Let G ∈ Un, G/=Cn−3
3 , Cn−4

4 , Cn−4
3 (1), C3(n − 4, 1), C4(n − 5, 1), then

(1) Cn−4
4 ≺ Cn−3

3 ≺ Cn−4
3 (1) ≺ C3(n − 4, 1) ≺ C4(n − 5, 1) ≺ G for 9 ≤ n ≤ 11;

(2) Cn−3
3 ≺ Cn−4

4 ≺ Cn−4
3 (1) ≺ C3(n − 4, 1) ≺ C4(n − 5, 1) ≺ G for n > 11.

Proof. By the Lemmas 3.6–3.13, we know that the result holds.
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