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For p ∈ R, the generalized logarithmic mean Lp(a, b), arithmetic mean A(a, b) and geometric
mean G(a, b) of two positive numbers a and b are defined by Lp(a, b) = a, a = b; Lp(a, b) =
[(ap+1 − bp+1)/((p + 1)(a − b))]1/p, p /= 0, p /= − 1, a/= b; Lp(a, b) = (1/e)(bb/aa)1/(b−a), p = 0, a/= b;
Lp(a, b) = (b − a)/(ln b − lna), p = −1, a/= b; A(a, b) = (a + b)/2 and G(a, b) =

√
ab, respectively. In

this paper, we give an answer to the open problem: for α ∈ (0, 1), what are the greatest value p and
the least value q, such that the double inequality Lp(a, b) ≤ Gα(a, b)A1−α(a, b) ≤ Lq(a, b) holds for
all a, b > 0?

1. Introduction

For p ∈ R, the generalized logarithmic mean Lp(a, b) of two positive numbers a and b is
defined by

Lp(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, a = b,

[
ap+1 − bp+1

(
p + 1

)
(a − b)

]1/p

, p /= 0 , p /= − 1, a /= b,

1
e

(
bb

aa

)1/(b−a)
, p = 0 , a /= b,

b − a

ln b − lna
, p = −1, a /= b.

(1.1)

It is wellknown that Lp(a, b) is continuous and increasing with respect to p ∈ R for
fixed a and b. In the recent past, the generalized logarithmic mean has been the subject of
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intensive research. Many remarkable inequalities and monotonicity results can be found
in the literature [1–9]. It might be surprising that the generalized logarithmic mean, has
applications in physics, economics, and even in meteorology [10–13].

If we denote byA(a, b) = (a+b)/2, I(a, b) = (1/e)(bb/aa)1/(b−a), L(a, b) = (b−a)/(ln b−
lna), G(a, b) =

√
ab andH(a, b) = 2ab/(a+b) the arithmetic mean, identric mean, logarithmic

mean, geometric mean and harmonic mean of two positive numbers a and b, respectively,
then

min{a, b} ≤ H(a, b) ≤ G(a, b) = L−2(a, b) ≤ L(a, b) = L−1(a, b)

≤ I(a, b) = L0(a, b) ≤ A(a, b) = L1(a, b) ≤ max{a, b}.
(1.2)

For p ∈ R, the pth power meanMp(a, b) of two positive numbers a and b is defined by

Mp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0.

(1.3)

In [14], Alzer and Janous established the following sharp double inequality (see also
[15], Page 350):

Mlog 2/ log 3(a, b) ≤ 2
3
A(a, b) +

1
3
G(a, b) ≤ M2/3(a, b) (1.4)

for all a, b > 0.
For α ∈ (0, 1), Janous [16] found the greatest value p and the least value q such that

Mp(a, b) ≤ αA(a, b) + (1 − α)G(a, b) ≤ Mq(a, b) (1.5)

for all a, b > 0.
In [17–19] the authors present bounds for L(a, b) and I(a, b) in terms of G(a, b) and

A(a, b).

Theorem A. For all positive real numbers a and b with a/= b, one has

L(a, b) <
1
3
A(a, b) +

2
3
G(a, b),

1
3
G(a, b) +

2
3
A(a, b) < I(a, b).

(1.6)

The proof of the following Theorem B can be found in [20].
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Theorem B. For all positive real numbers a and b with a/= b, one has

√

G(a, b)A(a, b) <
√

L(a, b)I(a, b) <
1
2
(L(a, b) + I(a, b)) <

1
2
(G(a, b) +A(a, b)). (1.7)

The following Theorems C–E were established by Alzer and Qiu in [21].

Theorem C. The inequalities

αA(a, b) + (1 − α)G(a, b) < I(a, b) < βA(a, b) +
(
1 − β

)
G(a, b) (1.8)

hold for all positive real numbers a and b with a/= b if and only if α ≤ 2/3 and β ≥ 2/e = 0.73575 . . . .

Theorem D. Let a and b be real numbers with a/= b. If 0 < a, b ≤ e, then

[G(a, b)]A(a,b) < [L(a, b)]I(a,b) < [A(a, b)]G(a,b). (1.9)

And if a, b ≥ e, then

[A(a, b)]G(a,b) < [I(a, b)]L(a,b) < [G(a, b)]A(a,b). (1.10)

Theorem E. For all real numbers a and b with a/= b, one has

Mp(a, b) <
1
2
(L(a, b) + I(a, b)) (1.11)

with the best possible parameter p = log 2/(1 + log 2) = 0.40938 . . . .

However, the following problem is still open: for α ∈ (0, 1), what are the greatest value
p and the least value q, such that the double inequality

Lp(a, b) ≤ Gα(a, b)A1−α(a, b) ≤ Lq(a, b) (1.12)

holds for all a, b > 0? The purpose of this paper is to give the solution to this open problem.

2. Lemmas

In order to establish our main result, we need two lemmas, which we present in this section.

Lemma 2.1. If t > 1, then

t

t − 1
log t − 1

6
log t − 2

3
log

1 + t

2
− 1 > 0. (2.1)
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Proof. Let f(t) = (t/(t−1)) log t−(1/6) log t−(2/3) log((1+ t)/2)−1, then simple computation
yields

lim
t→ 1+

f(t) = 0, (2.2)

f ′(t) =
g(t)

6t(t − 1)2(t + 1)
, (2.3)

where

g(t) = t3 + 9t2 − 9t − 6t(t + 1) log t − 1,

g(1) = 0,

g ′(t) = 3t2 + 12t − 6(2t + 1) log t − 15,

g ′(1) = 0,

g ′′(t) =
6
t
h(t),

(2.4)

where

h(t) = t2 − 2t log t − 1,

g ′′(1) = h(1) = 0,
(2.5)

h′(t) = 2
(
t − log t − 1

)
,

h′(1) = 0,
(2.6)

h′′(t) = 2
(

1 − 1
t

)

. (2.7)

If t > 1, then from (2.7) we clearly see that

h′′(t) > 0. (2.8)

Therefore, Lemma 2.1 follows from (2.3)–(2.6) and (2.8).

Lemma 2.2. If t > 1, then

log(t − 1) − log
(
log t

) − 1
3
log

(
t2 + t

)
+
1
3
log 2 > 0. (2.9)
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Proof. Let f(t) = log(t−1)− log(log t)− (1/3) log(t2 + t)+(1/3) log 2, then simple computation
leads to

lim
t→ 1+

f(t) = 0,

f ′(t) =
g(t)

3t(t − 1)(t + 1) log t
,

(2.10)

where

g(t) =
(
t2 + 4t + 1

)
log t − 3t2 + 3,

g(1) = 0,

g ′(t) =
h(t)
t

,

(2.11)

where

h(t) = 2t(t + 2) log t − 5t2 + 4t + 1,

g ′(1) = h(1) = 0,

h′(t) = 4(t + 1) log t − 8t + 8,

h′(1) = 0,

h′′(t) =
4
t
p(t),

(2.12)

where

p(t) = t log t − t + 1,

h′′(1) = p(1) = 0,
(2.13)

p′(t) = log t. (2.14)

If t > 1, then from (2.14)we clearly see that

p′(t) > 0. (2.15)

From (2.10)–(2.13) and (2.15)we know that f(t) > 0 for t > 1.

3. Main Results

Theorem 3.1. If α ∈ (0, 1), then Gα(a, b)A1−α(a, b) ≤ L1−3α(a, b) for all a, b > 0, with equality if
and only if a = b, and the constant 1 − 3α in L1−3α(a, b), cannot be improved.
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Proof. If a = b, then we clearly see that Gα(a, b)A1−α(a, b) = L1−3α(a, b) = a.
If a/= b, without loss of generality, we assume that a > b. Let t = (a/b) > 1 and

f(t) = logL1−3α(a, b) − log
[
Gα(a, b)A1−α(a, b)

]
. (3.1)

Firstly, we prove Gα(a, b)A1−α(a, b) < L1−3α(a, b). The proof is divided into three cases.

Case 1. α = 1/3. We note that (1.1) leads to the following identity:

f(t) =
t

t − 1
log t − 1

6
log t − 2

3
log

1 + t

2
− 1. (3.2)

From (3.2) and Lemma 2.1 we clearly see that L1−3α(a, b) > Gα(a, b)A1−α(a, b) for α =
1/3 and a/= b.

Case 2. α = 2/3. Equation (1.1) leads to the following identity:

f(t) = log(t − 1) − log
(
log t

) − 1
3
log

(
t2 + t

)
+
1
3
log 2. (3.3)

From (3.3) and Lemma 2.2 we clearly see that L1−3α(a, b) > Gα(a, b)A1−α(a, b) for α = 2/3 and
a/= b.

Case 3. α ∈ (0, 1) \ {1/3, 2/3}. From (1.1) we have the following identity:

f(t) =
1

1 − 3α
log

t2−3α − 1
(2 − 3α)(t − 1)

− α

2
log t − (1 − α) log

1 + t

2
. (3.4)

Equation (3.4) and elementary computation yields

lim
t→ 1+

f(t) = 0, (3.5)

f ′(t) =
1

t(t2 − 1)(t2−3α − 1)
g(t), (3.6)
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where

g(t) =
α

2
t4−3α − α(4 − 3α)

1 − 3α
t3−3α − (1 − α)(4 − 3α)

2(1 − 3α)
t2−3α

+
(1 − α)(4 − 3α)

2(1 − 3α)
t2 +

α(4 − 3α)
1 − 3α

t − α

2
.

g(1) = 0,

g ′(t) =
α(4 − 3α)

2
t3−3α − 3α(4 − 3α)(1 − α)

1 − 3α
t2−3α

− (1 − α)(4 − 3α)(2 − 3α)
2(1 − 3α)

t1−3α +
(1 − α)(4 − 3α)

1 − 3α
t +

α(4 − 3α)
1 − 3α

,

g ′(1) = 0,

g ′′(t) =
3α(4 − 3α)(1 − α)

2
t2−3α − 3α(4 − 3α)(2 − 3α)(1 − α)

1 − 3α
t1−3α

− (1 − α)(4 − 3α)(2 − 3α)
2

t−3α +
(1 − α)(4 − 3α)

1 − 3α
,

g ′′(1) = 0,

(3.7)

g ′′′(t) =
3α(4 − 3α)(1 − α)(2 − 3α)

2t3α+1
(t − 1)2. (3.8)

If α ∈ (0, 1) \ {1/3, 2/3}, then (3.8) implies

g ′′′(t) > 0 (3.9)

for t > 1. Therefore, f(t) > 0 follows from (3.5)–(3.7) and (3.9).
If α ∈ (2/3, 1), then (3.8) leads to

g ′′′(t) < 0 (3.10)

for t > 1. Therefore, f(t) > 0 follows from (3.5)–(3.7) and (3.10).

Next, we prove that the constant 1−3α in the inequalityGα(a, b)A1−α(a, b) ≤ L1−3α(a, b)
cannot be improved. The proof is divided into five cases.

Case 1. α = 1/3. For any ε ∈ (0, 1), let x ∈ (0, 1), then (1.1) leads to

[
G1/3(1, 1 + x)A2/3(1, 1 + x)

]ε − [L−ε(1, 1 + x)]ε =
f1(x)

(1 + x)1−ε − 1
, (3.11)

where f1(x) = (1 + x)(1/6)ε(1 + x/2)(2/3)ε[(1 + x)1−ε − 1] − (1 − ε)x.
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Making use of Taylor expansion we get

f1(x) =
[

1 +
ε

6
x − ε(6 − ε)

72
x2 + o

(
x2
)][

1 +
ε

3
x − ε(3 − 2ε)

36
x2 + o

(
x2
)]

× (1 − ε)x
[

1 − ε

2
x +

ε(1 + ε)
6

x2 + o
(
x2
)]

− (1 − ε)x

=
ε2(1 − ε)

24
x3 + o

(
x3
)
.

(3.12)

Case 2. α = 2/3. For any ε > 0, let x ∈ (0, 1), then

[
G2/3(1, 1 + x)A1/3(1, 1 + x)

]1+ε − [L−1−ε(1, 1 + x)]1+ε =
f2(x)

(1 + x)ε − 1
, (3.13)

where f2(x) = [(1 + x)ε − 1](1 + x)(1+ε)/3(1 + x/2)(1+ε)/3 − εx(1 + x)ε.
Using Taylor expansion we have

f2(x) = εx

{[

1 − 1 − ε

2
x +

(1 − ε)(2 − ε)
6

x2 + o
(
x2
)]

×
[

1 +
1 + ε

3
x − (1 + ε)(2 − ε)

18
x2 + o

(
x2
)]

×
[

1 +
1 + ε

6
x − (1 + ε)(2 − ε)

72
x2 + o

(
x2
)]

−
[

1 + εx − ε(1 − ε)
2

x2 + o
(
x2
)]}

=
ε2(1 + ε)

24
x3 + o

(
x3
)
.

(3.14)

Case 3. α ∈ (0, 1/3). For any ε ∈ (0, 1 − 3α), let x ∈ (0, 1), then

[
Gα(1, 1 + x)A1−α(1, 1 + x)

]1−3α−ε − [L1−3α−ε(1, 1 + x)]1−3α−ε =
f3(x)

(2 − 3α − ε)x
, (3.15)

where f3(x) = (2 − 3α − ε)x(1 + x)α(1−3α−ε)/2(1 + x/2)(1−α)(1−3α−ε) − [(1 + x)2−3α−ε − 1].
Making use of Taylor expansion and elaborated calculation we have

f3(x) =
ε

24
(1 − 3α − ε)(2 − 3α − ε)x3 + o

(
x3
)
. (3.16)
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Case 4. α ∈ (1/3, 2/3). For any ε ∈ (0, 2 − 3α), let x ∈ (0, 1), then

[
Gα(1, 1 + x)A1−α(1, 1 + x)

]3α+ε−1 − [L1−3α−ε(1, 1 + x)]3α+ε−1 =
f4(x)

(1 + x)2−3α−ε − 1
, (3.17)

where f4(x) = [(1 + x)2−3α−ε − 1](1 + x)α(3α+ε−1)/2(1 + x/2)(1−α)(3α+ε−1) − (2 − 3α − ε)x.
Using Taylor expansion and elaborated calculation we have

f4(x) =
ε

24
(3α + ε − 1)(2 − 3α − ε)x3 + o

(
x3
)
. (3.18)

Case 5. α ∈ (2/3, 1). For any ε > 0, let x (0, 1), then

[
Gα(1, 1 + x)A1−α(1, 1 + x)

]3α+ε−1 − [L1−3α−ε(1, 1 + x)]3α+ε−1 =
f5(x)

(1 + x)3α+ε−2 − 1
, (3.19)

where f5(x) = [(1 + x)3α+ε−2−1](1 + x)α(3α+ε−1)/2(1 + x/2)(1−α)(3α+ε−1)−(3α+ε−2)x(1 + x)3α+ε−2.
Using Taylor expansion and elaborated calculation we get

f5(x) =
ε

24
(3α + ε − 1)(3α + ε − 2)x3 + o

(
x3
)
. (3.20)

Cases 1–5 show that for any α ∈ (0, 1), there exists ε0 = ε0(α) > 0, for any ε ∈ (0, ε0)
there exists δ = δ(α, ε) > 0 such that L1−3α−ε(1, 1 + x) < Gα(1, 1 + x)A(1−α)(1, 1 + x) for x ∈
(0, δ).

Theorem 3.2. If α ∈ (0, 1), then Gα(a, b)A1−α(a, b) ≥ L2/(α−2)(a, b) for all a, b > 0, with equality if
and only if a = b, and the constant 2/(α − 2) in L2/(α−2)(a, b) cannot be improved.

Proof. If a = b, then we clearly see that Gα(a, b)A1−α(a, b) = L2/(α−2)(a, b) = a.
If a/= b, without loss of generality, we assume that a > b. Let t = a/b > 1 and

f(t) = logL2/(α−2)(a, b) − log
[
Gα(a, b)A1−α(a, b)

]
. (3.21)

Firstly, we prove f(t) < 0 for t = (a/b) > 1. Simple computation leads to

f(t) =
α − 2
2

log
tα/(α−2) − 1

(α/(α − 2))(t − 1)
− α

2
log t − (1 − α) log

1 + t

2
,

lim
t→ 1+

f(t) = 0,

f ′(t) =
g(t)

t(t − 1)(t + 1)
(
tα/(α−2) − 1

) ,

(3.22)
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where

g(t) =
α

2
t(3α−4)/(α−2) +

4 − 3α
2

t2(α−1)/(α−2) − 4 − 3α
2

t − α

2
.

g(1) = 0,

g ′(t) =
α(3α − 4)
2(α − 2)

t2(α−1)/(α−2) +
(α − 1)(4 − 3α)

α − 2
tα/(α−2) − 4 − 3α

2
,

g ′(1) = 0,

g ′′(t) =
α(4 − 3α)(1 − α)

(α − 2)2
t2/(α−2)(t − 1) > 0

(3.23)

for t > 1 and α ∈ (0, 1).
From (3.23)we clearly see that

g(t) > 0 (3.24)

for t > 1.
Since α/(α − 2) < 0, we have t(t − 1)(t + 1)(tα/(α−2) − 1) < 0 for t ∈ (1,+∞). Therefore,

f(t) < 0 follows from (3.22) and (3.24).
Next, we prove that the constant 2/(α − 2) cannot be improved.
For any ε ∈ (0, α/(2 − α)), we have

[
L2/(α−2)+ε(1, t)

]2/(2−α)−ε −
[
Gα(1, t)A1−α(1, t)

]2/(2−α)−ε

= t

[
(α/(2 − α) − ε)(1 − (1/t))

1 − t−(α/(2−α)−ε)
− t−ε(2−α)/2

(
1 + (1/t)

2

)(1−α)(2/(2−α)−ε)]

,

lim
t→+∞

[
(α/(2 − α) − ε)(1 − (1/t))

1 − t−(α/(2−α)−ε)
− t−ε(2−α)/2

(
1 + (1/t)

2

)(1−α)(2/(2−α)−ε)]

=
α

2 − α
− ε.

(3.25)

Equation (3.25) imply that for any ε ∈ (0, α/(2 − α)) there exists T = T(ε, α) > 1, such
that L2/(α−2)+ε(1, t) > Gα(1, t)A1−α(1, t) for t ∈ (T,∞).
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